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ON DYNAMIC FEEDBACK LINEARIZATION
OF FOUR-DIMENSIONAL AFFINE CONTROL SYSTEMS
WITH TWO INPUTS

JEAN-BAPTISTE POMET

ABSTRACT. This paper considers control affine systems in R* with two
inputs, and gives necessary and sufficient conditions for dynamic feed-
back linearization of these systems with the restriction that the “lin-
earizing outputs” must be some functions of the original state and inputs
only. This also gives conditions for non-affine systems in R?.

1. INTRODUCTION

A deterministic finite dimensional nonlinear control system

where the state x lives in R™, the control « lives in R™, and f is smooth

—smooth means C* in this article— is said to be locally static feedback
equivalent around (Z, u) to another system

z = f(Z,U) (12)
around (Zz,v) if there exists a nonsingular feedback transformation, i.e. two
maps

v = afz,v)

ro= 62)
such that (z,v) — (¢(2),a(z,v)) is a local diffeomorphism sending (z, )
to (z,u), that transforms (1.1) into (1.2). The interest of feedback equiva-
lence is that the transformation (1.3) allows one to convert the solution to a
certain control problem for system (1.1) to the solution of a similar control
problem for system (1.2). It is clear that (germs of) static feedback transfor-
mations form a group acting on (germs of ) systems, and that static feedback
equivalence is an equivalence relation. This feedback equivalence has been
very much studied, see for instance [4, 3, 13]. Classification of control sys-
tems modulo this equivalence is of course a very ambitious and difficult
program, almost out of reach. A more restricted problem is the one of de-

scribing the orbits of controllable linear systems, i.e. systems of the form
2 = Az + Bv with (controllability) the columns of B, AB, A?B, A®B, ...

(1.3)

[.N.R.I.A., 2004 route des lucioles, BP. 93, 06902 Sophia Antipolis, France.
E-mail: pomet@sophia.inria.fr.

This work was initiated when the author was with: Laboratoire d’Automatique de
Nantes, U.R.A. C.N.R.S. 823, E.C.N., Univ. de Nantes, 1 rue de la No¢, 44072 NANTES
cédex 03, France.

Received by the journal March 26, 1996. Revised December 7, 1996. Accepted for
publication February 19, 1997.

© Société de Mathématiques Appliquées et Industrielles. Typeset by I4#TEX.



152 JEAN-BAPTISTE POMET

having full rank. This problem is known as static feedback linearization,
and has been completely solved: in [15, 12], explicit conditions are given
for a general nonlinear system to be locally static feedback equivalent to a
controllable linear system.

A dynamic feedback, or dynamic compensator, as opposed to static, is
one where the “old” controls u are not computed from the “new” ones v
by simply static functions (1.3), but through a dynamic system which has a
certain state &:

u = a(z, &, v)
§ = 7($7€7U) (14)
Z = ¢($,€),

where ¢ lives in RY, £ > 0, and ¢ is a (local) diffeomorphism of R***. (z,v)
may be viewed as the “input” of the control system, and (u,z,£), or (u, X)
as its “output”.

Clearly, (1.4) allows one to transform system (1.1) into a system like
(1.2). However, contrary to the case of static feedback, the dimension of the
state of the transformed system (1.2) is strictly larger than the dimension
of the state of the original system (1.1), and for this reason, it a priori
difficult to say what an “invertible” dynamic feedback “transformation” can
be. One may however, following [7], state the problem of dynamic feedback
linearization as the one of deciding when a system (1.1) can be transformed
via a dynamic feedback (1.4) into a linear controllable system. The problem
of deciding if a given system is dynamic feedback linearizable is much more
difficult than the one for static feedback and is still open. A panorama
and further references on dynamic feedback linearization from the point of
view of compensators (1.4) can be found in [7]. This reference contains
some sufficient conditions, that have the annoying drawback of not being
invariant by static feedback, and also the following three results, that are
of more general interest: a single input system (v € R), at a “regular”
point, is dynamic feedback linearizable if and only if it is static feedback
linearizable; dynamic feedback linearizability at a rest point (z,u) = (z,0)
implies controllability of the linear approximation of the system at this point;
a controllable system which is affine in the control —i.e. the right-hand side
of (1.1) is affine with respect to u— and such that the dimension of the state
is larger than the dimension of the control by at most one is always dynamic
feedback linearizable.

As seen above, the case of systems with one control is completely under-
stood outside singularities, so that the nontrivial cases have at least two
controls. The cases where the dimension of the state is less than 3 are some-
how trivial (again, away from singularities), and the case where it is 3 and
the system is affine in the control is covered by the above mentioned re-
sult from [7]. The smallest nontrivial cases are therefore non-affine systems
with three states and two inputs, and affine systems with four states and
two inputs. Section 6 explains how to apply the results of this paper to
three-dimensional non-affine systems, but the rest of the paper is devoted
to systems

i = Xo(z) + wiXq(z) + u2X2(x) (1.5)
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where 2 € R* and u; and uy are in R (u = (uy, u2)). Xo, X1 and Xy are
smooth vector fields in R*. Smooth means C* in this article.

Of course, since it is the simplest non-trivial case, the problem of dynamic
feedback linearization for the four dimensional system (1.5) has already been
studied. In [17], based on the results from [7], sufficient conditions on Xg, X
and X5 are given. A drawback of these results is that they are not invariant
by static feedback, and are only sufficient conditions. They are contained in
the results of the present paper.

Rather recently, some conceptual advances have been made on dynamic
equivalence and dynamic linearization, initiated in [18, 8] (see [11] for a
complete exposition). In [18], a restricted class of compensators (1.4) is
studied, called endogenous dynamic feedbacks. They are exactly these that
should be called “invertible”. They are the compensators (1.4) such that,
by differentiating relations (1.1) and (1.4), it is possible to express £ and v
as functions of =, u, %, and a finite number of time-derivatives of u. The
compensator (1.4) may then be replaced by some formulas giving z and v
as functions of (z,u,,,...), which is “invertible” by formulas giving «
and w as functions of (z,v,0,9,...). On the other hand, the notion of dif-
ferential flatness for control systems is introduced in [18, 8, 11], as roughly
speaking, existence of m —two for system (1.5)— functions of z, u, @ and
a finite number of time-derivatives of w which are differentially independent
(the Jacobian of any finite number of these functions and their time deriva-
tives has maximum rank) and such that both # and u can be expressed as
functions of these m functions and a finite number of their time-derivatives.
These functions are called linearizing outputs, or “flat outputs”. It is proved
there that differential flatness is equivalent to equivalence by endogenous dy-
namic feedback to a controllable linear system. In the differential algebraic
framework of [8, 11], flatness is defined as the differential field representing
the system being non-differentially algebraic over a purely transcendental
differential extension of the base field, and the linearizing output is a tran-
scendence basis. Of course, the linearizing outputs are then “restricted” to
be algebraic. With a suitable definition of endogenous dynamic equivalence
between differential fields, it is proved that differential flatness is equiva-
lent to equivalence by endogenous dynamic feedback to a controllable linear
system.

In [14], a notion of dynamic equivalence in terms of transformations on
solutions of the system is studied; different types of transformations are
defined there in terms of infinite jets of trajectories, for smooth systems,
one of them is proved there to be exactly the one studied here. A property
of “freedom” is introduced that is close to differential flatness and is proved
to be equivalent to equivalence to a linear system.

See [11], [7] or [2, 1] for a more complete panorama and list of references
on dynamic feedback equivalence and dynamic feedback linearization, with
references to recent and interesting results and points of views that we do
not discuss here, like the work by Shadwick [23] (and subsequent articles)
that make a link between dynamic feedback linearization and the notion of
absolute equivalence defined by E. Cartan for Pfaffian systems.

There was a need to develop a geometric framework for the invertible
transformations that represent dynamic feedback. This was done by the
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author in [19] and independently by the authors of [8, 11] in [9, 10]. In these
papers, an (infinite dimensional) differential geometric approach, based on
infinite jet spaces, is used, and the transformations described above may
be seen as diffeomorphism that conjugate a system to another, they are a
particular case of infinite order contact transformations, or Lie-Backlund
transformations used in the “geometric” study of differential systems and
partial differential relations.

Here, we adopt the notations and the precise definitions for linearizing
outputs and dynamic linearization from [19, 1]. They are summed up in
section 2.2 and 2.3.

The problem of deciding endogenous! dynamic linearizability is then the
one of deciding existence of a system of linearizing outputs. The first dif-
ficulty is that there is no known a priori bound on the number of time-
derivatives of the input the linearizing outputs should depend upon (sim-
ilarly, there is no a priori bound on the dimension of £ in a compensator
(1.4) that would transform a given nonlinear system into a linear system
if such a compensator exists). Even for four-dimensional systems (1.5), no
such bound is known. We do not address this difficulty in the present paper.
We only give necessary and sufficient conditions for existence of linearizing
outputs depending on x and u. We call z-dynamic and (z, u)-dynamic lin-
earizability existence of linearizing outputs depending on w oron (z, u). Note
that the present conditions are quite explicit: a small package in Maple, de-
scribed in [16], that helps in the process of checking the present conditions,
will soon be available from the author.

Technically, the results in this paper amount to conditions for existence
of solutions to some differential relations: in principle, given a system, one
may write the PDEs that a pair of functions (hy(x, u), he(z, u)) has to satisfy
to be a pair of linearizing outputs, and then check whether this system of
PDEs has some solutions (formal integrability, Spencer co-homology, see for
instance [6] or [21]). This program reaches its limits very quickly seen the
complexity of the PDEs themselves, and of the computation of compatibility
conditions: even if algorithms are theoretically available, writing the PDEs
for linearizing outputs for a general system is already heavy, and computing
the compatibility conditions via general algorithms is overwhelming. The
essence of the paper is however to compute these compatibility conditions,
but in a way that uses a lot of the structure of the problem and makes them
tractable. In particular, we use, for the case of linearizing outputs depending
on z and u, the “infinitesimal Brunovsky form” introduced in [2, 1, 20], that
allows to write different PDEs: the unknowns are then some coefficients of
transformations that act on pairs of differential forms —the condition is that
it makes them integrable— instead of the linearizing outputs themselves.
It would be interesting to know whether it is general that the use of the
infinitesimal Brunovsky form provides a method to write the equations for
linearizing outputs in a more tractable manner. This is explained into details
in section 2, see especially subsection 2.6 for a discussion of the two possible

'It is announced in [11, 10] that general dynamic feedback linearizability implies en-
dogenous dynamic linearizability. From such a result, existence of linearizing outputs
would be necessary and sufficient for general dynamic feedback linearization.
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ways of writing the equations for existence of linearizing outputs, either
directly or via the infinitesimal Brunovsky form.

The paper is organized as follows. Section 2 recalls or introduces some
technical material, including the precise definitions of what is intended here
by feedback linearization and linearizing outputs in the geometric context
of [19, 1]. Sections 3 and 4 contain the results, i.e. necessary and sufficient
conditions for z-dynamic linearization (section 3) and for (z,u)-dynamic
linearization (section 4). Section 6 shows that non affine systems in R? which
are dynamic feedback linearizable may be transformed into an affine system
(1.5) in R* by a simple dynamic extension, using a result by Rouchon [22]
or Sluis [24]. Most proofs are in section 7, and some basic facts on Pfaffian
systems used in them are recalled in the Appendix. Section 8 makes some
remarks on the problems we leave open and on the interest and limitations
of the techniques we use.

2. STATEMENT OF THE PROBLEM
2.1. STAaTIC FEEDBACK

A static feedback transformation, around a point (z,u) is a local trans-
formation on the controls v = ¢3(z, u), defined on a neighborhood of (z, @),
with % invertible (the reason for the subscript “2” is that we shall use
a local diffeomorphism ¢ on x, so that (z,u) — (¢1(2), p2(x, u) is a local
diffeomorphism on (z, u)).

Since we are only concerned with systems like (1.5) where the controls
appear linearly, we shall only need affine static feedback. A local affine
static feedback transformation is one of the above type where ¢5 is affine
with respect to u. It is more convenient to write the inverse of ¢y with
respect to u, i.e. to write, instead of (v1,v3) = ¢2(x, u1, uz),

(0) = e@(i)+o0 2.1)

with a(z) an invertible 2 X 2 matrix and §(z) a vector, both depending
smoothly on z. It transforms system (1.5) into

= Xo(2) + v Xi(x) + v Xa(2)
)So = Xo+ 5 X1 + 82X,

with X1 = o111 X1 + a1 X2

Xy = app Xy + axpX,.

by

(2.2)

A system is locally static feedback linearizable if and only if it may be
transformed by such a transformation into a system which, in some coordi-
nates z = ¢;(z), reads like a controllable linear system z = Az + Bv in R*
with two inputs; these linear systems are all of the form (a) or (b) below,
up to a linear feedback —like (2.1) with « and § constant— and a linear
change of coordinates:

=2 =22
29 = 23 Z9 = Uy

@1 =" DR S, (2:3)
,2:’4 = Uy ,2:’4 = Ug.
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These are the two Brunovsky canonical forms for controllable linear systems
with two inputs and four states, see [5]. Static feedback linearizable systems
are a particular case of z-dynamic linearizable systems because (z1,z4) for
the form (a), and (1, 23) for the form (b) may be chosen as a pair of
linearizing outputs (see section 2.3).

Static feedback will also be used in the present paper to give some simple
“normal” forms modulo this transformation and a change of coordinates on
z of the systems considered for each case, or set of conditions, see (3.3), (3.4),
(3.6), (3.7), (3.9), (3.20), (4.13), (4.19). The term feedback invariant refers
to a property or an object that is invariant with respect to this equivalence
relation between systems.

2.2. “INFINITE DIMENSIONAL” DIFFERENTIAL CALCULUS AND
EQUIVALENCE BY ENDOGENOUS FEEDBACK

This section is devoted to briefly recalling some notations and results from
[19, 1]. The reader is referred to these references for a detailed exposition.

As mentioned in the introduction, similar material was also presented —
independently— in [9, 10]. The content of [9, 10] is more general and more
formal, and tends to give as a conclusion that systems (1.1) is not a general
enough class of system for control theory, whereas [19] aims at developing
the sufficient framework to use classical tools from differential calculus for
the study of dynamic feedback. This infinite dimensional framework is, in
any case, a rather convenient way of manipulating functions and other ob-
jects which depend on a finite but not a priori fixed number of variables,
and it allows to say that the transformations by dynamic feedback are “dif-
feomorphisms”.

We call generalized state manifold for system (1.1) with n states and m
inputs the “infinite dimensional manifold” Mz" where a set of coordinates
1S (1,0 ey @y Uty e v oy Uy Uty eony Uppy Uty nny Uy ... ). It is the projective
limit of the finite dimensional manifolds M}, K > —1 with coordinates
(1y ooy Ty ULy ene y Uy Ulyonny Uy - ,u(lk),... ,ug‘)) —when K = -1,
this means (z1,...,2,)— and we have the obvious projections wx from

ME™ to MP™:
K -
TR(T1 e Ty U e Uy e o) = (B0 o Ty U e e Uy - u(lx)...ug‘)). (2.4)

The topology is the product topology, the least fine such that all these
projections are continuous, i.e. an open set is always of the form 771}1 (0)
with O a (finite-dimensional) open subset of M7™. In particular when a
property holds locally around a point (x,u,u, i, u, .. .), it means that it
holds on a neighborhood of this point, i.e. for points whose first coordinates
(an unknown a priori but finite number) are close to these of the original
point, but with no restriction on the remaining coordinates. Actually, we
will often say “in a neighborhood of (z,u,... 7u(K))” to indicate that the
value of (u(K‘H),u(K"'Q)7 ...) does not matter, i.e. the neighborhood is of
the form 7' (O) with O a neighborhood of (z,u,...,u!®)) in M7".

Smooth functions are functions of a finite number of coordinates which
are smooth in the usual sense. Differential forms of degree 1 are finite linear
combinations:
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al_ldxl +---+a”da, —I—Qédul +-+afduy, + - -—I—a}]du(lj) 4. -+a?du§7;])
where the af ’s are smooth function. Forms of any degree may be defined
similarly. Vector fields are (possibly infinite) linear Combinations bl_la% +

S B e bl ek B 5 bl 07 2+ - Note that
this infinite sum is only symbolic. "There is no notion of * Convergence” here
since a vector field may be defined as a derivation on smooth functions,
which, by definition depend only on a finite number of variables, so that the
sum becomes finite when computing the Lie derivative of a smooth function
along this vector field.

A diffeomorphism is a mapping ¢ from MZ" to MIE™ which is invertible
and such that ¢ and ©~! are smooth mappings, in the sense that, for any
smooth function A from M2" to R, h o ¢ is a smooth function from MZ"
to R, and for any smooth function k from MZ" to R, ko p~!is a smooth
functlon from M2 to R.

A system & = f(z,u) with 2 € R™ and u € R™ is represented by a vector
field of the form F' = f(z, u)aa—x—l—dl 8871+ﬂ2%+ﬁ1%+' -+ on the manifold
ME". Tt is said to be (locally) equivalent by endogenous dynamic feedback
to the system Z= f(z v) with z €ER™ and v E Rm itself represented by the
vector field F = f(z v) 015 - avl 4 Oy = 8U2 + 01 22— avl +...on MZ"if and only

if there exists a (local) diffeomorphism from M2 to MZ™ that conjugates
these two vector fields. This implies that m = m.

These diffeomorphism exactly mimic the transformations defined in [18].
The definition of “endogenous” as opposed to “exogenous” is explained
there, or in [11].

From now on, let us focus on the small dimensional system (1.5), i.e
n =4 and m = 2. We associate to system (1.5) the following vector field on

2,4
M

0 0 0
F= Xo-I-U1X1-I-U2X2-|-U18—1—I-uz8 2+u18—u1+ (2.5)

Let us call canonical linear system with two inputs the vector field

C 0 0 0 0 (3) 0
—Ula——l- 28 2—|- ER 1—|— 28 + vy 8—1+
on the manifold M2 where a set of coordinates is vy, Vg, U1, Vg, U1, Ug, . ...
Any controllable linear system with 2 inputs can be (globally) transformed
via a diffeomorphism into the canonical linear system on M2 , see [1]. For
instance, for the first case in (2.3), the diffeomorphism is given by v; =
T1, U1 = T2, U1 = T3, U?) = U17U§4) = Ul,...,V3 = T4, U3 = Uy, Uy =
g, .... Hence, system (1.5) is said to be locally linearizable by endogenous
dynamic feedback, or simply endogenous dynamic linearizable at X' € M
if and only if there is a diffeomorphism ¢ from an open neighborhood of A’
in ./\/1254 to an open set of ./\/1250 which transforms the vector field F' defined
n (2.5) into the vector field C' on M2
Let us discuss a few more objects that will be used in the paper. Lie
Brackets, exterior derivative, Lie derivatives and all objects from usual dif-
ferential calculus may be defined because they (or each of their components)
Esamm: Cocv, JUNE 1997, VoL. 2, pp. 151-230
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may all be computed finitely and depend on a finite number of variables; all
identities from differential calculus are valid (any given such identity really
involves only a finite number of variable).

We call time-derivative along system (1.5) the Lie derivative along the
vector field F. It corresponds to the derivation defined in the differential
fields in [11]. It will often be denoted % instead of Lp. It may be applied
to functions: for a function h(z,u,, ... ,u(K))7 h, or Lph, or %h, is the
function of z, u, u, ..., u™*+1) obtained by applying the chain rule and sub-
stituting Xo(2) 4+ u1 X1 (2) + ug Xo(2) for &. This time-derivative may also
be applied to forms. The time-derivative of w = al_ldxl 4. 4 a‘ildu +
a(l)dul + a%duz 4. 4 a}]du(l‘]) + a%du(z‘])7 i.e. its Lie derivative with along
F, is given by

o = ddiy 4+ - + ot diy 4+ aldey 4+ -+ 0l day
+aldiy + aidiy + alduy + addug + .-
e 4 a}]du(l‘]-l_l) + a%dug‘jﬂ)d}]du({]) + dgdug‘])
where dz; stands for the differential of the ith component of Xg + w1 X1 +
UQXQ.

Let us mention one last notation. By Span{dx} or Span{dx, du} we mean
the module over smooth functions spanned by dzy, dzg, dzs, doy, or by dxq,
dzg, des, doy, duq, dus respectively.

2.3. LINEARIZING OUTPUTS

Linearizing outputs, or flat outputs were introduced by Fliess, Lévine,
Martin and Rouchon in their work on differential flatness. Originally, it
was a way to view the problem of dynamic feedback linearization in a more
tractable way, but the systems for which there exists linearizing —or flat—
outputs, i.e. differentially flat systems, possess properties that are very
interesting independently from the fact that they may be rendered linear
in some coordinates after adding to them a dynamic compensator: all their
solutions may be parameterized “freely” by the linearizing outputs, see [11].

