Highlight
Free access
Issue
ESAIM: COCV
Volume 18, Number 2, April-June 2012
Page(s) 318 - 342
DOI http://dx.doi.org/10.1051/cocv/2011004
Published online 19 January 2011
  1. D. Auroux and J. Blum, Back and forth nudging algorithm for data assimilation problems. C. R. Acad. Sci. Paris Sér. I 340 (2005) 873–878. [CrossRef]
  2. D. Auroux and J. Blum, A nudging-based data assimilation method for oceanographic problems : the back and forth nudging (BFN) algorithm. Nonlin. Proc. Geophys. 15 (2008) 305–319. [CrossRef]
  3. D. Auroux and S. Bonnabel, Symmetry-based observers for some water-tank problems. IEEE Trans. Automat. Contr. (2010) DOI : 10.1109/TAC.2010.2067291.
  4. H. Brezis, Analyse fonctionnelle : théorie et applications. Dunod, Paris (1999).
  5. R. Courant and D. Hilbert, Methods of Mathematical Physics II. Wiley-Interscience (1962).
  6. L.C. Evans, Partial Differential Equations. American Mathematical Society, Providence (1998).
  7. G. Evensen and P.J. van Leeuwen, An ensemble Kalman smoother for nonlinear dynamics. Mon. Weather Rev. 128 (1999) 1852–1867. [CrossRef]
  8. B.-Z. Guo and W. Guo, The strong stabilization of a one-dimensional wave equation by non-collocated dynamic boundary feedback control. Automatica 45 (2009) 790–797. [CrossRef]
  9. B.-Z. Guo and Z.-C. Shao, Stabilization of an abstract second order system with application to wave equations under non-collocated control and observations. Syst. Control Lett. 58 (2009) 334–341. [CrossRef]
  10. J. Hoke and R.A. Anthes, The initialization of numerical models by a dynamic initialization technique. Mon. Weather Rev. 104 (1976) 1551–1556. [CrossRef]
  11. R.E. Kalman, A new approach to linear filtering and prediction problems. Trans. ASME – J. Basic Eng. 82 (1960) 35–45. [CrossRef]
  12. E. Kalnay, Atmospheric modeling, data assimilation and predictability. Cambridge University Press (2003).
  13. M. Krstic, L. Magnis and R. Vazquez, Nonlinear control of the viscous burgers equation : Trajectory generation, tracking, and observer design. J. Dyn. Sys. Meas. Control 131 (2009) 1–8. [CrossRef]
  14. F.-X. Le Dimet, and O. Talagrand, Variational algorithms for analysis and assimilation of meteorological observations : theoretical aspects. Tellus 38A (1986) 97–110. [CrossRef]
  15. D. Luenberger, Observers for multivariable systems. IEEE Trans. Automat. Contr. 11 (1966) 190–197. [CrossRef]
  16. Ph. Moireau, D. Chapelle and P. Le Tallec, Filtering for distributed mechanical systems using position measurements : perspectives in medical imaging. Inver. Probl. 25 (2009) 035010. [CrossRef]
  17. K. Ramdani, M. Tucsnak and G. Weiss, Recovering the initial state of an infinite-dimensional system using observers. Automatica 46 (2010) 1616–1625. [CrossRef]
  18. D.L. Russell, Controllability and stabilizability theory for linear partial differential equations : recent progress and open questions. SIAM Rev. 20 (1978) 639–739. [CrossRef] [MathSciNet]
  19. A. Smyshlyaev and M. Krstic, Backstepping observers for a class of parabolic PDEs. Syst. Control Lett. 54 (2005) 613–625. [CrossRef]