Free access
Issue
ESAIM: COCV
Volume 17, Number 4, October-December 2011
Page(s) 975 - 994
DOI http://dx.doi.org/10.1051/cocv/2010034
Published online 23 August 2010
  1. G. Allaire, Homogenization and two-scale convergence. SIAM J. Math. Anal. 23 (1992) 1482–1518. [CrossRef] [MathSciNet]
  2. A. Bensoussan, J.L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structures. North-Holland Company, Amsterdam (1978).
  3. C. Calvo-Jurado and J. Casado-Diaz, Homogenization of Dirichlet parabolic problems for coefficients and open sets simultaneously variable and applications to optimal design. J. Comput. Appl. Math. 192 (2006) 20–29. [CrossRef] [MathSciNet]
  4. J. Casado-Diaz, J. Couce-Calvo and J.D. Martin-Gómez, Optimality conditions for nonconvex multistate control problems in the coefficients. SIAM J. Control Optim. 43 (2004) 216–239. [CrossRef] [MathSciNet]
  5. E. Casas, Optimal Control in coefficients of elliptic equations with state constraints. Appl. Math. Optim. 26 (1992) 21–37. [CrossRef] [MathSciNet]
  6. I. Ciuperca, M. El Alaoui Talibi and M. Jai, On the optimal control of coefficients in elliptic problems, Application to the optimization of the head slider. ESAIM: COCV 11 (2005) 102–121. [CrossRef] [EDP Sciences]
  7. H. Gao and X. Li, Necessary conditions for optimal control of elliptic systems. J. Australian Math. Soc. Ser. B 41 (2000) 542–567. [CrossRef]
  8. A. Holmbom, Homogenization of parabolic equations an alternative approach and some corrector-type results. Appl. Math. 42 (1997) 321–343. [CrossRef] [MathSciNet]
  9. O.A. Ladyženskaja, V.A. Solonnikov and N.N. Ural'ceva, Linear and Quasi-linear Equations of Parabolic Type, Transl. Math. Monographs 23. American Mathematical Society, Providence (1968).
  10. X. Li, and J. Yong, Optimal Control Theory for Infinite Dimensional Systems. Birkhäuser, Boston (1995).
  11. H. Lou and J. Yong, Optimality Conditions for Semilinear Elliptic Equations with Leading Term Containing Controls. SIAM J. Control Optim. 48 (2009) 2366–2387. [CrossRef] [MathSciNet]
  12. F. Murat and L. Tartar, Calculus of variations and homogenization, in Topics in the Mathematical Modelling of Composite Materials, Progress in Nonlinear Diffrential Equations and their Applications 31, L. Cherkaev and R.V. Kohn Eds., Birkaüser, Boston (1998) 139–174.
  13. U. Raitums and W.H. Schmidt, On necessary optimal conditions for optimal control problems governed by elliptic systems. Optimization 54 (2005) 149–160. [CrossRef] [MathSciNet]
  14. S.Y. Serovajsky, Sequential extension in the problem of control in coefficients for elliptic-type equations. J. Inverse Ill-Posed Probl. 11 (2003) 523–536. [CrossRef] [MathSciNet]
  15. R.K. Tagiyev, Optimal control by the coefficients of a parabolic equation. Trans. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci. Math. Mech. 24 (2004) 247–256.
  16. L. Tartar, Estimations fines de coefficients homogénéisés, Ennio de Giorgi Colloquium, in Pitman Research Notes in Mathematics 125, P. Krée Ed., Pitman, London (1985) 168–187.