The following is the definition of linearizing output in the framework
exposed above. It totally agrees with the one in [18, 11].

DEerFINITION 2.1 ([1]). A pair of functions (hy, hy) on M2 is called a pair
of linearizing outputs on an open subset U of M2 if the functions L%hk, ke
{1,2},j > 0, are a set of coordinates on U, i.e. if X' — (L%hk(X))ke{LQ}JZO
is a diffeomorphism from U to an open subset of R?N = MEL.

It is said to be a pair of linearizing output at point (z, @, u, ..., u’)) with
J > —1 (when J = —1, this stands for z) if it is a pair of linearizing output
on an open set U of the form 7' (Uy) (see (2.4)) where Uy is a neighborhood
of (2,a,1,...,a) in M3 ie. R2H6,

The following equivalent formulation is maybe simpler. It is closer to the
definition in [18, 11].
ProposITION 2.2 ([19]). A pair of functions (hy, hz) on MZY s a pair of
linearizing outputs at point (z,,u, ... ,u)) with J > =1 (when J = —1,
this stands for z) if and only if there exists on open set U of the form
757 (Uy) (see (2.4)) such that
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1. the differential forms (dhggj))ke{l,z},jzo are linearly independent at all
points of U (meaning that whenever you take a finite number among
these, they are linearly independent),

2. there exists an integer L and a smooth function b from an open set
of R*42 10 RS such that (x,u) = 1 (h, ha, by, by, . .. 7h(lL)7 th)) on U
(this is an identity between functions of x,u, U, ,...).

As said above, the linearizing outputs have a lot of interest in themselves,

when they exist. They are also very relevant for the problem of dynamic
linearization, thanks to the following equivalence, pointed out in [18, 8, 11].

ProposITION 2.3. (Local) endogenous dynamic linearizability is equivalent
to existence (locally) of a pair of linearizing outputs.

A proof in the present context may be found in [19, Theorem 4]. The
following may illuminate the above introduced notions.

Proof. A diffeomorphism ¢ that Conjugates the vector field F' defined in (2.5)
to the canonical vector field C' on ./\/lOO defines two functions h; = vy o and
hy = vy 0 ¢ on M2 which have the property that all their Lie derivatives

L why, are transformed by the diffeomorphism into the coordinate Ul(c ), which

implies that the functions L%hk are locally a set of coordinates on M ;
conversely, if two functions exists which have this property, it is very easy to
build a diffeomorphism from ./\/1254 to ./\/1250 which transforms F into ¢'. O

By definition of what a smooth function is, the functions in a pair of
linearizing outputs depend only on a finite number of variables among z, u,
i, i ... In [1], we say that a system is (z,u, ..., u))-dynamic linearizable
when there exists a pair of functions depending only on z, u, ..., u¥),
Clearly, from proposition 2.3 and above, linearizability by endogenous dy-
namic feedback implies (z,u, ..., u(K))—dynamic linearizability for a certain
K. Of course, a very interesting question is: given a system, how to de-
termine a bound K such that if it is dynamic linearizable at all, then it is
(@, u, @, 4, ... 7u(I‘())—dyn&urnic linearizable 7 Even for systems of the form
(1.5), this is the subject of ongoing research.

As explained in the introduction, we only deal, in the present paper, with
linearizing outputs depending on z only, or on z and wu:

DEFINITION 2.4. System (1.5) is said to be (z, u)-dynamically linearizable at
the point X' = (z,4,..., ﬂ(‘])) if and only if there exists a pair of linearizing
outputs (hy, hy) that depend on z and u only on an open set 71'[}1(?), a
pair of linearizing outputs depending on z and w only. It is said to be
x-dynamically linearizable if these linearizing outputs depend on z only.

The present paper characterizes z-dynamic linearizability and (z, u)-dyna-
mic linearizability for systems (1.5). Systems that are proved here not to
be (2, u)-dynamic linearizable might or might not be (z,u, @)-dynamic lin-
earizable, or (z, u, i, #)-dynamic linearizable, and so on ...

2.4. NON-ACCESSIBILITY

Since we only work at regular points, non-accessibility always means in
the present paper (and with the dimensions as in (1.5)) that there exists
Esaim: Cocv, JUNE 1997, VoL. 2, pp. 151-230
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one function x(z), or two functions yi(z) and xz2(z), such that y = ¢(x) for
some function ¢, or X; = wi(x1, X2), ¢ = 1,2 for some functions ¢ and 3.

This is an obstruction to existence of a pair of linearizing outputs. Indeed,
if (h1,h2) is a pair of linearizing outputs, ¥ = ¢(x), or xi = ¢i(x1, x2)
implies a nontrivial relation between hq, ho, hl, hg, cen hIJ , h2J for a certain
J > 0, which cannot occur from the definition of a pair of linearizing outputs.

2.5. LINEARIZING PFAFFIAN SYSTEMS, INFINITESIMAL BRUNOVSKY FORM

An infinite set of differential forms is a basis of the space of all differential
forms in the neighborhood of a point if any finite number of them are linearly
independent at this point and there exists a neighborhood U of this point
such that any differential form defined on U may be written as a linear
combination of a finite number of the forms in the “basis” with coefficients
smooth functions defined in U.

DEFINITION 2.5. Let wy and w9 be two differential forms. We say that
{w1,wa} is a linearizing Pfaffian system at a certain point (z, u, u, . . . ,ﬂ(‘]))
if and only if wy, wy and all their time-derivatives, i.e. (w,(j))ke{m}’jzo form
a basis of the space of all differential forms in a neighborhood of this point.

Note that this is a property of the Pfaffian system (or the co-distribution)
{wy,ws} rather than the pair of forms since this property will still hold if w;
and wy are replaced by another basis for the same Pfaffian system.

Clearly, if (hy, he) is a pair of linearizing outputs, then {dhy,dhs} is a lin-
earizing Pfaffian system because the function % in proposition 2.2 translates
into a linear combination when differentiating. The converse is also true
but requires a local inverse theorem in the “infinite dimensional” framework
described above, that is given in [19]:

ProposITION 2.6 ([19]). A pair of functions (hy, h2) is a pair of linearizing
outputs at a point if and only if {dhy,dhy} is a linearizing Pfaffian system
at this point.

Since we pointed out that being a linearizing Pfaffian system does not
depend on the precise choice of the basis, from Frobenius theorem, it is
enough to have a linearizing Pfaffian system satisfying Frobenius condition.

ProposITION 2.7 ([19]). There exists a pair of linearizing outputs around
a point if and only if there exists a linearizing Pfaffian system {wy,wy} on
a netghborhood of this point satisfying Frobenius condition: dwy Awy Awy =
dwy A wi Awy = 0 in a neighborhood of this point.

We have the following —straightforward— property that describes all the
possible linearizing Pfaffian systems from one:

ProposiTION 2.8 ([1]). Let {wi,ws} be a linearizing Pfaffian system at a
certain point. Then for two formsny and ng, {ny,n2} is a linearizing Pfaffian
system if and only if w1 and wy are linear combinations of 11, 12 and a finite
number of their time derivatives on a neighborhood of this point.

Analogously, a pair of functions (hy, ha) is a pair of linearizing outputs at
this point if and only if w1 and wy are linear combinations of dhy, dhy and
a finite number of their time derivatives on a neighborhood of this point.
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Note that the fact that {w;,ws} be a linearizing Pfaffian system implies
that ny and 7y, or dhy, dhy are always linear combinations of wy, wy and a
finite number of their time derivatives.

Let us now translate this property into existence of an operator relating
(w1,wq) and (11, 72). For an open set U in M2, let A(U) be the C*(U)
algebra:

A oo
AU) = Maxa (CZ(U)[LF]) (2.6)
of 2 X 2 matrices whose entries are differential operators, polynomial in the
derivation along F', i.e. whose entries are of the form
2 K

d

d
Po+ iyt Foo F PR

where the p;’s are smooth functions from U to R (recall it means they depend
only on z and a finite number of time-derivatives of u). Elements of A(U)
act in an obvious manner on pairs of functions, or on pairs of differential
forms.

ProposITION 2.9 ([1]). Let {wi,ws} be a linearizing Pfaffian system at a
certain point. Then for two formsny and ng, {ny,n2} is a linearizing Pfaffian
system if and only if on a neighborhood U of this point, there exists P € A(U)
such that

P has an inverse in A(U),

(n) = r(2) -

This has some interest because it is possible, at least away from some sin-
gular points, to build a linearizing Pfaffian system for any accessible system.
This is the construction of the “infinitesimal Brunovsky form” [2, 1]. Some
sequences of modules (over smooth functions) of 1-forms and of vector fields,

called Hp, Dy and ﬁk are defined in [1]. Points where they have constant
rank are called “Brunovsky-regular”, and at these points, a special lineariz-
ing Pfaffian system may be constructed. Let us recall here the minimum
needed for our specific dimensions. Define the following modules of vector
fields over smooth functions:

Dy = Span{Xy, X}
Dy = Dy + [F, Dy]
= Span{ Xy, Xo, [Xo, Xi] — e[ X1, X3], [Xo, Xo] + u1[ Xy, Xo] }
Dy = Dy + [F, Ds] (2.8)
Span { Xy, Xy, [Xo, X1] — u[ Xy, Xo], [Xo, Xo] + wi[ X1, X3],
[Xo, [Xo, X1]]+u1[X1, [Xo, Xa]]+uz ([ Xy, [Xo, X1]] - [Xo, [X1, Xo]])
—ugug[ X1, [X1, Xo]] — ud[Xo, [ X1, Xo]] — 49Xy, X,
[Xo, [Xo, Xo]]+u1 ([X1, [Xo, Xo]]+[ X1, [Xo, Xo]]) +ua[ Xy, [Xo, Xo]]
+uf [ X, [ X1, Xo]] + wrua[Xo, [X1, Xo]] 4 @[ X1, Xo] }-
DEFINITION 2.10. A point (z,u, @) where the vector fields X; and X, are

not collinear is called Brunouvsky regular if and only if the three distributions

Dy, D3 and Dy have constant rank in a neighborhood of this point. A point
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(x,u, 0, 4,...) € M2 is called Brunovsky regular if and only if the (@, u, @)
is Brunovsky regular.

The fact that Brunovsky regularity depends on the value of z, u and %
only comes from the fact that the vector fields in (2.9) depend on the eight
variables z, u, @ only (note also that they are linear combinations of the four
coordinate vector fields corresponding to the z-coordinates only ..., they
might be seen as vector fields on R* parameterized by u and ).

We always assume that the rank of 732 is two, then, at a Brunovsky
regular point, the ranks of Dy, D3, Dy may only be 2, 2, 2, or 2, 3, 3, or
2,3 4, 0r 2, 4, 4. In the two first cases, system (1.5) is not accessible
(see [1]). In the two other cases, [1, theorem 2] allows to build a linearizing
Pfaffian system {wy,wy} which has the peculiarity that either {wy, &y, wq, o}
or {wy,w,d1,we} is a basis of Span{dx} (see the meaning of Span{dx} at
the end of section 2.2). Let us make this precise, only in the case where the
ranks are 2, 4, 4 because we will not use this process in the case 2, 3, 4.

ProPoOSITION 2.11 (INFINITESIMAL BRUNOVSKY ForMm [1]). Around a po-
int where the ranks of Do, D3 and Dy are 2, 4 and 4 respectively, and if wy
and wy are two linearly independent 1-forms in the annihilator of Ds, i.e.

Of {X17X2}.'
{wi,we} = Span{dx} N {X;, Xy}, (2.9)

then {wy,wy} is a linearizing Pfaffian system, and more precisely, {wy, ws, w1,
o} is a basis of Span{dx}, {wy, we, Wy, wq, &1, &2} is a basis of Span{dx,
du}, and more generally {wy, we, w1, Wo, ..., wy), wg‘])} is a basis of
Span{dx,du,du,...,dul/=2}. The I-forms w, and wy can be chosen in-
volving x only.

This is a particular case of [1, theorem 2]. The following proof may
however help the reader’s understanding.

Proof. The forms wy and wy satisfying (2.9) may always be chosen so that
they involve z only because X7 and X5 involve z only. We use the following
identity, which is true for any form w and any vector field X:

(@, X) = (Lrw, X)
= LF<w7 X> - <w7 [FvXD
d
= a<w7X> B <w7[F7X]> (210)
Now, on one hand the forms &; and &y are in Span{dx}, i.e. have no
component on duy and dy because (2.10) implies

G ge) = (o lFiged) = (o X) = 0

for kK = 1,2 and ¢+ = 1,2. On the other hand, wy,ws, w1, ws are linearly
independent: if it was not that case at a point, there would exist some
constants Ay, Ag, i1, fio, not all zero, such that Ajewq + Aqwse 4+ piwy + pows
would vanish at this point; since (wq, X;) = (wq, X;) = 0, this would imply
that, for i = 1,2, (Ajw1 4+ Awsz, X;) also vanish at this point; this in turn
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would imply, from identity (2.10), that
(Arwr + Agwa, [Xo + ur Xy + u2 X, Xi])

vanishes at this point, i.e. that Ajw; + Aowsy is in the annihilator of 733, and
hence that Ay = Ay = 0 because the rank of 733 is 4 and w; and wy are
independent; this is impossible because then pyw; + pows would vanish at
the considered point while wy; and wy are independent. It is easy to prove
the last property for all J > 2: since wy,ws,wy,ws are in Span{dx} and

dugfﬂ) may only appear by taking the time-derivative of dugf), it is clear

that w,(j) is in Span{daz,du,d,... 7du(j_z)}7 and the linear independence of
all these is proved by using recursively identity (2.10). U

The term “infinitesimal Brunovsky form” refers to the fact that, with the
above choices of the 1-forms w; and ws, system (1.5) implies:

d .

Lo = w

Thed ! 1

d - 4

@M = Y jody; + fadur + By pdug
Y2 = W

Loy = Ytagde; + fasduy + Baadug

where the functions f3; ; are such that the 2 x 2 matrix [§; ;] is invertible on
a neighborhood of (z,u). If the forms wy and wy were integrable, one might
define z function of z and v function of x, u (static feedback transformation)
by le = Wi, dZQ = d)l, dv1 = (:&17 ng = Wy, dZ4 = @27 dUQ = (:)27 such
that (1.5) reads like the Brunovsky canonical form (2.3.b) —we would have
obtained the form (2.3.b) if we would have considered the case where the
ranks of 732,753,754 are 2, 3, 4—. It is called “infinitesimal” because it is
only at the level of differential forms instead of functions (coordinates) and
can give functions if the differential forms are integrable, which is false in
general.

Now that we have built a special linearizing Pfaffian system, we may state
the following consequence of propositions 2.7, 2.9 and 2.11. It is specialized
to -dynamic linearization or (z, u)-dynamic linearization, and the fact that
the linearizing outputs depend on z only or on z and u only is translated
into a condition on the degree of the entries of the matrix P comes from
the special properties on w; and wq given in proposition 2.11. Again, this is
only stated in the case where the ranks of Dg, Dg and D4 are 2, 4, 4 because
we will not use this process in the case 2, 3, 4.

ProrosiTION 2.12 ([19]). Let (Z,u) be a point where the ranks of Dy, Ds
and 734 are 2, 4, 4, and wy and wy be defined in a neighborhood of (z,u) as in
proposition 2.11 (see equation (2.9)). System (1.5) is x-dynamic linearizable
(resp. (x,u)-dynamic linearizable) at point (z, u, ..., ﬂ(‘])) if and only if
there exists a neighborhood U of this point, and a 2 X 2 polynomial matriz

P € A(U) whose entries are polynomials of degree at most 1 (resp. at most
2), such that P has an inverse in A(U) and the Pfaffian system {m1, n2}

defined by
(m) = rp() 2.11)
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s completely integrable, i.e. n1 and ny satisfy dnyy AniAny = dnpaAnAny =0
in a neighborhood of this point.

We shall use this property, especially for (z, u)-dynamic linearizability in
section 4. Of course, this would be useless without a reasonable descrip-
tion of the invertible matrices in A(U) of degree at most 2. In fact, away
from some singularities, invertible matrices may be described as products of
“elementary matrices”, like unimodular matrices in the case of polynomials
with constant coeflicients:

ProposITION 2.13. Let P be a matriz in A(U), which has an inverse () in
A(U).

(i) If the degree of P is 1 on an open dense subset of U (i.e. P has degree
at most 1 everywhere, and possibly zero on a closed set of empty interior),
then there is an open dense subset Uy of U such, for that all X € Uy, there is
a netghborhood Vy, a scalar smooth function a, and two invertible matrices
J1 and Jy of degree 0 (i.e. whose entries are smooth functions), all defined
on Vy, such that, on Vy,

d 1 —ad
P(3) = J1(0 5 )Jz- (2.12)

(ii) If the degree of P is 2 on an open dense subset of U (i.e. P has degree
at most 2 everywhere, and possibly 1 or 0 on a closed set of empty interior),
then there is an open dense subset Uy of U such, for that all X € Uy, there is
a neighborhood Vy, scalar smooth functions o, A\, @ and b, and an invertible
matriz J1 of degree 0 (i.e. whose entries are smooth functions), all defined
on Vy, such that, on Vy, either

d, _ 1 —af L0
P(5) = ( 01 pd 1 J (2.13)
or
d 1 0
P(—) — Jl ( d d 2 ) J2 (214)
with

either Jg:(;(l))(i(l)) OTJQI(;(l))' (2.15)

Proof. Although the ring of polynomials COO(U)[%] is not commutative,
there is a left and right Euclidean division by polynomials whose leading
coefficient does not vanish (this is because the leading coefficient of the prod-
uct of two polynomials is computed as if the coefficients were constant). We
also use the fact that the matrix formed with the coefficients of the terms of
higher degree on each column cannot be invertible for an invertible matrix,
except if it is a degree zero matrix.

(i) For the case of degree 1, at points where not all leading coefficients
vanish, there is an invertible matrix Ky of degree zero (may be take ei-
ther triangular or a permutation matrix) such that P(£)K, has its first
column of degree zero. Then at points where not both terms of this col-
umn vanish, a Euclidean division yields a smooth function @ such that
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d

(1) _ia ) has degree zero. Take J; = Kz_l. The open
set Up is the set where the functions we had to divide by do not vanish.

(ii) For the case of degree 2, let us distinguish different cases. In all cases, we
have to divide by at most three polynomials, the points where they vanish
without being zero on a neighborhood —if they are zero on an open set,
then the corresponding polynomial has locally a smaller degree— is closed
with empty interior, the open set Uy is its complement.

Ji = P(K, (

e If both polynomials in the second column of P(%) have degree zero,
then, at any point, one of them at least does not vanish, and dividing
by it the corresponding polynomial (degree 2) in the first column yields

a degree two polynomial —a + a% + b%Q such that

. P(d) 1 0
U= dt —oe—l—a%—l—b%2 1

has degree zero. This yields (2.14) with the second expression for J,
in (2.15).

e If both polynomials in the second column of P(%) have degree at most
1 but they are not both of degree zero, then, at any point where the
leading coefficient of this one does not vanish, Euclidean division by
this polynomial of the corresponding polynomial (degree 2) in the first
column yields a degree one polynomial —a + b% such that

d 1 0
P(—
(dt)(—a—l—b% 1)

has a first column of degree zero, and then dividing by a non-vanishing
element of this first column yields @ such that

o d 1 0 1 af
1= P(E)(—am% 1)(0 1

has degree zero. This yields (2.13) with the second expression for J,
in (2.15).

o If at least one of the polynomials in the second column of P(%) has
degree 2, then, at points where its leading coefficient does not van-
ish, dividing the corresponding polynomial in the first column by this
coefficient yields a function A such that

d 0 1
rep (9 2)
has both entries in its second column of degree at most 1 (A is identi-
cally zero if the first column of P(%) had degree 1 or 0). Apply one of

(1) —1A ) instead of P(L). This yields
either (2.14) or (2.13), with the first expression for Jy in (2.15).

the two first cases to P() (

O
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2.6. TWO WAYS OF WRITING THE EQUATIONS FOR THE LINEARIZING
OUTPUTS

The most natural method for deciding if there exists some linearizing
outputs depending on z and u is to write down the equations that a pair
of functions has to satisfy in order to be a pair of linearizing outputs, and
then to find conditions (on the system (1.5)) for these equations to have
solutions. Let us describe these equations, but only for the case when the
linearizing outputs are restricted to depend upon z only:

PROPOSITION 2.14. Suppose that X1 and Xy in (1.5) or (2.5) are linearly
independent. Let hy(z) and hz(z) be smooth functions; then (hy,h2) is a
pair of linearizing outputs at a certain point if and only if

by Ay
du du
rank @ ﬁ < 1 (2.16)
8u1 8u2
i gn 00
dhy Oha g g
rank dur  Jus - . < 92 (217)

ohy Ok 9hy 9k =
8@1 8’5{,2 8u1 8u2
ohy Ohy  Dhy  Ohy
8u1 8u2 8u1 8u2

on a neighborhood of this point, and the forms dhy, dho, dhl, dhg, dﬁl, dhs

are independent at this point.

