Free access
Issue
ESAIM: COCV
Volume 17, Number 3, July-September 2011
Page(s) 682 - 704
DOI http://dx.doi.org/10.1051/cocv/2010013
Published online 31 March 2010
  1. L. Ambrosio and A. Pratelli, Existence and stability results in the L1-theory of optimal transportation – CIME Course, in Lecture Notes in Mathematics 1813. Springer Verlag (2003) 123–160.
  2. M. Beiglböck and W. Schachermayer, Duality for Borel measurable cost functions. Trans. Amer. Math. Soc. (to appear).
  3. M. Beiglböck, M. Goldstern, G. Maresh and W. Schachermayer, Optimal and better transport plans. J. Funct. Anal. 256 (2009) 1907–1927. [CrossRef] [MathSciNet]
  4. M. Beiglböck, C. Léonard and W. Schachermayer, A general duality theorem for the Monge-Kantorovich transport problem. Preprint (2009).
  5. J.M. Borwein and A.S. Lewis, Decomposition of multivariate functions. Can. J. Math. 44 (1992) 463–482. [CrossRef]
  6. H. Brezis, Analyse fonctionnelle – Théorie et applications. Masson, Paris (1987).
  7. G. Dal Maso, An Introduction to Γ-Convergence. Progress in Nonlinear Differential Equations and Their Applications 8. Birkhäuser (1993).
  8. L. Decreusefond, Wasserstein distance on configuration space. Potential Anal. 28 (2008) 283–300. [CrossRef] [MathSciNet]
  9. L. Decreusefond, A. Joulin and N. Savy, Upper bounds on Rubinstein distances on configuration spaces and applications. Communications on Stochastic Analysis (to appear).
  10. I. Ekeland and R. Témam, Convex Analysis and Variational Problems, Classics in Applied Mathematics 28. SIAM (1999).
  11. D. Feyel and A.S. Üstünel, Monge-Kantorovitch measure transportation and Monge-Ampère equation on Wiener space. Probab. Theory Relat. Fields 128 (2004) 347–385. [CrossRef]
  12. C. Léonard, Convex minimization problems with weak constraint qualifications. Journal of Convex Analysis 17 (2010) 312–348.
  13. J. Neveu, Bases mathématiques du calcul des probabilités. Masson, Paris (1970).
  14. A. Pratelli, On the sufficiency of the c-cyclical monotonicity for optimality of transport plans. Math. Z. 258 (2008) 677–690. [CrossRef] [MathSciNet]
  15. S. Rachev and L. Rüschendorf, Mass Transportation Problems. Vol. I: Theory, Vol. II: Applications. Springer-Verlag, New York (1998).
  16. L. Rüschendorf, On c-optimal random variables. Statist. Probab. Lett. 27 (1996) 267–270. [CrossRef] [MathSciNet]
  17. W. Schachermayer and J. Teichman, Characterization of optimal transport plans for the Monge-Kantorovich problem. Proc. Amer. Math. Soc. 137 (2009) 519–529. [CrossRef] [MathSciNet]
  18. C. Villani, Topics in Optimal Transportation, Graduate Studies in Mathematics 58. American Mathematical Society, Providence (2003).
  19. C. Villani, Optimal Transport – Old and New, Grundlehren der mathematischen Wissenschaften 338. Springer (2009).