Free access
Issue
ESAIM: COCV
Volume 17, Number 3, July-September 2011
Page(s) 603 - 647
DOI http://dx.doi.org/10.1051/cocv/2010018
Published online 23 April 2010
  1. R. Adams, Sobolev Spaces. Academic Press (1975).
  2. G. Alberti, G. Bouchitté and P. Seppecher, Phase transition with the line tension effect. Arch. Rational Mech. Anal. 144 (1998) 1–46. [CrossRef] [MathSciNet]
  3. L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. Oxford Clarendon Press, Oxford (2000).
  4. J. Ball, A version of the fundamental theorem for Young measures, in PDEs and continuum models of phase transitions (Nice, 1988), Lecture Notes in Phys. 344, Springer, Berlin (1989) 207–215.
  5. R. Choksi and R. Kohn, Bounds on the micromagnetic energy of a uniaxial ferromagnet. Comm. Pure Appl. Math. 51 (1998) 259–289. [CrossRef] [MathSciNet]
  6. R. Choksi, R. Kohn and F. Otto, Domain branching in uniaxial ferromagnets: a scaling law for the minimum energy. Comm. Math. Phys. 201 (1999) 61–79. [CrossRef] [MathSciNet]
  7. R. Choksi, R. Kohn and F. Otto, Energy minimization and flux domain structure in the intermediate state of a type-I superconductor. J. Nonlinear Sci. 14 (2004) 119–171. [CrossRef] [MathSciNet]
  8. R. Choksi, S. Conti, R. Kohn and F. Otto, Ground state energy scaling laws during the onset and destruction of the intermediate state in a type I superconductor. Comm. Pure Appl. Math. 61 (2008) 595–626. [CrossRef] [MathSciNet]
  9. S. Conti, I. Fonseca and G. Leoni, A Γ-convergence result for the two-gradient theory of phase transitions. Comm. Pure Applied Math. 55 (2002) 857–936. [CrossRef] [MathSciNet]
  10. G. Dal Maso, An Introduction to Γ-Convergence. Birkhäuser (1993).
  11. E. DiBenedetto, Real Analysis. Birkhäuser (2002).
  12. L. Evans and R. Gariepy, Measure Theory and fine Properties of Functions. CRC Press (1992).
  13. I. Fonseca and G. Leoni, Modern methods in the calculus of variations: Lp spaces, Springer Monographs in Mathematics. Springer (2007).
  14. I. Fonseca and C. Mantegazza, Second order singular perturbation models for phase transitions. SIAM J. Math. Anal. 31 (2000) 1121–1143. [CrossRef] [MathSciNet]
  15. E. Gagliardo, Ulteriori prorietà di alcune classi di funzioni in più variabili. Ric. Mat. 8 (1959) 24–51.
  16. A. Garroni and G. Palatucci, A singular perturbation result with a fractional norm, in Variational problems in materials science, Progr. Nonlinear Differential Equations Appl. 68, Birkhäuser, Basel (2006) 111–126.
  17. E. Giusti, Minimal Surfaces and Functions of Bounded Variation. Birkhäuser (1984).
  18. E. Hebey, Nonlinear Analysis on Manifolds: Sobolev Spaces and Inequalities. AMS/CIMS (1999).
  19. M. Miranda, D. Pallara, F. Paronetto and M. Preunkert, Heat semigroup and functions of bounded variation on Riemannian manifolds. J. Reine Angew. Math. 613 (2007) 99–119. [CrossRef] [MathSciNet]
  20. L. Modica, The gradient theory of phase transitions and the minimal interface criterion. Arch. Rational Mech. Anal. 98 (1987) 123–142. [CrossRef] [MathSciNet]
  21. L. Modica, The gradient theory of phase transitions with boundary contact energy. Ann. Inst. Henri Poincaré, Anal. non linéaire 4 (1987) 487–512.
  22. L. Modica and S. Mortola, Un esempio de Γ--convergenza. Boll. Un. Mat. Ital. B 14 (1977) 285–299. [MathSciNet]
  23. S. Müller, Variational models for microstructure and phase transitions, in Calculus of variations and geometric evolution problems (Cetraro, 1996), Lecture Notes in Math. 1713, Springer (1999) 85–210.
  24. L. Nirenberg, An extended interpolation inequality. Ann. Sc. Normale Pisa - Scienze fisiche e matematiche 20 (1966) 733–737.
  25. E. Stein, Singular Integrals and Differentiability Properties of Functions. Princeton University Press (1970).
  26. L. Tartar, Compensated compactness and applications to partial differential equations, in Nonlinear analysis and mechanics: Heriot-Watt Symposium IV, Res. Notes in Math. 39, Pitman, Boston (1979) 136–212.
  27. W. Ziemer, Weakly differentiable functions – Sobolev spaces and functions of bounded variation, Graduate Texts in Mathematics 120. Springer-Verlag, New York (1989).