Proof. Let us prove necessity. If (hy,h2) is a pair of linearizing outputs,
the six mentioned forms have to be independent by definition. If the rank
in (2.16) was 2, it is clear that the only linear combinations of the dhg)’s
which would also be linear combinations of dzy, dx, dzs, dzy, would have
all their coefficients zero except the coefficients of dhy and dhg, which would
contradict the fact that dzy, dzg, dos and dz4 are linear combinations of
the dhg)’s. This proves that (2.16) is necessary. If the rank in (2.17) was 3
(cannot be 4 from (2.16)), the only linear combinations of the dhg)’s which
would also be also linear combinations of dz, dzg, dzs, dzy, would be linear
combinations of dhy, dhy and Aidhy + Aodhy with the line (A1, Az) in the
right kernel of the matrix in (2.17), impossible from the fact that contradict
the fact that dzy, dzs, dezs and dz, are independent linear combinations

of the dh(j)’s. This proves that (2.17) is necessary. which are also linear
Comblnatlons of dzy, dzy, Sufficiency follows from solving for dzy, dzy, das

and dz,4 as linear combinations of dhqy, dhs, dh17 dhg7 dh1 and dhz O

Conditions (2.16)-(2.17) are better related to the vector fields defining
system (1.5) using:

oh; Oh;
oy, Ouy, X ( )
and
ahz 2
Do LxoLx,hi + Lx, Lxohi + 2uplx, hi

+ upr (LXk/Lthi + LXkLXk/hi) (2.19)
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where ¥ =2 ifk=1and ¥ =1if k = 2.

The two equations (2.16)-(2.17) give a system of PDEs in hy and hy (some
determinants being zero), and the independence condition an inequality (a
nonzero determinant). These have solutions of and only if the system is
z-dynamic linearizable.

Some similar conditions on functions of & and w may be written, and
existence of solution would be equivalent for (z,u)-dynamic linearizability.

A different possibility is to use the material introduced in section 2.5: un-
der non-singularity conditions (being at a “Brunovsky regular” point), there
exists two differential forms such that {wy,wz,w1,w} (or {wy,wr,O1,wse}
but let us consider the first case only) is a basis of Span{dx}, these forms
may be constructed explicitly, and, from proposition 2.12, the system is
z-linearizable or (z,u)-dynamic linearizable if and only if there exists an
invertible polynomial matrix such that

P ()

is made of two exact one-forms, with some bounds on the degree of the
entries of P. We then translate the fact that these forms are exact into a
system of PDEs in the coefficients of the matrix, using the decomposition
from proposition 2.13. The system is z-dynamic or (z,u)-dynamic lineariz-
able if and only if these PDEs have solutions.

These two methods —writing directly the PDEs a pair of functions has to
satisfy to be a pair of linearizing outputs or writing the PDEs the coefficients
of the elementary matrices in the decomposition of P have to satisfy for the
Pfaffian system P(%) (w1, w2)T to be integrable— are obviously equivalent,
although they lead to different equations.

One drawback of the second method is that it only works at “Brunovsky-
regular” points, while Brunovsky-regularity is not necessary for dynamic
feedback linearization, see the example in section 5. Although Brunovsky-
regular points form an open dense set, one cannot neglect this weakness.
Note however that in the example of section 5, we conclude even at points
which are not Brunovsky-regular, by density. In general, this second method
seems to yield equations that may be considered more geometrically, and it
proves to be very useful in our proofs.

For the simplest cases (cases 1 to 5 in theorem 3.1), we have used the
first (direct) method, or even no particular method from these when we
simply exhibit some pairs of linearizing outputs. Case 6 in theorem 3.1
is not elementary; it contains a necessary condition that we prove using
the first (direct) method; the proof is natural; it would also be in a sense
simpler using the infinitesimal Brunovsky form, but this case would then be
split into two because depending whether (4.5) holds or not, the infinitesimal
Brunovsky form is different, and points on the boundary are not Brunovsky-
regular while the present proof has no problem at these points. We give as
an alternative a proof based on the infinitesimal Brunovsky form, outside
singularities (section 7.1). To test for (z,u)-linearizability, we were not
able to use the direct method, and we had to use the second one based on
infinitesimal Brunovsky form. It turns out that the first one yield rather
huge PDEs in the linearizing outputs, and we found no obvious way to
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handle them naturally as in the case of z-dynamic linearization, while the
second one gives some PDEs that, though very heavy computations are
needed, may be handled by elementary methods.

3. -DYNAMIC LINEARIZABILITY

We define the following distributions

AQ = Span{Xl,Xg}

Mo = Ay + [Ay,Ay] = Span{ Xy, Xy, [X1, Xy]}

My = Mo + [Mo, Mg] (3.1)
= Span{ X1, X, [Xy, Xp], [X1, [Xy, Xo]], [Xo, [X1, Xo]] }

Az = Span{ Xy, Xy, [X1, Xo], [Xo, Xi], [Xo, X2] }

We will only study the situation in the neighborhood of points where the

rank these distributions are constant, and the vector fields X; and X5 are
linearly independent and we define the integers mg, my, d3 by:

rank Ay = 2 03 2 rank Az
mo 2 rank Mg (3.2)
my E rank M .

These ranks and the distributions in (3.1) are obviously feedback invariant
from their definition and (2.2).

At a point where these ranks are constant, the only possible values for
(mo, m1,d3) are (2,2,2), (2,2,3), (2,2,4), (3,3,3), (3,3,4), (3,4,3) and
(3,4,4). Actually, we will not distinguish between cases (3,4, 3) and (3,4, 4),
so that when (mg, m1) = (3,4), the rank of Az need not be constant.

The following theorem allows one, in each of the cases depending on the
different possible values of the above ranks, to decide whether system (1.5)
is z-dynamic linearizable or not. When it is not only z-dynamic linearizable,
but static feedback linearizable, this is mentioned. In addition, for each case,
we give a normal form for system (1.5) up to a nonsingular static feedback
transformation (see (2.1)) and a change of coordinates. The proof is given
in section 7.1. A small package written in Maple that makes the needed
computations, as well as these corresponding to theorem 4.2 if needed, will
soon be available from the author; it is described in [16].

THEOREM 3.1. Let & be such that the distributions spanned by the modules
Ag, My, My and Az have constant rank in a neighborhood of z, with Aq
of rank 2, as in (3.2). Actually, if (mo, m1) = (3,4), we do not require that
the rank of As be constant.

1. If mog = my = 2 and d35 = 2, system (1.5) is locally non accessible
and therefore non linearizable by endogenous feedback. Locally around
z, after a preliminary nonsingular feedback transformation and in ap-
propriate coordinates, it has the following form, where a; and ay are
smooth functions:

2 o= 01(217 22)

22 = Q2 (Zh 22) (3 3)
23 = U1

,2:’4 = Uy.
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2. If mg = m1 = 2 and 83 = 3, there are three sub-cases:

(a) If As is not involutive (i.e. if there are points x arbitrarily close
to & such that [As, As](x) ¢ As(x), even if [As, As)(Z) C As(Z)),
system (1.5) is not linearizable by endogenous dynamic feedback.
It has locally, around z, after a preliminary nonsingular feedback
transformation and in appropriate coordinates, the following form:

Z}l = a(21722723)
,2:’2 = Z3
o= o (3.4)
,2:’4 = U2
where a is a smooth function such that
?a : : . _
9.2 s not identically zero on any neighborhood of z. (3.5)
<3

(b) If As involutive and the rank of Az + [Xo, As] is 3 in a neigh-
borhood of &, system (1.5) is locally non accessible and therefore
non linearizable by endogenous feedback. Locally around z, after
a preliminary nonsingular feedback transformation and in appro-
priate coordinates, it has the following form, with a a smooth:

,2:’1 = Q(Zl)

,2:’2 = Z3

I, (3.6)
,2:’4 = U2.

(c) If As involutive and the rank of As+[Xo, As] is 4 at point T (and
therefore in a neighborhood), system (1.5) is locally static feed-
back linearizable. It has, after a preliminary nonsingular feedback
transformation and in appropriate coordinates, the form (2.3.a).

3. If mog = my = 2 and 83 = 4, system (1.5) is locally static feedback
linearizable. It has, after a preliminary nonsingular feedback transfor-

mation and in appropriate coordinates, the form (2.3.b).

4. If mg = my = 3 and é3 = 3, system (1.5) is locally non accessible
and therefore non linearizable by endogenous feedback. Locally around

z, after a preliminary nonsingular feedback transformation and in ap-

propriate coordinates, it has the following form, where a; and as are

smooth functions:

,2:’1 = al(zl)

,2:’2 = "

. 3.7
%5 = as(z1,22,23,24) + 2401 (3:7)
,2:’4 = U2.

5. If mg=mq =3 and 035 = 4, system (1.5) is locally z-dynamic lineariz-
able at a point (z,uy,ug,...) if and only if

rankR{Xl(i) s Xz(f) s [X(),Xl](f) - ﬂQ[XhXQ](f) s

[Xo, Xo)(2) + w[X1, X5](z7)} = 4. (3.8)

This condition is satisfied on an open dense set of any open set where
mo=mq =3 and d3 = 4.
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After a preliminary nonsingular feedback transformation and in ap-
propriate coordinates, the system has the following form:

,2:’1 = 23
,2:’2 = "
. 3.9
%5 = as(z1,22,23,24) + 2401 (3:9)
,2:’4 = U2

with a is a smooth function. A possible choice of linearizing outputs
is given, in these coordinates, by hy = z1, hy = z3. Condition (3.8)
reads:

8@3

. If mg = 3 and my = 4, there exists a unique (up to a nonzero multi-

plicative function) linear combination of X1 and X: X = AMX 1+ X5
such that

I:X7|:X17X2:|:| € Span{Xl,Xg,[Xl,Xg]} (311)

(this is the characteristic vector field, or characteristic direction of
the distribution spanned by the independent vector fields Xy, X5 and
[Xh XQ])

System (1.5) is x-dynamic linearizable at (Z, ) if and only if

[X, Xo] € Span{Xi, X5, [X1,X2]} (3.12)

on a neighborhood of & and

rankg { X1(2) , X5(2) , [Xo, X](2) + @ [X1, X](2)
+ug[Xo, X](Z) } =3 (3.13)
rankp { X1(7), Xo(2), [X1, Xp](2) , [Xo, X4](2)
[Xo, Xo] (%) , [Xo, [X1, Xo]](7) + [ Xy, [X0, Xp]](7)  (3.14)
+u2[Xo, [ X1, Xo]](2) } = 4.
Given any open set in R* x R? such that for all (z,) in this open set,
(mo, m1) = (3,4) and (3.12) is satisfied at T, the set of (Z,u)’s in this
open set where (3.13) and (3.15) are satisfied is open and dense.
These conditions may also be formulated using differential forms
instead of vector fields. Since mg = 3, one may take a —unique up to a
nonzero multiplicative function— differential form in the four variables
x only annihilating Xy, Xy and [ X1, X3]:

w € X1, Xy, [Xy, X))t (3.15)

then dwy Awy is a form of degree 3 that does not vanish because my = 4.
System (1.5) is x-dynamic linearizable at (z, u) if and only if

dwl A o] A @1 = 0 (316)
on a neighborhood of & and

rankg { w1 (Z) , m(2) , m2(2), (2, 0), (T,w) ) = 5,  (3.17)
rankp { w1 (Z) , w1 (

Gl
j=d|
e
—
S
—
o0
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where m and 1y are forms of degree 1 such that, for a certain I1-form
L,

dwl = W AT + m /\772 (319)

or in other words dwy Awy = m Ay Awr ({w1, 1,12} is the charac-
teristic system of wy, it is the annihilator of the vector field X defined
in (3.11)), and the “dot” is the time-derivative along the system, i.e.
the Lie derivative along the vector field ' (2.5). The two conditions
(3.17) and (3.18) are satisfied on an open dense set of any open set
where mg = 3 and m, = 4.

When these conditions are met, all pairs of linearizing outputs may
be obtained as follows: take for hy a first integral of the vector field
X (i.e. Lghy = 0) such that dh, wy and @, are linearly independent.
Then the Pfaffian system {dhy,w} is integrable. Take for hy a second
first integral of this Pfaffian system.

Around a point where (mg,m1) = (3,4), after a preliminary static
feedback transformation (2.1) and in appropriate coordinates, system

(1.5) has the form:

,2:’1 = U

Zy = falz1, 22,23, 24) + 2311

. 3.20
Z3 = fa(21, 22,23, 24) + 2401 ( )
,2:’4 = U3

Condition (3.12) or (3.16) is equivalent to fy being independent of z4:

df2
FY 21
82’4 07 (3 )
and conditions (3.13) and (3.15), or (3.17) and (3.18), translate into:

df3
wt g # 0 (3.22)
and
8f2 8f2 8f2

(4 55 fom g = s+ ) #(0,0) (3.23)

at the point under consideration. A pair of linearizing outputs is, for

instance, given by (z1,z2) at a point where vy + % does not vanish,

and by (zs, 22 — z123) at a point where fs3 — % — 23% + z4v1 does not

vanish.

Note that this theorem does not say anything about the situation around
points z where

e cither one of the distributions spanned by Ay, Mg or My is singular,

e or they are regular, (mg, m1) # (3,4) and the distribution spanned by
Agj is singular,

e or (mg, my,03) = (2,2,3), the distribution spanned by Az —i.e. by
{X1, Xy, [Xo, X1], [Xo, X2]} since (mg, m1) = (2,2)— has rank 3 and is
integrable, but the distribution spanned by { Xy, X3, [ Xo, [Xo, X1]], [Xo,
[Xo, Xo]]} is singular.
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4. (2,u)-DYNAMIC LINEARIZABILITY
4.1. PROBLEM STATEMENT

Let us examine the situations in which theorem 3.1 concludes that there
exist no pair of linearizing outputs depending on z only for system (1.5),
without ruling out existence of linearizing outputs depending on more vari-
ables (u, @, i, ... ). This occurs

e in case 5 when (3.8) fails,
e in case 6 when (3.12) fails,
e in case 6 when (3.12) is satisfied but (3.13) or (3.15) fails.

The first and third situations are singularities because (see theorem 3.1) in
case 5, (3.8) is met on an open dense set, and in case 6 if (3.12) is satisfied,
(3.13) or (3.15) are met on an open dense set. We will not study these two
situations. The second situation does not correspond to a singularity since
X1, Xg, [X1, X3], and [X, Xo] may very well be linearly independent (this
is even generic) on an open set where (mg, my) = (3,4). We shall study this
situation in the present section. We make one more non-singularity assump-
tion: we rule out the points where the rank of Xy, Xo, [ Xy, X3], [ X, X¢] drops
to 3 while being 4 at arbitrarily close points. Furthermore, the techniques
that we will use require to be at a Brunovsky-regular point (see definition
2.10). Brunovsky-regularity translates into condition (4.4) below. It is clear
that, on an open set where (mg, m1) = (3,4) and Xy, Xg, [X3, X3], and
[)?,XO] are linearly independent, Brunovsky-regular points form an open
and dense set. Hence Brunovsky-regularity is one more non-singularity as-
sumption. It is needed for technical reasons, but the example in section 5
shows that it is not necessary. To sum up:

Rank assumptions made all over the present section: (X is defined by (3.11))
rank{Xy, X2} = 2 (4.1)

rank{ Xy, Xo,[X1,X2]} = 3 (4.2)

rank{ Xy, Xo, [X1, Xo], [ X1, [Xq, Xo]], [Xo, [X1, X0]]} = 4 (4.3)
rank{X1, X, [X1, X3], [Xo, X]} = 4 (4.4)

rank{ X1, Xo, [Xo, X1] — u2[X1, X3], [Xo, Xo] + u1[ X1, X2]} = 4. (4.5)

From (4.1)-(4.2)-(4.3), we are in case 6 of theorem 3.1. (4.4) indicates
that (3.12) does not hold, and hence from theorem 3.1, there exist no pair of
linearizing outputs depending on z only, i.e. system (1.5) is not z-dynamic
linearizable. The purpose of this section 4 is to characterize the cases where
system (1.5) is (z, u)-dynamic linearizable, i.e. where there exists a pair of
linearizing outputs depending on z and u (but not on 4, @, ... ).

4.2. MAIN RESULT

Let us now proceed with some preparation for our characterization of
(2, u)-dynamic linearizability. The following proposition provides a partic-
ular choice of wy and wy (basis of H3) such that the expressions of dw; and
dwq are convenient and “canonical”.

ProposITION 4.1. Let (Z,u) be such that the rank conditions (4.1)-(4.2)-
(4.3)-(4.4)-(4.5) are satisfied. Let wy and wy to be two differential forms of
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degree 1, linear combinations of dxq, dxo, dus, dxy, such that none of these
forms vanish at (z,u) and

wi € { X1, Xy, [ Xy, X}t ~ (4.6)
wy € {X1, Xy, [Xo+ w1 Xy + upXo, X} '

Then {wy,wsy,wy,we} is a basis of Span {dx } and there exist uniquely defined
functions 5% and v such that v and 5%72 do not vanish at (z,u) and

dw; = 5%72 wy Awy  modulo w, (4.7)
dwy, = w A (5%@1 + 5%714,1)2 - 76&2) + yw1 Awy  modulo wy .(4.8)

Note that it is clear from (4.6) that, in general, wy can be chosen so
as to involve z only, but wy involves z and u, i.e. it is a linear combi-
nation of dz;,dzs,dzs,dzy with coefficients depending both on & and u.
The functions v and 5% a priori depend on z, u and a certain number of
time-derivatives of .

Proof. Suppose that wy and wy are chosen according to (4.6). Then (4.4)
and (3.11) imply that the rank of { X1, Xq, [Xy, X3], [Xo+ u1 X1 +u2 X3, )~(]}
is 4, and hence that {wy,ws} is a basis of the annihilator of { X, X,}.

The fact that wy in the orthogonal of { X, X5, [X, X3]} implies that it is
in the first derived system of the Pfaffian system {w;,w,} —see the Appendix—
and hence that

dwl = W A F171 + Wo A FLQ (49)

for some forms I'y ; and I'; . Now the forms wq, wy and I'y o must be linearly
independent from (4.3), and then the Cartan characteristic system of {w;}
is {wy,wy,I'1 2} —see the Appendix (8.2)—, but, by definition of X, this
characteristic system is the annihilator of )?, and a basis of the annihilator
of X is {w1, w3, w3} because, from(2.10),

d ~ .oz Y
0 = a<W27X> = (02, X) + (o, [Xo+ ur Xy + upXg, X])

and hence (Wy, X) is zero; this proves that I'y ; must be a linear combination
of wy, wy and Wy, which, substituted in (4.9), yields (4.7) with 67 , does not
vanish because wq, wy and I'y 5 are linearly independent.

On the other hand, {w;,w;y} is the annihilator of { X7, X3} and therefore
has a basis that can be written with the variable x only; this implies —see
(8.3) in the Appendix— that its characteristic system is at most Span{dx};
since {wy,wq,wy,wsy} is a basis of Span{dx}, this implies

dWQ = W A F271 + W2 A F272 + 'ywl /\@2 (410)

for some forms I'y ; and I'; 5. But we have seen above that {wy, wq, Wy} is the
Cartan characteristic system of {wy}. It is therefore completely integrable,
and this implies that dwe = 0 modulo {wy,ws,ws}; but taking the time
derivative of (4.10) yields dy = &y A (I'g1 + ¢2)) modulo {wq,wq,wa};
L'y 1 = —7g, which does imply, together with (4.10), the relation (4.8). O

We are now ready to state the theorem that characterizes (z, u)-lineariza-

bility. Its proof is given in section 7.2.
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THEOREM 4.2. Let (Z,u) be a point where conditions (4.1) to (4.5) are met,
and let the forms wy and wq be defined according to (4.6) and the functions
83 and 7y be defined by (4.8). System (1.5) is (x, u)-dynamically linearizable
at point X = (z,u,4,...) if and only if the function 5%71 —or equivalently
the form of degree 5 dwy Awy AWy Ay — does not vanish at X and the first
derived system of the Pfaffian system {wy — 52%—”1@2 , wa} has rank 1 and is

integrable, i.e. there exists a function «, defined on a neighborhood of X,
such that

2 2
d o] + Wy — 1—74.02 A o] + Wy — 1—74.02 = 0. (411)
83,1 83,1
When these conditions are met, all the possible pairs of linearizing outputs

depending on x and v may be described as follows. Let Q3 = wq +aw2—;iw2,
2,1

and Qs be the time-derivative of this differential form (i.e. its Lie derivative
along the dynamics I’ of the system). The Pfaffian system {ws, Qs, Qg} is
completely integrable. A pair of functions (hy, h2) depending on (z,u) is
a pair of linearizing outputs if and only if {dhy,dhy} C {ws, Qs, Qs} with
Qs € {dhy,dhs} and Qs ¢ {dhy,dhso}. A possible construction is as follows:
since dQ23 A Q3 = 0, take hy such that dhy does not vanish and dhy = kQ3
(k non-vanishing function); take for hy another first integral of {wz, Qs, Qs)
such that the coefficient of wy when expressing dhy as a linear combination
of wy, Q3 and Q5 does not vanish (i.e. the rank of {dhg,dhl,dhl} does not
drop to 2).

This theorem is stated in terms of the forms w; and wy. These forms are
only defined up to a non-vanishing multiplicative function by relation (4.6).
However, the condition does not depend on the particular choice of wy and
wo. In a sense this is a consequence of the theorem itself since (#, u)-dynamic
linearizability is clearly static feedback invariant and does not depend on the
choice of w; and wq, but the following proposition asserts that a priori these
conditions are static feedback invariant.

ProprosiTION 4.3. The conditions of theorem 4.2 are invariant by static

feedback and do not depend on the particular choice of wy and wy in (4.6).

Indeed the Pfaffian system {wy,wy — 521—7w2} does not depend on this partic-
2,1

ular choice.

Proof. 1t can be checked from (4.8) that if one changes w; into Ajw; and wy
into Aqwq, where Ay and A5 are non-vanishing functions, then 5%71 is changed

into i—%(&l and v into /\1_17‘ This implies the proposition since (4.6) defines
wy and w9 up to a nonzero multiplicative function in a feedback invariant
way. ]

Let us make a remark on “singular” points, i.e. points where the ranks
considered in (4.1)-(4.2)-(4.3)-(4.4)-(4.5) are not constant. We do not study
the situation at these points, in particular at points which are not Brunovsky-
regular, i.e. points where the rank in (4.5) drops. As illustrated by the exam-
ple in section 5, this singularity is usually not a singularity of (z, u)-dynamic
linearization, but only of the proofs given here: the linearizing outputs are
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well defined at these points too, enjoy the property of being linearizing out-
puts. On the contrary, points where 5%71, or the form dwy A wo A Wy A &g,
vanish are, according to the theorem, actual singularities of (z, u)-dynamic
linearizability: in a domain where the rank assumptions (4.1)-(4.2)-(4.3)-
(4.4)-(4.5) hold, there exists no linearizing outputs function of z and u in
the neighborhood of a point where 5%71 vanishes. It is interesting, with
this respect, to notice that, under the —generic— assumptions (4.1)-(4.2)-
(4.3)-(4.4)-(4.5), it is impossible to build an example where (2, u)-dynamic
feedback linearization would be everywhere nonsingular since for any value
of x and wu, there is a value of u where 5%71 vanishes.

4.3. HOw TO CHECK THE CONDITIONS

We claim that the conditions of theorem 4.2 are completely explicit. Let
us explain how to check them on a system (1.5) given by the expression of
the vector fields Xg, Xy and X3 in some coordinates zq, 9, 23, T4:

1. Compute wq and wy according to (4.6). This involves the computation
of Lie brackets, and then finding the annihilator of some families of
vectors, which in coordinates is common linear algebra (Gauss elimi-
nation).

2. Compute wy, wo and &. The time-derivatives are Lie derivatives along
the vector field (2.5).

3. To compute 5%71 and v, use the following identities, consequence of

(4.8):
dWQ/\WQ/\QJQ/\J)Q = 5%714,01/\@1/\&)2/\@2/\4:&2
dWQ/\WQ/\wl/\QJQ = —'ywl/\é&g/\ngwl/\wz (412)
= —'ywl/\wl/\wg/\wg/\é&g )
dWQ/\wl/\WQ = 7@1/\@2/\&)1/\&)2.

Hence one may for instance compute the forms of degree 5 dwq Awg Ao A
&9 and dwy Awg Awq Aws, check that the first one does not vanish, they
appear to be of the form pyda AdesAdasAdagAduy+padai AdegAdasA
dzgAdug and psdazy Adzg AdasAdagAduy +pada Adag Adas AdagAdusg
respectively, with py, pa, p3 and p4 some functions of z, u and u, with
p1pa — p2p3 = 0, then

2y _ _Z%ps _ _2Zpa
5%71 P P2
4. The Pfaffian system {w; — 52%—71@2 , wo} is then known.
5. Use usual procedure to Combute its first derived system: the forms
d(wy — %—Wlwg) and dwy must be proportional modulo {w; — 52%—”1@2 , wa ks

if it is the case, this yields « such that d (wl — 521—%1;2 + Oé(.dz) is zero
2,1

modulo {wy — 521—%1;2 , wat.
2,1

6. Check whether d (wl - 521—%1;2 + Oé(.dz) is also zero modulo wq — 521—Ww2—|—
2,1 2,1

awsy.
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Note that a small package written in Maple that makes the above computa-
tions, as well as these corresponding to theorem 3.1, will soon be available
from the author; it is described in [16].

4.4. THE RESULT IN PARTICULAR COORDINATES

Let us now give a “normal form” for the systems we are studying in

this section, i.e. these meeting conditions (4.1)-(4.2)-(4.3)-(4.4)-(4.5). It
basically consists, as in “case 6” of theorem 3.1, in taking some coordinates
(they exist from (4.1)-(4.2)-(4.3)) in which the control distribution is in
“Engel’s normal form”, and use a feedback to annihilate two components of
the drift, then the coordinates are slightly changed to emphasize condition
(4.4):
ProrosiTION 4.4. If the rank conditions (4.1)-(4.2)-(4.3)-(4.4)-(4.5) hold
around a point (Z,u), there exists a system of coordinates around this point,
and a static feedback defined around this point which give the following form
to system (1.5):

21 = U1
Zo = 24 + 2301
. 4.13
z3 = flz1, 22,23, 24) + 9(21, 22, 23, 24) V1 ( )
24 = U2
where
dg
Tor (4.14)
and
g dg
Dy = 824(712—][?11) +Z48 +f8,z3
of of of of
- (821 tag, T e (4.15)

do not vanish at (z,u).

Proof. From lemma 7.4 (section 7.1), using the feedback (7.30) yields the
(3.20). Condition (4.4) implies that % does not vanish. One may therefore
take as new coordinates (z1, 22, 23, f2(21, 22, 23, 24)) instead of (z1, 22, 23, 24),
and this yields the normal form (4.13), changing also v;. Relations (4.14)
are simply a translation of (4.3) and (4.5). O

PROPOSITION 4.5. System (4.13) —which is system (1.5) written in appro-
priate coordinates— is (z,u)-dynamic linearizable around a point X' if and
only if the functions f and g have, in a neighborhood of X', the form

2
Jo= aop + a124 + a2y g = bo + biz4 (4.16)
= : - = - )
co + c1zq co + €124
where ag, a1, as, by, b1, cg and ¢q are functions of z, z2, z3 only, which

satisfy the following PDE:
dI'AT = 0 with T = (bl —2’3@2) le + a2d22 - Cld2’3 (417)

and &3 | does not vanish at this point (co + c124 should obviously not vanish
either).
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REMARK 4.6. The system of PDEs (4.17) reads:

9 9 9 9 9 ab
z3 (ﬁﬂ - az%) + gt —ast+hgt —agt

dzo dzo dzo
8[)1 8@2 2
—y—— + b —= = . (4.1
a2823+ 1823+f12 0. (4.18)

REMARK 4.7. There is an explicit formula for 5%71 using the a;, b; and ¢;
but it is quite long, and does not really matter here.

This proposition gives a simple way to check whether the system is (z, u)-
dynamic linearizable provided one has found coordinates where it is in the
normal form (4.13) —of course finding these coordinates involves solving
some linear PDEs, so that the really explicit test is given by theorem 4.2
which only involves some differentiations, and some algebraic manipula-
tions—. Actually, the coordinates in which a given system meeting con-
ditions (4.1)-(4.2)-(4.3)-(4.4)-(4.5) is in the form (4.13) are not unique, and
the expression of f and ¢, for the same system, may depend on the choice
of coordinates, among all these that yield a form like (4.13)). Naturally, the
fact that these f and ¢ meet or not the conditions of the proposition does
not depend on this choice. It however raises the question of finding, among
all the coordinates that produce a normal form like (4.13), these which pro-
duce the “simplest” f and g. Let us give an answer only for the special case
when the conditions of the proposition are met (i.e. in the (z, u)-linearizable
case). It is obvious that if f and g are affine in z4 (special case of (4.16):
ay = ¢ = 0, ¢g = 1), the PDE (4.11) is met, because I' is simply bydzy;
it turns out that the converse is true: if f and ¢ are not affine, but of the
form (4.16) with az # 0 or ¢; # 0, and with the PDE (4.11), then some
“better” coordinates may be found, in which f and ¢ are affine in the fourth
coordinate:

PRrROPOSITION 4.8. There exists coordinates where the system, after a static
feedback transformation, is in the form (4.13) with f and ¢ satisfying the
conditions of proposition 4.5, if and only if there is another set of coordi-
nates (C1, Gz, (3, Ca), and another static feedback transformation which yields
a normal form (4.13) with f and g affine with respect to the fourth coordi-
nate:

§1 = w

G = G+ Guw

Gz = polCi,C2,¢3) + Cap1(Cry€2,¢3) (4.19)
) + (40(C15 €2, C3) + Caq1(Cr, G2, C3)) wr

G4 = ws

and 5%71 does not vanish if and only if the following quantity does not vanish:

@i + wi (pr+wig)® + wla% (p1 + wiqr)
2 9 potwigo

- % [(Po + wigo) — Gswi(pr + wign)] — (p1+wiq1)” 55 Sae -
(4.20)

In these coordinates, a pair of linearizing outputs is given by hy = (1, ho =
Gz — (p1 — w1q1)Ca-
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Proof. The expression (4.20) is obtained by computing dwy A wy A g A&y
and checking that it vanishes if and only if (4.20) vanishes, at least at points
where (4.5) holds, i.e. where wq Awy Ay # 0. This is left to the reader.
Use the simplest choice:

wi = dy —(3dG;
wy = d@z—aq (C17C27C3)dC1 - (Pl (C17C27C3) + wiqq (C17C27C3))w1 .

The “if” part of the proposition is obvious because, as noticed just above
the proposition, (4.19) is a particular case of (4.13)-(4.11), and (4.20) en-
sures that 5%71 # 0. Let us prove the “only if” part. We suppose that the
conditions of proposition 4.5 hold, and we build an invertible transformation
(21, 22, 73, 24) — ((1,C2, (3, Ca), and an invertible static feedback transforma-
tion (21, 22, 23, 24, U1, V2) > (21, 22, 23, 24, W1, W2), that transforms (4.13) into
(4.19). Condition (4.17) implies that there exists a function 1 (21, 22, 23) and
a non-vanishing function k(z1, 22, z3) such that

dipy = k. (4.21)
Now, wq may be chosen wy = dzy — z3dz; and then I defined in (4.17) is also
equal to: I' = bydz; + aswy — ¢ydzs. Since the rank of {dzy,dz3,w} is 3 and
by and ¢; do not vanish simultaneously (this would cause 24 to vanish), the

82’4

rank of {wy,I'} is locally constant, equal to 2, and this Pfaffian system is
therefore completely integrable, because these two forms involve only three
variables (z1, 22, 23); hence there exists three functions g, &', k", such that

d¢2 = k’wl + k”F, k/ 7£ 0. (422)
Let us then define
wy = le = k(I', Xo+ w1 X5 4+ u2X2)

(cobr — c1bg)v1 — crag + (coaz — a1c1)za
o + €124 '

= k

(4.23)

From this equation, one may express v; as a function of w;. Substituting
vy for this expression in (4.13)-(4.16), one obtains the following expressions
for Zy, 2z, z3, which are now linear with respect to zy:

2 = b i e (CO —|—k0124 wy + crag + (arcr — coa2)24) (4.24)
. 1 z3
Z9 = m (?(Co + c1z4)wy + z3C100+

(coby — c1bo + arcy — coa2)24) (4.25)
. bo + b124
23 = ——————— w1 + agby + (a1by — azbp)zy . (4.26)

k (Cobl — Clbo)
Let us then define

G = ¢1(21722723)

(4.27)

G = (21, 22, 23) (4.28)

6 = Bl (4.29)
k(z1, 22, z3)

C1 = K'(21,29,23) 2. (4.30)
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Let us see that in these coordinates, and with wy given by (4.23), we have
(4.19):

— {1 = wy is a consequence of (4.27) and (4.23).

— From (4.28), G = (dipg, Xo + u1 Xy + uz X)), which is also equal, from
(4.23) and (4.22), to %ﬁwl + K'{(wi, Xo + w1 X1 + u2X2), which, since
(w1, Xo+ u1 X1+ uzX2) = z4, and considering (4.29) and (4.30), yields
G2 = G4 + Gawr.

— In the expressions for Z;, Z; and Z3 given by (4.24), (4.25) and (4.26),
all the functions of (z1, 22, z3) may be expressed as functions of ({1, (2, (3),
and z4 may be substituted for % (see (4.30)); therefore, 2, 2, and Z3 are
polynomials in (4 and w; with coefficients function of (1, (2, (s with one
term of degree zero, one term of degree 1 in (4, one term of degree 1 in wy
and one term of degree 2 in (4wy; since (3 is a function of (z1, 23, 23), 53 is
also such a polynomial, which allows one to define functions p,, p1, ¢o and
¢ such that (3 is as in (4.19).

- 54 is equal to &'((y, (2, (3)v2 plus some terms which depend only on (i, (2,
(3, (4 and v;. Since k' does not vanish, calling all this expression wq defines

a nonsingular feedback that yields the required form. O

5. AN EXAMPLE

Let us consider the following system, which is given as example 2 in [7]:

Ty = T2 + X3u

9:62 = T3 + Tiug (5.1)
Tz = Uup + Tou

i4 = Uz.

The transformation zy = x4, 290 = X2, 23 = 1, 24 = T3, V] = U, Uy = U1+
Taug puts it into the form (4.19), known to be (2, u)-dynamic linearizable.
Let us however follow the general method. We have:

)~( = X; = %7 Xy = x38871+x18872+$23873+8874,
(X1, X3 = 2, [Xo,X] = —5Z,
[Xo+wX) +usXo, X] = —52 — ups2.

Brunovsky-regular points are points where (4.5) holds, i.e. points where
r1T — Uy 7£ 0. (52)

The simplest choice for wy and wy is (see (4.6)):

W = d$2 — $1d$47 (5 3)
Wy = d$1 — UQd$2 + (UQ$1 — $3)d$4. )
By expressing dwy = —dugAdag+d(uzzy — 23) Aday in the basis {wq,wsq, @,
Wy, Wy} (at points where (5.2) holds), with
(;Jl = d$3 + UQd$1 — ($2 + UQ$3)C1$4
@2 = - u22dac1 + (1 — ﬂz)d$2 + (—u1 + x3u22 + $1ﬂ2)d$4 .
(:&2 = ($1 - ul)du2 + ( . )d$1 + ( . )d$2 + ( . )d$3 + ( . ')d$47
(5.4)
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one obtains an expression like (4.8) with:

2 (v 31 1
53, = (2> + uy ) and v = — ——, (5.5)
! T1 — Uy T1 — Uy

so that 85, # 0 is equivalent to uy + ug — 1 # 0. Then the form wz =
Wy — 521—76@ may be explicitly computed. dws A wy A w3 and dws A wy A ws
2,1
are collinear:
2

dws AwaAws = —adwyAwyAwsg with o = u—23
Uy + uy — 1
(5.6)
A basis of the derived system of {wq,w; — 521—wa} is therefore
2,1

0 2y . n it S S (5.7)

= W - —Ww wy = ——————duy. .

3 1 5%1 2 2 ”[LQ —I— U23 _1 4

It is obviously integrable, condition (4.11) of theorem 4.2 is satisfied, hence
the system is (2, u)-dynamic linearizable at points where 5%71 does not vanish.
Since z4 is a first integral of {Qs}, and a basis (at points where (5.1) holds)
for the Pfaffian system {wy, Q3, Qg} is {day —ugdag, day, duy} —it is indeed
integrable, and three independent first integrals are z4, ugy and 2y — xous—,
theorem 4.2 implies that two functions (hi(z,u), he(z,u)) form a pair of
linearizing outputs if and only if hy and hy are two independent functions
of x4, ug and x1 — xou9 such that dhy, dhsy, dus are independent but dzy is
a linear combination of dhy and dhs. The simplest choice is

hl = T4 and h2 =1 — Uy . (58)

Let us illustrate on this example the invertible transformations on pairs of
differential forms introduced in section 2.5 (following [2, 1]). The functions
hy and hy given by (5.8) are related to the forms w; and wy defining the
“infinitesimal Brunovsky form” by:

dhl . 1 —$2% — (UQ$1 — $3) 1 ) 03
dhy ) — \O 1 0 "rnsl
1 0\/0 1 w1
(ag D) &

with b = 52%—”1 (this may be re-arranged into an expression like (7.54) with
some scalar function a and matrix function J1). Indeed from Proposition 2.6
and 2.9, and since (wy,ws) is a linearizing Pfaffian system and the matrices
in the right-hand side of (5.9) are all invertible, this is enough to prove that
(h1,hg) is a pair of linearizing outputs at Brunovsky-regular points. Note
that the expressions in (5.9) are indeed singular at “Brunovsky-singular
points” —points that are not Brunovsky-regular— so that the ideas based
on the infinitesimal Brunovsky form fail at these points, while linearizing
outputs hy and hg may obviously be continued at these points, and it may
be checked directly that they continue to be linearizing outputs at these
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points; indeed, since

hl = Uz,
‘}‘Ll = a27
h(13) T (5.10)
ilz = T2 — 901U22 — Taly,
'flz = o3 + v1Uz — 962U22 — 963U23 — (@3 4+ z1u2)ly — 22ilz,

one may solve for xy1, @2, 3, ¢4, ug, Uz and iy in (5.8)-(5.10) and ex-

press them as (rational) functions of hl,hl,ﬁl,h(13),h2,hg,ﬁ2 at all points
where w3 + u3 — 1 # 0. It is clear on this example that the requirement of
Brunovsky-regularity is purely technical, and the singularities of dynamic
feedback linearization are not related to the singularities of the “infinitesi-
mal Brunovsky form”. The singularity 5%71 = 0, on the other hand is really
a singularity of (z, u)-dynamic linearization.

The conclusion for this system is:

e It is not z-dynamic linearizable at any point, as a consequence of the-
orem 3.1, case 6.

e It is (v, u)-dynamic linearizable at all points where iz + uj — 1 # 0.
This is a consequence of theorem 4.2 at points where 1 — u; # 0. At
points where iy +u3 — 1 # 0 and 21 — u; = 0, it is not a consequence
of theorem 4.2, but is clear from (5.10).

e It is not (z,u)-dynamic linearizable at points where 13 + u3 — 1 = 0.
This is a consequence of theorem 4.2 at points where 1 — u; # 0. At
points where z1 — uy = @3 + uj — 1 = 0, this is not a consequence of
theorem 4.2, but may be proved as follows. Suppose that there is a
pair of linearizing outputs (hq, h2) in an open neighborhood of such a
point. Points where 21 — uy # 0 are dense on this neighborhood, and
(h1, he) is still a pair of linearizing outputs at these points (if the neigh-
borhood is small enough). Hence (see above) hy and hy are functions
of 24, ug and 2y —ugxy: hi(x1, 22, 23, T4, U1, uz) = Xi (24, Uy, ¥ —Uz2).
Because the rank of day,dusd(z; — ugzsy) is 3, the smooth functions
x; are unique and may be prolonged at the point under considera-
tion (where u; — 1 vanishes). Computing the time-derivatives of the
functions h; from these identities, it can be seen that their partial de-
rivative with respect to @, all vanish at points where 3 +u3 — 1 = 0.
This prevents x5 from being, around such a point, a smooth function
of hy, ho, by, ha, by, ho,. .., and hence (h1, hg) from being a pair of lin-
earizing outputs at these points.

Note that the singularity @z + uy — 1 = 0 does not correspond to a

singularity of the linear approximation. Consider for instance the solution

ul(t) =—1 s UQ(t) =1 s $1(t) = $2(t) = 17 $3(t> = —17 $4(t> =1.
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Clearly 3 +u3 —1 is zero along this solution, while the linear approximation

& = Adx + Bdu, with

and B =

OO = O
o = O =
o O ==
o O OO
O = OO
—_ o

is controllable. An example where this occurs at an equilibrium instead of a
nontrivial solution is obtained by replacing x4 with 24 in 21, the singularity
5%71 = 0 then occurs when iy + u3 = 0 while the linear approximation at
(z,u) = (0,0) is controllable.

6. NON-AFFINE SYSTEMS IN R?

Consider a system

£ = f&wiw) (6.1)

where ¢ lives in R®. A system of the form (1.5) can always be brought to
this form at a point where one of the control vector fields does not vanish
by finding coordinates in which this control vector field is the first coordi-
nate vector field, dropping the corresponding control and taking this first
coordinate as a new control. The converse is not correct in general.

However a necessary condition for feedback linearization, that can be
found in [22] or in [24] implies that if system (6.1) linearizable by dynamic
feedback (even in a more general sense than endogenous), it has a dynamic
extension of dimension 4 which is affine in the control. The following propo-
sition is a consequence of theorem 1 in [22], except the regularity of v, but
this is automatic if one wants the linearizing outputs to be smooth:
PROPOSITION 6.1 ([22]). At a point (€, wy, w;) where I’ank{%7 %} s 2,
a necessary condition for system (6.1) to be dynamic feedback linearizable is
that there exist, locally around (€,wy,w;), a static feedback transformation
(w1, we) = y(&,v1,v2) such that f(&, (€, v1,v2)) be affine with respect to vy:
f(€7 7(57 U1, U?)) = a(€7 UQ) + Ulb(€7 U?)-

In the case of system (6.1), an explicit condition for existence of this static
feedback transformation may be given, but this is outside the scope of the
present paper. It is clear that the necessary condition for dynamic lineariza-
tion given in proposition 6.1 is exactly the condition needed to transform
system (6.1) into an affine 4-dimensional system. This is summed up in the
following result, which allows one to apply to 3-dimensional non-affine sys-
tems (6.1) all the results obtained in the previous sections for 4-dimensional
affine systems.

PROPOSITION 6.2. At a point (£, w1, ws) where I’ank{%7 %} is 2, either
system (6.1) is not dynamic feedback linearizable or one may construct a
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static feedback transformation (wy, wq) = v(&, v1, v2) such that dynamic feed-
back linearization of (6.1) is equivalent to dynamic feedback linearization of

T

iQ = a($17$27$37$4) + u b($17$27$37$4) (6 2)
T3 ‘
i4 = 1Uz.

7. THE PROOFS

All over these proofs, some known facts about Pfaffian systems (derived
systems, characteristic system ... ) are used. They are briefly recalled in
the Appendix.

7.1. PROOF OF THEOREM 3.1

Case 1 (mg = my = 2, 83 = 2). mg = 2 means that the distribution
spanned by the control vector fields X; and X5 is involutive. Frobenius
theorem yields a set of coordinates (z1, 22, z3, z4) such that {az , 824} is a
basis of this distribution, then

vy = Lx,23 + uiLx 23 + ualx,z3
vg = Lx,z4 + uilx,za + ualx, 24

is a nonsingular static feedback because Xy and X5, are independent at point
z. System (1.5) reads, in the above coordinates as

21 = a1(21722723724) zZ3 = 1
Z = a2(21722723724) Z4 = U2.

. 3 8(11 8(12 8(11 8(12 —
AS 18 then Spanned by 82’37 82’4 ’ 82’3 82’1 —I_ 82’3 82’2 and 82’4 82’1 —I_ 82’4 82’2 53 - 2

implies that a; and ay do not depend on z3 and z4. This yields (3.3).

CASE 2.A (mg = my = 2, d3 = 3). Since {X1, Xz} is integrable of rank
2, there exists two independent functions constant along Xy and X3, and
one of them at least has either its Lie derivative along [Xy, Xy] or its Lie
derivative along [Xg, Xo] that does not vanish at z because if not the rank of
Az would drop to two; let z9 be this one, and z; be the other one, and define
z3 = Lx,z2. Lx,z3 or Lx,z3 does not vanish at z (because they are equal to
L[XMXO]ZQ and L[X27X0]22) and hence z3 is independent from z; and zs, let
z4 be a fourth function, such that (z1, 22, 23, z4) is a system of coordinates.
The nonsingular feedback

v = L%OZQ + ulLXlLXOZQ + u2LX2LX022 (7 1)
vg = Lx,z4a + uiLlx,za + ualx, 24 '
transforms system (1.5) into
Z}l = a(2172’272’372’4)
,2:’2 = Z3
o= v (7.2)
24 = U2,
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with @ a certain smooth function. Since As spans a distribution of rank 3
and:

a d 0 da 0 Oa 0

A = Span{o—, o ot 5 n o

the function @ cannot depend on z4, and then

a d 0 da 9 9*a 0

Aot [Batal = Sean{p 50 a—+a—a—a—a—

so that the assumption on As is equivalent to being identically zero

8 2
on no neighborhood of z. This proves that system (1 5) has the form (3.4)
with the condition (3.5), after the change of coordinates and the nonsingular
feedback transformation we just introduced. There remains to prove that
system (3.4) cannot be linearizable by endogenous feedback under condition
(3.5). This is a consequence of the following lemma 7.1 because if system
(3.4) was linearizable by endogenous feedback on a neighborhood of a point
Z, then there would exist a pair of linearizing outputs on a neighborhood of
this point, and hence the system would also be linearizable by endogenous
feedback around any point of that neighborhood, including these, given by

L 2 -
condition (3.5), where gz—% is non zero.
3

LEMMA 7.1. System (3.4) is not linearizable by endogenous dynamic feed-
back in any neighborhood of a point z = (21, z2, z3, 24) such that

82
82’(; (21722723) # 0.
3

Proof. Suppose that there exists two linearizing outputs hy and hy, smooth
functions of a finite number of variables among 21, 29, 23, 24, v1, V2, 01, U9,

(L) (1)

U1, U2, ..., vy ', vy 7, with L a non negative integer, defined on an open
.. . - = = = = = =(L) =(L

subset O C R2A46 containing a point (z1, z2, 3, 24, U1, Uz, . . . 7U(1 ), v(2 )) for

some (01, Ug, ... ,Tng), 1:J(2L)). All variables may be recovered from hq, hy and

all their time derivatives so that in particular there exists smooth functions

11 and 9 such that

T— ¢1(h17hl7... 7h(hl 1) hg,hz,... 7h(21(1’2)) (73)
29 = ¢2(h17 iLh A 7h(IX2 1) hg, hg, A 7h(21(2’2)) . (74)

This holds in the open set O, gj% (21, 22, 23)
does not vanish on O. The integer K;; is the one such that 1); does not

depend on h;K"’JH), but does depend on h;K"’J) on O, i.e. ah?;{{;’]) is not

J
identically zero. Then, since (3.4) implies Z; = a(z1, 22, £2), one has, by

substitution,
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8¢1 8¢1 (K1,1+1) 3¢1 3¢1 (K1,241)
T—hy 4+ —hy +—hy 4+ - ’
8h1 1 8h(1]x1,1) 1 8h2 2 8h(2]x1,2) 2
3¢2 0y | (Ko 41
= (¢1 ; ¢27 h1 +-+ @h(f(z,l)h(lxm ) (7.5)
1
8¢2 ; 8¢2 (I(gyg-l—l)
+8—h2h2 —|— _I_ 8h(2](272)h2 .
One must have
Kip = Koy, Kio = Ko (7.6)
because the left-hand side in (7.5) depends only on hy, hy, ... ,thl’H—l), ha,
ho, ... 7h(21&1,2+1) and does depend on hgkl’ﬁ—l) and hg14271+1)7 and the right-

hand side depends only on Ay, h, ... ,thZ)’ﬁl), ha, hg, .. 71”0(21(2’2-|—1) and

(I(gyl-l—l) and h(2](2’2+1)

does depend on 7y because, since 2% does not vanish

R 2
on O, 8% is not identically zero on any open subset of O.

Differentiating two times both sides of (7.5) with respect to h;Kl’JH), and

keeping in mind that, from (7.6), K; ; = K ;, one has (note that neither

nor ¥y nor the partial derivatives of them depend on h;Kl’JH)):

2
. 8¢2 d*a 8¢2 8¢2 (K1,1+1)
0 = onE) | 9z3 (%’ Vo, Gt 8h§m,l>h1
8¢2 8¢2 (I(lyg-l—l)
-|-8—h2h2 +-+ ah“"'m) h2 , (7.7)

2

for j € {1,2}, and hence % is identically zero on O which contradicts
oh, &

J
the fact that it was precisely chosen (small enough) not to be identically

zero on O. O

CAsSE 2.B (mg = my = 2, §3 = 3). Since Az is integrable of rank 3,
and {Xy, Xy} is integrable of rank 2, and contained in Aj, there are two
independent functions z; and z3 such that z; and z; are constant along X3
and X5 and z; constant along the vector fields of As. Let z3 be given by
z5 = Lx,z2 and z4 be such that (21, 22, 3, z4) is a system of coordinates. The
nonsingular feedback (7.1) transforms system (1.5) into a system of the form
(7.2) above, where a depends on z; only because, since Lx, 21 = Lx,z1 =0,
one has ¢ = 2; = Lx, 21, and Lx,z; is constant along A3 because z; is and
[Xo,As] C As. 21 = a(#) clearly implies non-accessibility.

CASE 2.c (mg = my = 2, 63 = 3). Static feedback linearizability follows
from classical results, see [15, 12]. Let us however describe the coordinates
in which the system has the form (2.3.a). Since Ag is integrable of rank 3,
there is a function z; such that dz; is the annihilator of As. Let z9 and
z5 be given by z2 = Lx,z1 and z3 = L%(szly the rank of {dzy,dz;,dz3} is 3
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because d3 = 3. Let z4 be any function such that {zy, 29, 23, 24} is a system
of coordinates. The nonsingular feedback

3 2 2
v = LXO’Zl + ulLXlLXO’Zl + UQLX2LX02’1
vg = Lx,z4a + uiLlx,za + ualx, 24

transforms system (1.5) into (2.3.a).

CASE 3 (mg =mq = 2, §3 =4). Asin case 2.c, static feedback linearization
follows from classical results, see [15, 12], but we however describe the coor-
dinates in which the system has the form (2.3.b). Because my = 2, Xy and
X5 span an integrable distribution of rank 2, let z; and z3 be two indepen-
dent functions that annihilate X; and X5, and let zo and z; be defined by
z9 = Lx,z1 and z4 = Lx,z3. 63 = 4 implies that (z1, 2o, 23, 24) is a system
of coordinates, and the following nonsingular feedback

2

(%1 = LXOZI —I_ ulLXlLXOZI —I_ u2LX2LX021
2

U2 = LXOZ3 —I_ ulLXlLXOZ.?) —I_ UQLXQLXOZB

transforms system (1.5) into (2.3.b).

Cases 4 AND 5 (mg = m; = 3, 63 = 3 OR 4). Since mg = m; = 3,
My = My spans an integrable distribution of rank 3. Let z; be a first
integral of this distribution. In case 5 (05 = 4), define z; by

Z9 = LXOZI . (78)
One then has, for 7 € {1,2}, Lx,22 = —Lix, x,121 because Lx,z; = 0,
¢ = 1,2, and hence 3 = 4 prevents Lx, 22 and Lx,z; from both vanishing
at z. Up to a permutation of the two controls, we may suppose that

Lx,z(z) # 0. (7.9)

In case 4 (63 = 3), pick any zz such that (7.9) holds, it is possible since X
does not vanish. Since Lx, z; = 0, the rank of {dz;,dz} is 2 at point z.
The vector field

(Lx,22) X1 — (Lx,22) Xz (7.10)

does not vanish at point z, z; and z9 are two independent functions constant
along it, let z3 be a third independent first integral of this vector field, and
z4 be given by

LX1 z3

Zg = —.

LX1 Z9

(21, 22, 73, z4) is a system of coordinates because z1, z3 and z3 are constant
along the vector field (7.10) while the Lie derivative of z4 along it does not
vanish at z (a simple computation shows that if it would vanish, the rank
of My would drop to 2). Defining v; and vy according to the nonsingular
feedback transformation

vi = Lx,2 + wilx, Lx,z1 + usLx,Lx,z1

vg = Lx,z4a + uiLlx,za + ualx, 24
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(with a possible permutation of the indices 1 and 2 in the right-hand sides,
if needed to get (7.9)) yields, in the above defined coordinates, the normal
form (3.7) in case 4, and (3.9) in case 5. In both cases, a3 is given by

Lx 23
1
as = LXO Z3 — LXO 22,
X, 72
%3 1s obtained because
Lx,z
2
LX2 Z3 = LX1 23,
X172

and (in case 4) a; = Lx,z1 depends only on z; because d3 = 3 implies that
Az = My and hence that Lx,z; is a first integral of the three dimensional
integrable distribution spanned by M.

In case 4, non-accessibility follows immediately from the normal form
(3.7). In case 5, let us prove that system (3.9) is z-dynamic linearizable
around (Z,v) if and only if %(2) + 01 # 0. Let (hy,hy) be a pair of
linearizing outputs, depending on z only.

LEMMA 7.2. Let hy, hy be two functions depending on z only such that
(h1,h2) is a pair of linearizing outputs for system (3.9) on a neighborhood
of (2,0). Then the rank of {dz1,dhq,dhs} is 2 on a neighborhood of z.

Proof. If it was not the case, there would be points z, arbitrarily close to
Z, where this rank would be 3, and where (hy, hy) would still be a pair
of linearizing outputs. z; is constant along both control vector fields, and
since (hy, hz) would still be a pair of linearizing outputs, there is, from
(2.16)-(2.18), a nonzero linear combination of X; and X, say Z, along
which both % and hy are constant. It is impossible that Ly, h; vanishes
at z for all 4,7 € {1,2}, so that up to a permutation, we may suppose
that Lx,hy # 0. This yields, following the same construction as above
—construction of coordinates where the system has form (3.9)— a set of
coordinates

Lx, hy

(C17C27C37C4) = (217h17h27 h)
1

and a nonsingular feedback wy; = hl, Wy = 54 such that the system is also
of the form (3.9) with ( instead of z and w instead of v:

§1 = G §3 = a3(C1, 2,3, Ga) + Gawn
C? = w C4 = W3

where ({2, (3) should be a pair of linearizing outputs. This is impossible
from (2.17) because

3 96 0 0

814;1 8u.;2 1 0 0 0
965 A¢

Gor gy 0 0 54 0 0 0
2 a2 2o 0 Lo
w w: w w 2] 8 da

G G 8 Bla s t Gz Twe FE +wr G 0

8w1 8w2 8w1 8w2

and hence 2 T + wy should be identically zero on an open set, which is

absurd because its derivative with respect to wy is 1. O
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From this lemma 7.2, z; is a function of the two linearizing functions, and
therefore one may replace hy or hy by z1 in (h1, hg) and still have a pair of
linearizing outputs. Let for instance hy = z, then (2.16) is automatically
satisfied, and (2.17) implies that hy must depend on z1, 23, z3 only because

9hy 9k 0 0

EDTRTTY 0 0 0 0

dhy  Ohg Oha

81/1 8’[/2 0 0 — * 0z4 0 0

Ohy  Bhy  Bhy  Ohy 1 0 0 0 ’
dui By 911 O Oho

Ohy  Dhy  Ohy  Ohy R Y

81/1 8’[/2 81/1 8’[/2

and the independence condition in proposition 2.14 implies (3.10). Con-
versely, if (3.10) is satisfied, system (3.9) is z-dynamic linearizable with
(21, z3) as a pair of linearizing outputs, because z3 is 21, and z4 is (inverse
function theorem) a function of Z3, z1, 22, 23, v1, i.e. of 23, 21, %1, 23, Z1.

CASE 6 (mg =3, my =4). Let us first clarify the correspondence between
the conditions in terms of differential forms and these in terms of vector
fields. Since the form wy is defined by (3.15) and involves only the four vari-
ables z, dwy must be of the form (3.19) because there is only four variables.
Let us prove that, as written just after (3.19),

X e {w,mmit. (7.11)

From the definitions of w; and )~(, one has (wr, [)~(, Y)=0forY = X; and
for Y = X, and for Y = [Xy, X3], but one also has <w1,)~(> =(w,Y)=0
for these Y’s, and hence, from the classical formula [25, II-(1.10)] linking
Lie Bracket and exterior derivative, (wy, [)?,YD = 0 implies dwy ()?,Y) =
0, but from (3.19), and using again (wy, X) = (wy,Y) = 0, this reads:
(1, XY (2, Y'Y = (1, Y )12, X} = 0. Since the three vectors X1, X5, [X1, X,]
are linearly independent (mg = 3) and the two differential forms 7; and 7,
are also linearly independent (m; = 4 implies that dw; A wi =m AR AW
does not vanish), the last equality implies (7, X) = (15, X) = 0, and this
proves (7.11).
We then have the following

LemMmA 7.3. Condition (3.12) is equivalent to condition (3.16). If (3.12) or
(3.16) holds, condition (3.13) is equivalent to condition (3.17) and condition
(3.15) is equivalent to condition (3.18).

Proof. From the definition of wy, (3.12) may be written <w1, [Xo, X]> =0, or

also (wy, [F, X]> = 0 because [F, X] = [Xo, X] + uy[X1, X] + u2[ X2, X] and
the last two terms vanish on wy. From the classical identity (2.10) and the
fact that (wy, X) is zero, (wi, [F, X]) = 0 is equivalent to (&, X) = 0, which
is equivalent, from (7.11) to Wy being a linear combination of wy, m and Ng.
This is (3.16).

Let us proceed to prove that (3. 13) is equivalent to (3.17) if (3.16) holds.

Consider the three vector fields X, au , % in the six variables x,u. Their

annihilator is {wy,n1,72}. Now COIlSldeI’ the six vector fields obtained by
adding the Lie brackets of these by F: {X, %, 8872, [F, X],[F, ==, [F,=>-]}.

’ dug 3 Jun
From the classical identity (2.10), a form w annihilates all these at a point
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if and only if w and @ annihilate the original three at this point, i.e. if and
only if both w and @ are linear combinations of wy, 1y and 7, at this point.
It is the case of wy because (3.16) holds, and the rank of these six vector
fields therefore cannot be more than 5; it is equal to 5 exactly at points
where the time-derivative of any linear combination of 7, and 75 is linearly
independent from wy, 71 and 72, i.e. at points where (3.17) holds. Now this
rank is 5 exactly at points where (3.13) holds because [F, 8_] = X; and
therefore these six vector fields have the same rank as:

a 0
Juy’ duy
Let us proceed to prove that (3.15) is equlvalent to (3 18) if (3.16) holds.
Consider the five vector fields { Xy, X, [X1, X3], =2 ET 8u2 }in the six variables

x,u. Their annihilator is {w;}. Now consider the ten vector fields obtained
by adding the Lie brackets of these by F"

g 0 J J
8 0y 8u2 [F Xl] [FvXZ]v[Fv [leXZ]]v[Fva—ul]v[Fva—uz]}'

A form that annihilates all these vector fields at a point must be collinear to
wy at this point because it has to annihilate at least the five original ones.
The form wq vanishes on all these vector fields exactly at the point where
wy and &y vanish on the five original vector fields, i.e. (since these five are
linearly independent) exactly at points where the rank of {wq,w;} drops to
1. Therefore, the rank of the ten vector fields is 6 at points where (3.18)
holds, and 5 at points where it does not hold. But these ten vector have the
same rank as:

{X1, Xo, [F, X],

{1X0, X, [ Xy, Xy,

a 0
{ X0, X, [Xy, Xof, o=, o—, [Xo, Xy, [Xo, X3,
8 (73] 3u2
[Xo 4+ w1 X1 + uaXo, [ Xy, Xo]]},
and this has rank 6 if and only if (3.15) holds. O

Let us now prove necessity of the conditions (3.12)-(3.13)-(3.15), or (3.16)-
(3.17)-(3.18). Lemma 7.3, that we have now proved, allows us to simply
prove that (3.12) is necessary first, and then to prove that (3.17) and (3.18)
are necessary.

Suppose that there exists a pair of linearizing outputs (hy, hg) with hyq
and hy depending on z only. We use conditions (2.16) and (2.17) from
proposition 2.14 to derive the necessary condition (3.12). We have

iLZ' = LXohi + ulLthi + u2LX2hZ'. (7.12)
Equation (2.16) implies that the rank of

Lx,hi Lx,hy
Lx hy Lx,ho

is one. Since m; = 4, the functions Lx, h; and Lx,h; cannot vanish to-
gether; without loss of generality, suppose that Lx h; does not vanish
at the point under consideration. Then, with A the function given by
A= Lx,h1/Lx, h1, and defining the vector field 7, by

Zy = X3 — AXy (7.13)
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one has
Lz,hi = Lzhy = 0. (7.14)
Define the vector fields Zy and Z; by
Zo = Xo — K?Zi Xy, 4 = LXllhl X;. (7.15)
The systems (1.5) then reads
& = Zop + w1 + uyZy, (7.16)

with wy defined as follows((u1, u2) — (wy, ug) defines a regular static feed-

back:

wy = ih = Lx,hi + wilx, hi + uaslx, by
= Lx,h1 + (w1 + Auz)Lx, hy. (7.17)
Then hl and hg may be written:
hy = w
iLQ = LZ0h2 + w LZ1h2- (7'18)
The second time-derivatives are then given by:
hi = iy
hy = L% hy + wy (Lz Lz, + LzgLz)hy + wi LY hy + 1y Ly, ho
+ (Lz,Lz,he + wi Lz, Lz ho)ug.
(7.19)

The function Ay must not depend on ugy —this is (2.17)— and hence
Lz, Lz hy = Lz,Lzhy = 0. (7.20)

Now, on one hand, from (7.14)-(7.18)-(7.16), Lz h; is identically equal to
1, and Lz, hy, Lz hy and Lz, h, are identically zero, so that L[ZQ,Zl]hl and
Liz,.7,h1 are obviously zero, and on the other hand, since Lz,h; is iden-
tically zero from (7.14), Lz, Lz hy is equal to Lz, 71he and Lz, Lz hy is
equal to Ljz, 7, h2; this and (7.20) above implies:

Liz, 2t = Liz, 7z = 0, (7.21)
L[Z27Z0]h1 = L[Zz,Zo]h2 = 0. (7.22)

The two independent functions hy and hy are, from (7.21) and (7.14), con-
stant along the vector fields 73 and [7}, Z5], which are linearly independent
because m; = 3. This implies that the distribution spanned by these two
vector fields is integrable, and therefore that the Lie Bracket [7;, 71, Z5]]
is a linear combination of Z; and [Z;, Z;]. From (7.13) and (7.15), the
Lie bracket [Z3,[71, Z2]] is equal to A[Zs,[X1, Xo]] + (Lx,A)[X1, X2] +
(Lx,\)?* — Lx,Lx,\)X;. Hence, [Z,,[Xy, X3]] must be a linear combi-
nation of X, Xy and [Xy, Xp]. This implies, from the definition of the
characteristic vector field X —see (3.11)—that Z; is collinear to X:

Zy = aX (7.23)

with « a nonzero function. Since the vector fields annihilating dhy and dhg
are the linear combinations of Z; and [Z3, Z;], (7.21) and (7.22) imply that
[Z2, Zp)] is a linear combination of 7, and [Z3, Z1], which implies in particular
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that it is a linear combination of Xy, X3 and [X1, X3]. From (7.23), this
implies condition (3.12). We have proved the necessity of condition (3.12).

Let us now prove that existence of hy and hy with the above properties
imply (3.17)-(3.18). From above, dhy and dhy vanish on X and [, )~(], and
are linearly independent because (hy,hz) is a pair of linearizing outputs;
hence, from the definition of wy and the fact that both X and [227)?] are
linear combinations of Xy, Xy and [Xy, X3], the form w; is a linear com-

bination of dhy and dhs, i.e. there exists some functions Ay and A, such
that

W = Al dhl + Agdhg. (724)
Computing the time-derivative of this yields
& = Mdhy 4 Aadhy + Ajdhy 4+ Agdhy. (7.25)

This implies (3.18) because on one hand the two functions Ay and Ay do
not vanish simultaneously because w; does not vanish, and on the other
hand dhq, dhs, dhl and dhg are linearly independent because (hy, hz) is a
pair of linearizing outputs. Condition (3.16), already proved because it is
equivalent to (3.12) from lemma 7.3, implies:

Wi = powr + i + p2m

for some functions g, p1, p2. (3.18) implies that p; and gz do not vanish
simultaneously. Let  be 7y if puy does not vanish, and 7y if py vanishes.
Then {wy,w,n} is another basis for the annihilator of X. Since dh; and
dhy are in the annihilator of {X,[Z3, X]}, they are linear combinations of
wy, w1 and 7. Since {dhy,dhy} is a linearizing Pfaffian system, this implies,
from Proposition 2.8, that {wy, n} is a linearizing Pfaffian system, and hence
that wy, n and all their time derivatives are linearly independent, and in
particular wy,wy, &1, 1, % has rank 5, but from the above construction, it is
also the rank of wq, 71, 71, 12, 2. This proves (3.17).

According to the remarks just after the proof of lemma 7.3, we have now
proved the necessity of either (3.12)-(3.13)-(3.15), or (3.16)-(3.17)-(3.18).
Let us prove sufficiency, and at the same time validity of the way of building
linearizing outputs given in the theorem. Again, from lemma 7.3, it is enough
to prove sufficiency of (3.16)-(3.17)-(3.18).

From (3.16) and (3.18), equation (3.19) implies

dwl = W A F/ + kwl A n (726)

where k is a non-vanishing function and 7 is either 7; or 7z, and then (3.17)
implies

rank{wy,w, &1, n, 7} = 5. (7.27)

Let oy and ay be some (non vanishing simultaneously) functions such that
{wy, @101 + ayn} is a basis of the annihilator of { Xy, Xo}. Then {wy,wy,n,
a101 + azn} is a basis of Span{dx} —all four are in Span{dx} because
w1 + agn vanishes on X; and X, and they are independent from (7.27)—
and {wy,wy, o1, 1,1, oelwf’) + aqij} is a basis of Span{dx,du} because of
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(7.27) and the fact that X7 and X, are supposed to have rank 2, and then
an easy induction shows that

{wlv wha}lv s 7w§j+2)7 7, 777 7‘77 ) 77(j+1)7 O‘lw£j+3) + 04277(j+2)}
is a basis of Span{dx,du,di,...,dul)} for all j > 0. This implies that
{w1,n} is a linearizing Pfaffian system (see definition 2.5).
Let us now build a pair of linearizing outputs as explained in the theorem.
If hq is built as indicated, i.e. such that

Lghy = 0 and rank{w;,w,dhy} = 3, (7.28)

the Pfaffian system {dh;,w;} is integrable because (7.26) and the fact that
dhq is a linear combination of wy,wy, n imply dw; Awy Adhy = 0. Let hy be
a second function such that {dhy,dhs} is another basis for {wy,dhy}. These
dhy and dhy are obviously linear combinations of wy, wy and 5, but this may
be inverted: wy is a linear combination of dhy and dhy, and 7 is, from (7.28)
a linear combination of wy, wy, dhy, and hence of dhy, dho, dhl and dhg.
Since {wy, n} is a linearizing Pfaffian system, (dhq,dhs) is, from Proposition
2.8, also a linearizing Pfaffian system, and (hq, hs2) is a pair of linearizing
outputs from Proposition 2.6. This completes the proof of sufficiency.

Let us now prove the assertions concerned with the “normal form”. The
normal form itself is a consequence of the following lemma:

LEMMA 7.4 (“ENGEL’S NORMAL FORM” ). Let Xy and Xy be two vector fie-
lds in R* and let # € R* be such that

rankp{ X1(z), X2(z)} = 2,
I’ankR{Xl(f)7X2(f)7 [XhXQ](f)} = 37
rankR{ Xl(j)v XQ(j)v [Xh XQ](j)v [Xh [Xh XQ]](j)v [X27 [Xh XQ]](j)} =4

Then there exists four functions aq1, a2, a1, oy and a set of coordinates
(21, 22, 23, 24) such that the matriz 0411(95) 0412(95) is invertible, and,
0421($) 0422($)

locally around =z,

J J J
an Xy tonXe = —+zmm—+2a7—
851 822 82’3 (729)
a9 Xy +apnXy = EIh
4

The proof is very classical, see for example [6]. Now, by assumption, the
vector fields Xy and Xy satisfy these assumptions, and the feedback

U _ 11 02 (%1 . LXOZ1 (7 30)
Uz Q21 022 U2 LXOZ4 '

yields the equations (3.20) in the coordinates given by lemma 7.4. The fact
that the coordinate-free and feedback invariant conditions (3.16), (3.17),
(3.18) translate into (3.21), (3.22), (3.23) respectively is a routine computa-
tion from

wy = dzy — z3dzy W = dfy + ndzs — (f3+ z4v1)d2zy
771 = le s 771 = dv1 s
ne = dzz, ny = dfs + vidzgv; + 2dog .
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ALTERNATIVE PROOF OF CASE 6. Here we suppose in addition that we are at
Brunovsky-regular point, i.e. the rank condition (4.5) holds, and we give a proof for
case 6 based on the infinitesimal Brunovsky form. To give a thorough treatment of
case 6, one should consider the case when the rank in (4.5) is three in a neighborhood
—then there is a different infinitesimal Brunovsky form, as in the second point of
proposition 2.11, and also points where it three, while being 4 in an open dense set
of a neighborhood —at such points, an infinitesimal Brunovsky form does not exist
but one might conclude by density.

Condition (4.5) implies, see proposition 2.11, that if two forms w; and we make
up a basis of 735‘, then {wi,ws,wi,wa} is a basis of Span{dx}. In addition, w;
may be taken in M2 (i.e. {w;} is the first derived system of the Pfaffian system
{wi,ws}). Then we have:

Wa A ((51@1 + 62(.&2) modulo Wi
v Wi Awsy modulo {wy,wa}.

dw1
d(.JQ

(7.31)

Since on one hand the rank of M; is constant equal to 4, and on the other hand
the rank of My is constant equal to 3,

d1 and 65 do not vanish simultaneously,
. (7.32)
~ does not vanish.
A computations shows that:
Span{)?} = {w1 , Wa (51@1 + (52@2 }J' . (733)

The proof of characterization (3.12) relies on the following lemma, proved further:
LEMMA 7.5. The following three properties are equivalent:

(1) There exist two invertible matrices J, and Jz of degree zero and three functions
a, h1 and ho, dall defined on a neighborhood of the point X', such that

dh1 _ 1 —aéi—t Wi
() = () e (=), (.34

(ii) 62 = 0 on a neighborhood of X.
(iii) (3.12) holds on a neighborhood of X .

This is enough to conclude. Indeed, sufficiency in case 6 of theorem 3.1 is obvious
because, from proposition 2.12, point (i) implies z-dynamic linearizability. Let us
prove necessity: if system (1.5) is #-dynamic linearizable in a neighborhood of a
point X', then from propositions 2.12 and 2.13, there is an open set Uy, dense in
a neighborhood of X', such that point (i) holds for all X € Uy. From the lemma,
this implies that Js is zero on Uy. Hence it is zero on a neighborhood of X. This
completes the proof of case 6 of theorem 3.1, the normal form being proved the
same way as in the first proof.

Proof. (ii)<(iii): We have, from (7.33) and identity (2.10),

0 = 51_1; (01w + dows, 5(> = <51""1 + 02w + G101 + daba 5(> ~
+ (drw1 + dows, [Xo + ur Xy + us Xo, X]),

which, from the fact that (w;, )~(> and (w1, [ X5, )~(]> are identically zero for i = 1,2,
yields

61 <(.J1 s [XO,)?]> —|— 62 <(.J2 ; [Xo —|— U1X1 —|— UQXZ,)?]> = 0 (735)
which implies; since d; and ds do not vanish simultaneously and [Xy + ui X1 +
u2X2, X] does not vanish, that §; = 0 is equivalent to (wy,[Xo, X]) = 0, i.e. to
(3.12).
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(ii)=(i): Since §; = 0, (7.31) implies that {wy,wa,w;} is the characteristic system
of wy and therefore is integrable. In particular, there exists a function hy such that
dha = Aowi + Mwi + Asws
with a non-vanishing As; then
dw; = 6,dhs Aw modulow,

which implies that {w;,dhs} is integrable and in particular that there exists a
function h; such that

dhy _ M1 M2 Wi _ M1 M2 1 0 Wi
dh2 o 0 1 dh2 o 0 1 AO + Alc?_t Az Wa

where g1 A1 does not vanish. This is point (i).
(1)=(ii): Let Q, 5 and Q3 be defined by

(g;) - JZ(Z;) (7.36)
(gz):(é_i%)<g;):<m§2mz). (7.37)

then (7.34) implies that {Qs, 4} is integrable and hence, for some 1-forms T'; ;,

dQy = Qo AT22+Q3AT23=Q Al23+Q2AT22—0a 5:22 ATs3 (7.38)
dQ3 = Qz /\F372—|—93/\F373 = Ql /\Fzyg—i—Qz /\FZ,Z —Cle /\Fzyg. '
Taking the time-derivative of the second equation yields
sz = Ql A F273 + Ql A F273 7 39
+ Qs Afz,z + QA (Fz,z - af2,3 - dF2,3) — aQy ATs3 (7.39)
and finally, since dQ; = d(Qs + ay) = dQs + adQs — Q2 A da,
&2y, = QA (F2,3 + af2,3) + Qs A (Fz,z + afz,z)
+ an /\F273 + Qz A (— anyg + anyz — azfzyg — adrzyg — da)
— Cl2 Qz A F273 )
sz = Ql A F273 + Qz A FZ,Z — a Qz A F273 .
(7.40)

From (7.36), {€1,Q2} is the same differential system as {w;,ws} and therefore,
from (7.31), dQ; = X Q1 AQs modulo {y,Q5} for i = 1,2 and A; certain functions;
from the second equation in (7.40), this implies that I's 5 is a linear combination of
Q1,Qs, Ql, Qz; from the first equation in (7.40), it is actually a linear combination
of Q,Q,, Qz because the Ql—term would produce a Qz A Ql—term in the last term
of d€2y (it cannot be canceled by another term because there is no Qz in 7, 3); this

implies, if F273 = /\191 + Algz + A()Qz,
sz = Qz A fZ,Z + (AO + a/\l)Ql A Qz (741)

where 1:272 contains I'; » plus other terms. This implies in particular that d©2, = 0
modulo {21,822} which implies that €25 is in the first derived system of {2;,Q4}
(i.e. in the annihilator of {Xy, X9, [X1, X2]}) and therefore that it is collinear to
w1, or in other terms that matrix Js is triangular:

(o) = (2 5)(2) ")
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where a2 does not vanish. Then (7.31) yields

1 da .\ :
a2, = —0 A ((51 _4 2 + 52391) modulo Q5 . (7.43)
P2 B2 B2
By comparing this and (7.41), we see that daor = 0 which implies that d2 is identi-
cally zero because a does not vanish. O

7.2. PROOF OF THE RESULTS ON (z,%)-DYNAMIC LINEARIZABILITY

In this section, we prove theorem 4.2 and proposition 4.5. They are
proved together because we are not able to prove the intrinsic condition of
theorem 4.2 without the help of the coordinates of the normal form (4.13).
In the course of the proof, we will need the four following technical lemmae
(lemmae 7.6, 7.7, 7.8 and 7.9), that are proved further.

LEMMA 7.6. Let wy and wy be chosen according to (4.6). Let b and Jy be
respectively a scalar smooth function and a 2 x 2 invertible matriz (of degree
zero) with entries smooth functions, defined on a neighborhood of a point Y

and let Q1 and Q3 be defined by

(8;) - (—;% ?)k(i;) (7.44)

The forms Q1 and Q3 satisfy the following relations:

dQ, = 0 modulo {Q, Qs, Qs} (7.45)
dQs = 0 modulo {Qs, Q A Q3 )} (7.46)
on a neighborhood of YV if and only if there exist smooth functions hy, ho

and a, and a 2 X 2 invertible matriz J, with entries smooth functions defined
on a neighborhood of Y, such that

dhl . 1 —a% 1 0 o]
(dhg) B Jl(o 1 -bd 1 T2
1 —ai Ql
— dt
= Jl(o ) )(93) (7.47)

LEMMA 7.7. Let wy and wy be some 1-forms satisfying (4.6), and hence
(4.8), around a point where v and 67, do not vanish (implied by the rank
assumptions (4.1)-(4.2)-(4.3)-(4.4)-(4.5)).

(i) There cannot exist functions a, b, hy, hy and two invertible 2x2 matri-
ces of degree zero J1 and Jy, all defined on a neighborhood of the considered
point, such that

1 0 W dhl)
J J = . 7.48
1(_(1%_1)%2 1)2(w2) (dh2 ( )

(ii) There cannot exist functions «, a, b, h1, hy and an invertible 2 x 2
matriz of degree zero Ji, all defined on a neighborhood of the considered
point, such that

n(o W) (e D) (e D)) = ()
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LEMMA 7.8. Let wy and wy be some 1-forms satisfying (4.6), and hence
(4.8). 1f, for some functions A1, Ay and A3, one has

dwy = 0 modulo {wy,Q,Q}

with Q@ = /\1w1 + A2w2 + Ag@g, (750)

then Ay and A5 are related to the functions appearing in (4.8) by:

LEMMA 7.9. Let [ and g be two smooth functions from an open subset O C
R* to R. The following two assertions are equivalent:

(i) 8879’4 does not vanish on O and [ and g are solutions of the following
equations on O:

dg 93¢ 0%g 2 B

25 9 3 (8—22) = 0, (7.52)
dg O°f d%q 0*f

2 - < R = . .
Dz4 073 3 922 022 0 (7.53)

(ii) There exists ag, a1, az, bo, b1, co and ¢, seven smooth functions of

21, 22, 23 defined on O (i.e. on its projection on R?) such that
bo by
c

o (217 22, 23)

col#1, 22, 23) + zac1(21, 22, 23)  and

do not vanish on O and f and g are given by (4.16) on O.

PROOF OF THEOREM 3.1 AND PROPOSITION 4.5. Let us consider a point
X = (7,4,1u,...) such that conditions (4.1)-(4.2)-(4.3)-(4.4)-(4.5) hold at
(z,u). Let the forms wy and wy be defined according to (4.6) and the func-
tions &5 ; and y by (4.8). Let also (21, 22, 23, 24) be some coordinates in
which system (1.5) has the form (4.13) (they exist from Proposition 4.4),
and the functions f and g be defined accordingly from an open subset of R*
to R.
We have to prove the following:

1. The following three properties are equivalent:
e (z,u)-dynamic linearizability of system (1.5) at point X, or of
(4.13) at the corresponding point in terms of (z,v,9,...),
e conditions of proposition 4.5 on the functions f and g,
e condition in terms of Pfaffian systems of theorem 4.2.
2. When they are satisfied, the possible pairs of linearizing outputs de-
pending on z and wu are these described in theorem 4.2.

The (easy) proof of the second point will be given at the very end when
equivalence is totally understood.

From proposition 2.12, (z, u)-dynamic linearizability is equivalent to ex-
istence of a matrix P(%) whose entries are polynomials in % of degree at
most 2, which has an inverse of the same type (except we do not need to
know whether the degree of the entries of the inverse is also at most 2), and
transforms the pair of forms (wy,ws3) into a pair that defines an integrable
Pfaffian system. Now use the second point of proposition 2.13; it allows four
possible decompositions of the matrix P(%)7 but only on an open dense set
of points of the neighborhood of A where P(:) is defined, and X might
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not belong to this open dense set. Around these points though, lemma 7.7
states that three of the four decompositions proposed by proposition 2.13
are impossible due to the form of dwy and dws given by (4.7)-(4.8), so that
only the last one is possible. If the decomposition of proposition 2.13 was
available at all points, item 1 of the following lemma would be equivalent to
(2, u)-dynamic linearizability, and the following lemma would end the proof.
LEMMA 7.10. Let wy and wq be chosen according to (4.6), the functions
5%71 and v be defined by (4.8), and some coordinates z1, za, zs, zs be fived
according to Proposition 4.4, in which system (1.5) has the form (4.13), and
the functions f and g be defined accordingly from an open subset of R* to
R. The following four assertions are equivalent:

1. There exists an invertible matriz Ji of degree zero and siz functions o,
A, a, b, hy and ho, all defined on a neighborhood of the point Y, such

that b does not vanish on this neighborhood and
dhy \  _ 1 —ad 10 10
(dhg)_Jl(O 1 -bd 1 a 1
Al W
(D). o

2. There exist three functions o, A and b, all defined on a neighborhood
of YV, such that b does not vanish on this neighborhood and, with

(8) = (L DD D). e

one has

dQ, = 0 modulo {Q, Qs, Qs} (7.56)
dQs = 0 modulo {Q3, Q AQ3}. (7.57)
3. 5%71 does not vanish at 'Y and the first derived system of the Pfaffian

system { wy — 52%—71@2 , wa} has rank 1 and is integrable, i.e. there exists

a (unique) function a such that (4.11) is satisfied.

4. The function 5%71 does not vanish at Y and, in the normal form (4.13),
the functions f and g are, on a neighborhood of Y, of the form (4.16)
where ag, a1, as, by, b1, cg and ¢1 are functions of z1, z2, z3 only, which
satisfy (4.17).

If one of these conditions is met (and therefore all of them), X, a and b in

(7.54) and (7.55) are uniquely defined:

A=0, b= 521—7 , o is uniquely defined by (4.11) . (7.58)

2,1
This lemma contains the real technical difficulties of the paper. The proof
is given further (page 204), let us however sketch it. Equivalence between
1 and 2 is given by lemma 7.6, it is a manipulation on Pfaffian systems,
and only needs the fact that the Pfaffian system {w;,w;} may be written
in four variables (the coordinates of z). It is very simple to prove that
3 implies 2, but the converse is not obvious: since we were not able to
prove it directly, we used the coordinates z of the normal form, and instead
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of proving that 2 implies 3, we prove that 2 implies 4 by writing (7.56)-
(7.57) in the coordinates (z,v,0,...) of the normal form (4.13) as some
differential relations on the functions «, A and b with the functions f and
g as parameters, eliminating the unknowns «, A and b, and obtaining some
PDEs on f and g that imply the form of f and g given by point 4 above
(or by proposition 4.5), these computations have been conducted with the
computer algebra system “Maple” (version 5.2). The fact that 4 implies 2
is a simple computation in coordinates, made easier by proposition 4.8.

Unfortunately, the conclusion of proposition 2.13 is not valid at all point,
so that the results we want to prove do not follow from the above lemma
7.10, proposition 2.13 and lemma 7.7. Let us however prove that (z,u)-
dynamic linearizability at point X is equivalent to one of the four equivalent
conditions of lemma 7.10 being satisfied at point X’. This will end the proof
that (z,u)-dynamic linearizability, the conditions of proposition 4.5 on the
functions f and ¢ (item 4 of lemma 7.10) and the condition in terms of
Pfaffian systems of theorem 4.2 (item 3 of lemma 7.10) are equivalent.

Point 1 of lemma 7.10 implies (z,u)-dynamic linearizability from propo-
sition 2.12 because the matrix applied to (wq,wy) in (7.54) is obviously
invertible and of degree 2. Conversely, suppose that there exists a pair of
linearizing outputs (hi, hy) depending only on z and w, defined around X,
and let us prove that item 3 of lemma 7.10 holds on a neighborhood of X
From proposition 2.12, there exists P() € A(U), with U a neighborhood
X, such that

P(4) is invertible in A(U)
degP < 2 onlU

P() ( i; ) _ ( jZ; ) ' (7.59)

Since v does not vanish at X" and the rank assumptions (4.1)-(4.2)-(4.3)-
(4.4)-(4.5) hold at X', we may suppose, by possibly restricting U, that

~ does not vanish on U |
(4.1)-(4.2)-(4.3)-(4.4)-(4.5) hold on U, (7.60)
deg P = 2 on an open dense subset of U .

The last statement is implied by the second one because if degP is strictly
less than 2 on an open set, the system is z-dynamic linearizable and this
contradicts (4.4) from theorem 3.1.

Then, from proposition 2.13, there is an open dense subset Uy of U such
that, for all Y € Up, the matrix P(%) may be decomposed according to one
of the four forms (2.13)-(2.14)-(2.15). From lemma 7.7 three of these four
forms are forbidden, because conditions (4.1)-(4.2)-(4.3)-(4.4)-(4.5) hold at
point Y. Hence, around each point Y € Uy, there exists functions «, A,
a, b, and a matrix .J1, defined on a neighborhood of Y such that (7.54) is
true on a neighborhood of Y. By restricting possibly the open sense set
Uy, we may suppose that b does not vanish on Uy (b cannot vanish on an
open set, because then P would have degree at most 1 on this open set, and
therefore the linearizing outputs would depend on z only, and this would,
from theorem 3.1, contradict (4.4). Then the conditions of point 1 of lemma
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7.10 are satisfied on Uy. By applying lemma 7.10 at each point Y in Uy, one
has, for all Y € Uy, a neighborhood of Y such that

. 5%71 does not vanish on this neighborhood,
e there is a unique function ay defined on this neighborhood such that

2~ . 27 .
d (wl + ayw, — 51—7w2) A (wl + ayw, — 51—7w2) = 0, (7.61)
2,1 2,1

e there are a smooth scalar function ay and an invertible matrix J; y
with entries some smooth functions, all defined on this neighborhood,
so that, on this neighborhood,

dhl o 1 - ay % 1 0 0 1 W
(dhz)_Jl’y(O 1 a1\ ay )\ e )
(7.62)

The last point is obtained by substituting the functions A and b by the value
they must have from (7.58). The second point implies in particular, by
making the wedge product of both sides by wy and multiplying by (5%71)2,
that

d ((Séle — 27&)2) A ((Séle — 27&)2) /\WQ
+ aydydwy A (83w1 — 296s) Awy = 0. (7.63)
but on the other hand, the differential form of degree 4 dws A (5%71w1 — 27@2)
A wsz is, from (4.8), given by
. 1 . . .
dws A wy A (5%714,01 —29Wg) = wi A (55%714,% — Y@2) Awg A (—27Ww3) ,

and therefore does not vanish on U. Existence of ay satisfying (7.63) may
be translated in some determinants made with the coefficients of the two
differential forms of degree 4 being zero, but if these determinants are zero
on an open dense subset Uy, they are zero all over U, and therefore, since
dwy A (5%714,01 — 27@2) A wq does not vanish, there is a function v, uniquely
defined all over U, such that

d ((Séle - 27&)2) A ((Séle - 27&)2) N wa

+ vdwy A (5%714,01 - 27@2) Awy = 0. (7.64)
Of course, since on the neighborhood of each point Y, the function ay is
uniquely defined, it must coincide with w— where it is defined.
2,1
Then, let us define the form w3 by
w3 = (%le + vwy — 2yWs (7.65)
equation (7.62) reads
dh 1. 5%1
Wy — a 7 W3 — w3
L) o= Sy 031 (621)* (7.66)
dho 1
5,

and therefore, dhy; and dhy are linear combinations of wy, w3 and ws on
a neighborhood of each point Y € U,. This implies that the rank of
{dhy,dhy, we,ws, w3} is at most 3 on the open dense Uy, it is therefore also
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at most 3 on all U. Since the rank of {wy,ws,ws} is three all over U (because
v does not vanish on U, see (7.60)), there are six functions f; ;, (uniquely)
defined all over U, such that

dh; = piqws + piows + i 3ws

for + = 1,2, or in other words

( dhy ) _ ( M1 H1,2‘|‘,u1,3% ) ( Wy ) (7.67)
dhy H21 fe2+ Hesgg w3

which implies, from (7.65),

(dh1) _ (Mm H1,2‘|‘H1,3%>( 0 1 d)(m)
dhg P21 f22+ f2,35 01 v — 27§ w2

which implies, from (7.59), and because w1, wy and all their time-derivatives
are linearly independent, that

d 4 0 1
P(~) = ( H1,1 M1,2+H1,3ﬁ ) ( 5 o ) ‘
dt M2, 2,2+ f233 21 Y Y
This implies that ¢, must not vanish on U because P(%) could not be

invertible in the neighborhood of the zeroes of 5%71, where the first column
of the second factor would vanish.

Since 5%71 does not vanish on U, the function « 2 é is defined all over U,
coincides with each «y where these are defined; this and (7.61) imply that
(4.11) is satisfied on Uy with this definition of «; since Up is dense in U, (4.11)
is even satisfied all over U. This proves that (z,u)-linearizability implies
item 3 of lemma 7.10, and ends the proof of equivalence between (z,u)-
dynamic linearizability, the conditions of proposition 4.5 on the functions f
and ¢g and the condition in terms of Pfaffian systems of theorem 4.2.

To end the proof of theorem 4.2 and proposition 4.5, there only remains
to prove that the possible pairs of linearizing outputs depending on z and
u only are these described in theorem 4.2. We have proved above that an
arbitrary pair of linearizing output has to satisfy (7.66) around all points

Y in an open and dense subset of a neighborhood of X', with w3 = 3193
(compare (7.65), the fact that @ = v/8; | as noticed just after (7.64), and
the definition of Q3 in theorem 4.2). This implies that dhy and dhy are two
independent linear combinations of Q3 and wy — aQ;), for a certain function a.
This is exactly the form of a pair of linearizing outputs described in theorem
4.2. O
We now prove the four technical lemmae (lemmae 7.6, 7.7, 7.8 and 7.9)
and then proceed with the proof of lemma 7.10 that was the cornerstone of
the above proof.
PROOF OF LEMMA 7.6: Suppose that ©; and Q3 satisfy the identities (7.45)-
(7.46) on a neighborhood of Y. Then the Pfaffian system {04, Q3,Q3} is
completely integrable because (7.45)-(7.46) obviously imply that d©; and
dQ23 are zero modulo {Qy, Q3, Qg}, and (7.46) implies that, for a certain 1-
form I's and a certain function k, dQ23 = Q3 AT's + £Q1 A Qg, but taking the
time-derivative of both sides yields

dQs = Q3 AT3 + QA3 + QL AQs + kO AQs + kO A,
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which obviously implies that d€; is zero modulo {0y, Qs, Qg} Integrability
of this Pfaffian system implies that there exists a function hy defined on a

neighborhood of ) such that
dhy = M+ A3 + AsQs

with Ay, Ay, A3 some functions, A; nonzero at Y. Then {3, dh.l} is integrable
because (7.46) implies that dQ25 is zero modulo {Q23,dhy A Q3}, and hence
modulo {Q3,dh,}. Hence there is a second function hy such that

dhy = prdhy + pefls
with pq, e some functions, ps nonzero at ). The functions hy, hy built

above, together with a = —A3/A; and J; = ( Lo ) ( Ar Ay ) satisfy
Bi o 2 0 1
(7.47).

Conversely, suppose that (7.47) holds. Let us define Qy, 5, Q3,4 by

(8;) - JZ(Z;) (7.68)
(82) ((1)_?%)(_;%?)(8;) (7.69)

Qs = QU — by (7.70)
94 = Ql — 093 = Ql — a (QQ - le - le) . (771)

le.

We shall use the following basis (over smooth functions) for the space of all
1-forms:

{le 927 937 927 Q47 Q47 Q27 9(23)7 9(24)7 ceey Q(14)7 Q(15)7 Q(16)7 tee } (772)

where, in addition, {Q, Q,, Q3,,} is a basis of Span{dx}.
Then (7.54) implies that the Pfaffian system (3, €4) is completely inte-
grable and therefore that there exists some 1-forms I'; ; such that

{ dQ; = Q3Als33 + QiAT34

A9y = Q3AT4s + QuATyq. (7.73)

It is possible to express the 1-forms I'; ; in (7.73) as (finite) linear combi-
nations of the forms in (7.72), and it is always possible to choose them such
that, for = = 3,4,

I'; 3 has no €23 term,
I'; 4 has no 23 term and no €4 term.

(7.74)
Taking the exterior derivative of (7.71) yields

A = dQ4 4 adQs — Q3 Ada,
and taking the time-derivative of the first equation in (7.73) yields

dQ; = Q3A 1%3,3 + Q3 A I's3 + Q4 A 1%3,4 + QA ['34
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Q1—-Q4

and finally, the two above equations yield, since 3 = —

da

dQy = A (F3,3 - 7) + Q3 A (F4,3 + af3,3)

. da .
—|— 94 A (F474 — F373 —|— QF374 —|— 7) —|— QQ4 A F374 (775)

On the other hand, since (Qy,Q2) = (X1, X3)*, the Pfaffian system de-
fined by (€21, Q2) can be defined with the help of the variable z (i.e. the four
coordinates of z) only, and therefore (see (8.3) in the Appendix), its Cartan
characteristic system is at most Span{dx}, i.e. at most {Qy,Qy, Qs,Qs},
which implies that, for some functions &y and ko,

de, k1 Q3 A Q modulo {4, Q)
dQQ k2 93 A QQ modulo {le QQ} .

The first equation above implies, from (7.75) and (7.74), and using the fact
that the 1-forms in (7.72) are a basis for all 1-forms, that I'y 3 + af373 is a
linear combination of €2, €3, 3, QQ and Q4, 'y 4 — 33 + af374 + CL—“ is a
linear combination of €2y, Qg, Q23 and €4, and I's 4 is a linear combination
of 4, €5 and Q4, with the coefficient of €4 in I'y3 + af373 equal to the
coefficient of Q3 in 'y 4 — '3 3 + af374 + CL—“:

Fy3 + af33 = Q1 + 2 + 303 + 0492 + d3Qy

d
44 — I'sz + aF34 + _a = i 4 doQy + d3Qs3 + dyy  (7.77)

(7.76)

F3,4 = el + ey + 6394
and finally, (7.75) yields
Ay = QAN + QAN + 4 QB AQ, (7.78)
with

a

AQ = - 0293 — d294 — 06294.
Now, from (7.70),

{ Al = F373 — da _ 0193 — d194 — 06194

A = dQs + bdQy + dbA S,

which allows, getting dQ23 from (7.73) and dQl from (7.78)’s time-derivative,
and using the fact that Q, = & bQS and €3 = 1=t Q4 , to compute df2; and,
forgetting the exterior products starting with Ql, QQ or {23, to obtain

dQQ = b(%—dg)gg/\ng — abeQQQ/\Q4 + 6394/\94 (779)
modulo {€,Q2,Q3} which, since the second identity in (7.76) implies dQy =
0 modulo {4, Q9, Q3}, yields

cy = ady and ey = e3 = 0. (7.80)
We get (7.45) from (7.78) with e = 0 after substituting €4 for € — afls.
The same substitution in (7.71)-(7.77) with ey = e = 0 yields (7.46). O

PROOF OF LEMMA 7.7. (i) First, let us notice that b cannot be identically
zero around the considered point, because this would imply z-dynamic lin-
earizability, which, from theorem 3.1, contradicts (4.4). Define €; and Q;
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by (91792)7’1 = J%(WMWQ)T; then (7.48) implies that the Pfaffian system
{Qy,Q9 — afy — b2} is completely integrable, which implies

dQl = QlAFl + (Qg—aﬂl—bﬂl)/\Fg,

for some 1-forms I'; and I';. On the other hand, because {2y, Q5} span the
annihilator of {X, X3}, the characteristic system of this Pfaffian system
is included in Span{dx} (see (8.3) in the Appendix), and hence one must
have dQ2y = kn; A ne modulo {Qy,Q5} with & a function and 7, and 7 two
form in Span{dx}. This implies, since b does not vanish and Q; is not in
Span{dx} that, in the above relation, I'y is a linear combination of €2, €2
and a€; + le, which in turn implies, for a certain function k,

dQy = kQ A (af +68,) modulo Q.

This implies that € is in the derived system of the Pfaffian system {Qy,Q5},
and therefore, from (4.7)-(4.8), that €4 is collinear to wy. The above relation
with €y collinear to wy contradicts (4.7) because a$2y + b€2y is not a linear
combination of wy, we and ws.
(ii) Suppose that (7.48) holds. From, lemma 7.6, the identities (7.45)-(7.46)
must hold locally with

Ql = W

Q3 = wy + awy — bwy
and in particular, this would imply that

dw; = 0 modulo {wy,wy — b, we + (o — b)wl — by}

which is impossible, because, from (4.7),
dwl /\wl /\(WQ - bwl)A (WQ + (Oé - b)wl - bwl) = bz(Siz Wo /\@2 /\wl /\@1 /\wl
O
Proor oF LEMMA 7.8. The expression for Q in (7.50) implies

Awy = Q/\zwz - /\34«027

. . . 7.81
Mo = —hwr + Q — dwy — (Az+ Ag)wy — A3l ( )

Using the above relations in (4.8), one obtains that Afdwsy is equal to
A3 (5%71A3 + 291) @y A g modulo {wg, 2, Q} This proves the lemma. a
PrROOF OF LEMMA 7.9. By simple substitution, it is clear that the forms
of f and ¢ given in (4.16) satisfy equations (7.52)-(7.53). Let us prove the
converse. Since 8879’4 # 0, one may define h = 1/%’4. Equation (7.52) then

yields

oh\? 9%h

—— —2h— = 0,

82’4 82’4
whose non-vanishing solutions are exactly the squares, and opposite of squa-
res of nonzero polynomials in z4 of degree at most 1, with coefficients func-
tion of zy, zo and zs; if the degree is 0, ¢ is affine in zg4, if it is 1, g is ho-

mographic in zy, still with coefficients function of zy, z3 and z3, this yields
the form for ¢ given in (4.16). Substituting g for its expression given by

(4.16) in equation (7.53) yields (co + 0124)8 5 + 3¢ 18 l = 0, which states
that (co 4+ c124)f is a polynomial of degree at most 2 in z4 and therefore
implies that f is of the form given in (4.16). o
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PRrROOF OF LEMMA 7.10. 1<2: This is an obvious consequence of lemma 7.6
because (7.56)-(7.57) are identical to (7.45)-(7.46).
3=2: Let b be defined by (7.58):

2y
b = —
AN
and « be the one from relation (4.11). Define € and Q3 as in (7.55), with

A = 0. Relation (4.11) implies dQ23 = 0 modulo Qs, so it implies a fortiori
(7.57). Now (7.56) is equivalent here to

dwy =0 modulo {wy, wy —bwy, Wy + (a0 — b)w2 —bidy }
but a simple computation from (4.8) show that this is true when b = ;J
2,1
4=-3: From proposition 4.8, if point 4 is true, then some other coordinates
may be found where the system has the simpler form (4.19). We shall

compute in these coordinates with the following choice

wi = dG — (3dG
wy = dG — (g0 +Ga)dG — (P +wig) wr . (7.82)

On one hand, one has
dwy = 0 modulo {wq,d¢,dw} (7.83)

by computing the exterior derivative of wy given by (7.82) and replacing d¢y
and dwy with zero and d(s with (p; + w1¢1) d¢s.
On the other hand, from (4.5), {w1,wq,ws} is a basis of {d(1,d(z,d¢s}

and hence one has
d¢i = Mwi + Awws + Aswn

for some functions Ay, Ay and As. Applying lemma 7.8 for 2 = d¢;, and
noticing that Az cannot vanish because w; A wy A d(; does not vanish from
(7.82) yields, from (7.83):

27A1 + (S%JAg = 0.

The above two relation imply, since by assumption 5%71 does not vanish, that
d(y is a linear combination of wy and wy — 52%—”1@, and this clearly implies

point 3.
2=4: This is the long and difficult part of the proof. It is all done using the
symbolic computation system Maple, version 5, release 3, with the package
“liesymm” to manipulate differential forms, in the coordinates of the normal
form (4.13).

We are now working in coordinates, with system (4.13) for some f and g.
We make the following choice for wy and ws:

W = dZQ — Z3 le

af ag (7.84)

wy = dzgz — gdz — (az4+v1%)w1.

The idea of the proof is quite straightforward: We suppose that there
exists functions «, A and b satisfying (7.56)-(7.57), we write these equations
explicitly in terms of o, A and b, and we eliminate «, A and b to obtain the
conditions on f and ¢ are as described in point 4.
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STEP 1. With the choice (7.84) for w; and wq, we have the following decom-

position of dw; and dwy, more precise than (4.7) and (4.8) in proposition
4.1:

dwl = W A (51 142 + 51 1WQ) + (S% 9 W2 A wz s (785)
dWQ = W A (52 1492 + 52 lwl + 52 1w2 ’yWQ)
+ wa A (52724,01 + 5272w2) YWy AWy (7.86)

for some functions 5% and v that may be computed explicitly using f, g and
some of their partial derivatives.

Indeed, (4.7) reads
dw; = wi ATy + 5%724«02 Awy,

for some form I'y, but dwy = dz; A dzz and {wy,wy,d9} is a basis of
{dz,dz3,dz3} —because it is the characteristic system of {w;} from the
above equation— so that I'y must be a linear combination of wy, we and w,.
This implies (7.85).

Also, (4.8) reads

dWQ = W2 A F2 + W A (52 142 + 52 lwl + 52 IWQ — ’yWQ) + 'ywl A @2 s
for a certain form I's, but
13} J 13} J
dWQ = le/\dg— (—f—|—?}1 g)dzl/\d23—d(—f—|— (%1} g)Awl
0z4 0z4 0z4 0z4

and hence dwy is, modulo {wy }, alinear combination of dzy, dzy, dz5 and dzy,
i.e. of wy, we, w1 and wy; this implies that I'y must be a linear combination
of wy, wg, w1 and Wy, and therefore (7.86).

STEP 2. If @, A and b satisfy (7.56)-(7.57), then

A may depend on 2y, 29, 23, 24, Vo — v1 f(21, 22, 23, 24) only,

a and b may depend on 21, 22, 23, 24, V1, Vg, U1, Uz only. (7.87)
Relations (7.68) and (7.70) imply:
Q= wy+ Ay (7.88)
Q = wi+ay = (1+a)w + aw (7.89)
Qs = w; + o — by
= a(wy+dwy) — b (wz + A + (A - %)wl) (7.90)

Qs = (;\(04 —b) — b/\) w1 + & (wg + Awr)
+ (1 =260 &y + (= D) (g + A1) — b (g + Ady) (7.91)
Taking the exterior derivative of (7.90) and (7.88) yields
dQ; = dw; + adQ; — bdQ; + daAQ; — dbAQ; (7.92

)

with dQl = dWQ + /\dwl + d/\/\wl (7 93)
dQy = ddy + Adwy 4+ Adoy + dAAw; + dAAD; .(7.94)

0
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Relation (7.92) implies:
dQs = (14 aX —bA)dw; + adw; + adX A w,
—b (dy + Adéry + dA Awy +dAA &) (7.95)
93 — W — Oé((.dg + /\wl)
b
Taking the time-derivative of both sides in (7.85) and (7.86), we have

+da A (w4 Awqp) + db A

dwl = w1 A (5?71(&2 + (5?71 + 5%71)@2 + 5%715&2)
—|— W2 A (— 5?71@1 ‘|‘ 5%72@2 ‘|‘ 5%72&)2)
+ 07 01 Ay
din = wi A (<§g{1w2 + 88 @n (09, + 82 )i + 61 oy (7.96)

+ (5%,1 —§)é2 — 7W£3))

+ w2 A ((552 - 58,1)‘:’1 + 5%,2‘:’2 + 5%,2‘:’1 + 5%,2‘:’2)
o (384 8Ly~ )on — 2
Equation (7.57) implies in particular that dQ25 = 0 modulo {wq, 9,3},

i.e. —see (7.90)— modulo {wy,ws,wqs + A1 }. Equations (7.85), (7.86) and
(7.96) imply

dwl = 0 dwl = 0 . .
doy = 0 Aoy = Ay Ady } modulo {wy,ws,wy + Ay} .
Then, from (7.92), (7.93), (7.94),
ng = —-b (/\'ywl /\(I)l —I—d/\Awl) modulo {W17WQ7@2—|— A@1}7

which in turn implies
dXA + My = 0 modulo {wy,we,wy,ws}.

Since {dz1,dzz, dz3,dz4} is another basis for {wq,wq, @y, w2} and, from (7.84)
and (4.13),

wi = dzy + vidzs — (f+vig) dzg,

&r = d(vz—fv) + vdf + 0idzs + (f + vig + ?319) dzg,

(7.97)

that dA is a linear combination of d (vy — fv1), dz1, dz2, dzs and dzy; this
proves the statement on A in (7.87).

Replacing wy and & with zero and wy with (% — Mw; + Fwy in the
expression of ©; A Q3 obtained from (7.88) and (7.91) obviously yields only
some terms in wy A ws, wi AWy and wy A Wy, hence

Ql A Qg = 0 modulo {937@176&174,01 A Wa, Wy A dz,(.dz A WQ} .
Therefore, Equation (7.57) implies in particular that dQ3 = 0 modulo
{937w1,é&1,w1 A Wa, Wy A (JQ,(.UQ A (JQ}, i.e. modulo {bWQ - Oé((.dg + /\wl) +

(bA - 1)&)17 (;Jh C&l,wl A Wa, Wy /\w‘27 Wo /\WQ} From (785)7 (786) and (796)7
we have:

dwl = 0 dwl = 0
dWQ = 0 dWQ
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modulo {bWQ - Oé((.dg + /\wl) + (bA - 1)&)17@17&)174,01 A Wa, Wy A (JQ,(.UQ A WQ}
Hence, from (7.92), (7.93), (7.94)

Qs = wi A (b7w2(3) — ad) + bddA + %)
o
w4 Awi) A (Zdb ~ da) .
This implies in particular that

. db
bywl — ad\ + bddA + 5 = S
a modulo {wy,ws,wy, W, W, W} .
Zdb — da

(7.98)

We have already shown above that dA is a linear combination of wy, wsy, wy,
woy, W1; hence dAX is a linear combination of wl,wg,wl,wg,é&l,é&g,wl(?’). This
and the above equations imply that db and da are linear combinations of

SN )

w1, We, Wi, W, &1, g, wy’, wy . This yields the second statement in (7.87)
for {wl,wg,wl,wg,é&l,é&g,wl(?’),wz(?’)} is another basis for {dzy,dzy,dz3,dzy,
dvl, dvg7 df]h dvg}

Note that the second relation in (7.98) actually implies that adb — bda
is a linear combination of wy,wq,wy,wy,dy,&y, i.e. that a/b depends on

21, 72, 23, 24, U1, U2 only (and not on ¥, ¥3).

STEP 3. If a, A and b satisfy (7.56)-(7.57) with b non vanishing, then A must
be identically zero.

The core of this point is a rather heavy computation conducted in Maple.
Let us explain some notations.

First of all, we need to work with a finite number of variable only. The
only variables that will ever be needed during the computations are

(217227237247U17U27U17U27U17U2)

because, the only operation that makes some new variables appear is taking
the “time-derivative” of some objects. This occurs only when computing
Qy, Q3 and Q3 according to (7.88), (7.90) and (7.91), but from (7.84), it is
clear that the forms €24, Q3 and Qs may be expressed with the help of the
above variables. This may be checked in the course of the computation: we
set the time-derivative of #; and ¥y to “FNRROR,” and “FRROR” and we
may check that we never have to apply the time-differentiation (“DOT”) to
¥y and ¥y by checking that the variables “F RROR;” and “ERRO R;” never
appear in the expressions we compute.

To take advantage of the fact that A depends only on z1, z3, z3, z4 and
vy — fuv1, we make a change of coordinates, defining ws by

Wy = Uy — f(2’172’2.2’372’4) vg . (799)
We work then in the coordinates

(217227237247U17w271}171}271‘}17ﬁ2) (7100)
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rather than the above, and the system is given by the derivative along its
dynamics, i.e. along:

%21 = U

24 + 230y

f(2’172’272’372’4) + 9(21722723724) U1
wy + f(z1, 22, 23, 24) U1

W
[UCI V)
1

&

mvl = "
Swa = 0y — f(z1, 22, 23, 24) 0
—u1 (%m + (24 201 + 2L (F+vig) + 2L (wa + v1f))

d - .

a1 U1

Loy = by

4%, = FRROR,

48, = ERROR,.

(7.101)

Since b does not vanish, we may define new functions 8 and p from b and
« as follows:

b= ! (7.102)

ﬁ(zh 294 23y 24, V1, W2, 7}17 U?)
o = ,0(2'172272372477]1710277?177?2) ) (7103)
ﬁ(zh 294 234y 24, U1, W2, V1, U?)
Note that by assumption b —and therefore §— does not vanish.

If A\ is not locally identically zero, then there are points arbitrarily close
to the point under consideration where it does not vanish, and hence there
are points where neither A nor & —and hence §— vanish and the relations
(7.56)-(7.57) hold.

In the following Maple session, we suppose we are at such a point, we
write the equations for (7.56)-(7.57) in terms of the functions A, § and p,
supposing that we may divide by A and by p and get a contradiction (namely
that A must be zero).

REMARK 7.11. The symbol

&/\

in the Maple session stands for the exterior product (or wedge product).

This reproduces a session run with Maple V Release 3

> with(liesymm) :
> setup(zl,z2,2z3,z4,vl,w2,vidot,v2dot,vidotdot,v2dotdot):

> FF:=[(z1,22,23,24,v1,w2,vldot,v2dot,vidotdot,v2dotdot)
> -> vi,
(z1,z2,23,24,v1,w2,vidot,v2dot,vidotdot,v2dotdot)
-> z4 + z3%vl ,
(z1,z2,23,24,v1,w2,vidot,v2dot,vidotdot,v2dotdot)
-> £(z1,22,23,2z4) + vixg(z1,22,23,z4) ,
(z1,z2,23,24,v1,w2,vlidot,v2dot,vidotdot,v2dotdot)
-> w2 + vl * £(=z1,z22,23,z4) ,
(z1,z2,23,24,v1,w2,vidot,v2dot,vidotdot,v2dotdot)
-> vidot ,
(z1,z2,23,24,v1,w2,vidot,v2dot,vidotdot,v2dotdot)
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> -> v2dot

> - vidot * £(z1,z2,z3,z4)

> - vl * diff(£f(z1,z22,23,24),z1)* vi

> - vl * diff(f(z1,22,23,24),z2)* ( z4 + z3*v1l )
> - vl * diff(£f(z1,22,23,24),23)*

> ( £(z1,22,23,24) + vixg(z1,22,23,z4) )
> - vl * diff(£f(z1,22,23,24),z4)*

> (w2 + vl * £(z1,22,23,z4) ) ,

> (z1,z2,23,24,v1,w2,vidot,v2dot,vidotdot,v2dotdot)
> -> vidotdot ,

> (z1,z2,23,24,v1,w2,vidot,v2dot,vidotdot,v2dotdot)
> -> v2dotdot ,

> (z1,z2,23,24,v1,w2,vidot,v2dot,vidotdot,v2dotdot)
> -> ERROR1 ,

> (z1,z2,23,24,v1,w2,vidot,v2dot,vidotdot,v2dotdot)
> -> ERROR2 ]

> DOT := proc(forme) value(Lie(forme,FF)) end :

Here, we have loaded the package “liesymm” that we will use to manipu-
late differential forms, declared that the coordinates are (z1, 22, 23, 24, V1, W3,
U1, Ug, U1, U2), defined the system, and finally the procedure “DOT”, which is
the time-derivative along the dynamics of the system, i.e. the Lie derivative
along the vector field F' from equation (2.5), this vector field is truncated
here, but as explained above it will not be applied to objects that involve
other variables than xq, x9, x3, ©4, w1, w2, % and @y. This Lie derivative
on functions as well as on forms of any degree.

Let us just check that DOT is really what we think, by applying it to the
base variable functions:

> DOT(z1) ;DOT(z2);D0OT(z3);DOT(z4) ;DOT(v1);
> normal (DOT(w2+vi*f(z1,22,23,24)));
> DOT(vidot) ;DOT(v2dot) ;DOT(vidotdot) ;DOT(v2dotdot);
vl
z4 4+ 23 vl
f(21,22,23,24 )+ vlg(zl,22,23,24)
w2 + vl f(z1,22,23,24)
vidot
v2dot
vidotdot
v2dotdot
ERROR1
ERROR?2

Note that the “ERROR” signs will never appear in the calculations since
Esaim: Cocv, JUNE 1997, VoL. 2, pp. 151-230



210 JEAN-BAPTISTE POMET

we will compute the time-derivative only of functions which do not depend

on ¥y and iy, see the explanations before (7.101).
We now define the forms w; and wq, and compute wq, wy and @ (denoted

“omegald”, “omega2d” and “omega2dd”):

> omegal := d(z2) - z3 * d(z1) ;
wli=d(22)—23d(=1)

> omega2 := wcollect(value(
> d(z3) - g(z1,z2,23,z4) *d(z1)
> - (diff(£(z1,z2,23,z4),24) + vl * diff(g(z1,z2,23,24),24))
> * omegal )) ;
w2 = (21,22,23,24)
+

( 21722723724)) — vl (%g(z],z?,z&d))) d(z2)

S
E(a f(z21,22, 28 z4)) + vl (884 (21, 22,23 24))) )d(zj)
+d(z

> omegald := DOT(omegal): omega2d := DOT(omega2): omega2dd :=
> DOT(omega2d) :

From proposition 2.11, the rank condition (4.5) implies that the form of
degree 3 wy A wy A Wy does not vanish. We compute it, see that it is of the
form Didz A dzz A dzs where the quantity D; is the one from (4.15). We
shall use a lot the fact that this D; does not vanish.

> D1 := getcoeff(factor( omegal& omega2& omega2d ));

9 0
D1 = (%f( zz,z,@,zg,z4)) + 23 (@f( z17227z3724))

+g(21,22,23,2) ( 0 f( 21, z,?,zé’,z#))
023
(884 (21,22,23,2]) ) w2
- (823;3;(21 22,28, 24) )f (21,22,23,24)

+ (%f(z],z?,z&d f(21,22,23,24)

(882 (21,22,23 24)) 24

This implements (7.102)-(7.103) and computes €y, Q3 and €3 according
o (7.55), Qg being the intermediary form defined in (7.68)-(7.70).
Note that the form Qs that we use is not exactly the one in (7.55), it is
divided by b; this does not affect the relations (7.56)(7.57).
> b := 1/ beta(zl,z2,23,z4,v1,w2,vidot,v2dot);
> alpha := b * rho(z1,z2,z3,z4,v1,w2,vidot,v2dot);
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1
b:=
B(z1,22,23, 24, vl, w2, vidot, v2dot )
~op(zl,22,23,24,vl, w2, vidot,v2dot )
© B(z1,22,23, 24, v, w2, vidot, v2dot )
Omegal := map(normal, wcollect(
lambda(z1,z2,z3,24,w2) * omegal + omega2
)
Omega2 := map(normal, wcollect( omegal + alpha * Omegal)):

Omegald := map(normal, wcollect( DOT(Omegal) )):
Omega3 := map(factor,wcollect( (1/b)*0Omega2 - Omegald)):
Omega3d := map(factor , wcollect( DOT(Omega3) )):

We shall first compute d€2; modulo {91793793}. In order to compute
modulo
{0, Q3,Q3}, we simply substitute dzs, dzg and dw, with the linear combi-
nations —respectively called valdz3, valdz4 and valdw2 below— of dzy, dzs,
dvy which is equal to each of them modulo {Qy, Qs, Qg}

VVVVYVVYV

> map(getform, [op(Omegal)]l);
> coeff( Omegal , d(z3));

[d(z1),d(22),d(23)]

1

> valdz3 := map(factor, wcollect(solve( Omegal=0, d(z3) ) )):
> map(getform, [op(valdz3)]);

[d(z1),d(22)]

> map(getform, [op(Omega3)]);
> coeff( Omega3 , d(z4));

[d(z1),d(22),d(23),d(2})]
—A(21,22,23, 24, w2)

valdz4 := map(factor,wcollect(simplify(
subs( d(z3)=valdz3 ,
solve( Omega3=0, d(z4) )

)))):

map(getform, [op(valdz4)]);

[d(z1),d(22)]

VVVVYV

> map(getform, [op(Omega3d)]);
> coeff( Omega3d , d(w2));
[d(21),d(22),d(23),d(24),d(vl),d(w2)]
—A(21,22,23, 24, w2)
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valdw2 :=map(factor, wcollect(simplify(
subs( {d(z3)=valdz3,d(z4)=valdz4} ,

solve( Omega3d=0, d(w2) )

)))):

map(getform, [op(valdw2)]);

[d(z1),d(22),d(vl)]

VVVVYV

> dOmegal := map(factor , wcollect(value( d(Omegal) )) ):
> map(getform, [op(dOmegal)l);

[d(z1)&"d(24),d(21) & d(w2),d(22) & d(w2),d(21)&"d(v1),
d(22)&"Nd(24),d(22) & d(v1),d(=1)&"d(22),
d(z1)&"Nd(23),d(22)&"d(23)]

dOmegalmod := map( factor , wcollect ( simplify (
subs( {d(z3)=valdz3,d(z4)=valdz4,d(w2)=valdw2} ,

dOmegal ) ))):

map(getform, [op(dOmegaimod)]);

[d(21) & d(vl),d(22)&"d(v1),d(z1)&"d(22)]
In other terms, d2; = C4dz Adzy 4+ Cadzg A dvy + C3dzy A dvy modulo
{Q4,Qs, Qg} Hence the functions C'q, C5 and C'5 must be identically zero.
Let us first examine the coefficient of dzy Advy. It turns out that Co, = 0
allows one to express % as a function of f, g, A. It is the expression
"LALA” below.

> collect( coeff(dOmegalmod , &~ (d(z2),d(v1))) ,
> diff(lambda(z1,z2,23,24,w2),uw2) );

VVVYV

_( (384 (21,22, 3 z4)) f(21,22,23, 2 )

d
— 28 (@f( 21,22, 23, 24 ))

- (%f(z]w?,z&d)) + (884 (21,22,23 24))

d
+ (@g(21722723,z4 )) f(z1,22,23,24 )

(882 (21,2223 24)) 24
d
—g(=21,22,23,24) (@f(21722723724)))

(8?0 A(z],z,?,z3,z4,w2)) /(A(z],z,?,z3,z4,w2))

(884 (21,22,23 z4))

> LALA := solve( numer(coeff(dOmegalmod ,
S &~ (d(z2),d(v1)))) = 0 ,
> diff(lambda(z1,z2,z3,24,w2),w2) );
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LALA .= — (884 (21,22,23 24)) (21722,z3,z4,w2)/(
d d
(gf( 21,22, 28, 24 )) + 23 (@f( 21,22, 23, 24 ))
+g(21,22,23,24) (%f(z],z?,z?,d))
- (%g(z],z?,z&d)) w2
- (%g(z],z?,z&d)) f(z1,22,23,24 )
+ (%f( 21,22, 23, 24 )) f(z1,22,23,24 )

(882 (21,22,23 z4)) z4)

The general solution of the linear PDE % = LALA is LALALAsymb
below, where the function “cc” has to be equal to “coco” also given below,
and Ag is a free function of four variables.

> LALALAsymb := lambdaO(z1,z2,z3,z4) * (w2 + cc(z1,z2,z3,z4) );
LALALAsymb := A0( 21, 22,23, 2{) (w2 +cc(21,22,23,24))

> coco := factor( ( lambda(zl,z2,z3,z4,w2) / LALA ) - w2 );

coco 1= ((882 (21,2223 24)) 24 — 23 (882 f( 21,22, 23 24))
(824 f(z1,22,23 24)) (z],z,?,z3724)—(881 f( 21,22, 23 24))

—g(=21,22,23,24) (%f( 21, 22,23, 2} ))
z

+(883 (21,22, 28 z4)) (z],z,?,z3,z4)) /(

884 (21,22, 23 24))

In the sequel, we shall substitute A with the expression LALALAsymb
rather than with the expression

> normal( lambda0(z1,z2,z3,z4) * (w2 + coco) );
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AO(ZJ,ZQ,ZS,Z4)(— (884 f( 21,22, 23 24)) f(z1,22,23,24 )
3 0 f( 21,22, 23 0 f( 21,22, 23
-z @(27272724) - 87(2,2,2,2:4)
+ (%g(z],z?,z&d)) w2

d
+ (@ g( 21,22, 23, 24 )) f(21,22,23,24)

(882 (21,2223 24)) 24

—g(21,22,23,24) (%f(217227237z4))) /(

884 (21,2223 24))

where cc(z1,22,23,z4) is replaced by its value, because it makes the expres-
sions shorter (without this trick, 100MegaBytes were not enough to run the
Maple session).

Actually, we will rather substitute % with its expression below, as a
function of other partial derivatives and of the function cc than doing the
contrary:

> valdfdzl := factor( solve( coco = cc(z1,z2,z23,z4) ,
> diff( £(z1,22,23,24) , z1 ) ));

valdfdz1 = (% g(z],z,?,z?,d)) 2 — 28 (%f( 21722723724))
(884 f( 21,22, 23 24)) f(21,22,23,24)
—g(21,22,23,24) (%f(z],z?,z&d))

d
+ (@ (21722723724)) f(21,22,23,24)

—cc(21,22,23,24 ) (% (21,22,23, 24 ))

The routine “subslambda” replaces A with its expression LALALAsymb in
an expression.

The routine “subsdfdz1” replaces % with its expression subsdfdzl in an
expression, it is slightly more complicated to take care of substitutions in
higher order partial derivatives of f

> subslambda := proc ( expr )

> simplify(subs(lambda(z1,z2,z3,2z4,w2)=LALALAsymb,expr))
> end :

> vald2fdz2dzl := diff( valdfdzl , z2 ):

> vald2fdz3dzl := diff( valdfdzl , z3 ):

> vald2fdz4dzl := diff( valdfdzl , z4 ):

> vald2fdzidzl := factor(simplify(subs(

> {diff(£(z1,22,23,24),z1)=valdfdz1,
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diff(diff(f(z1,z2,23,24),22),z1)=vald2fd=z2dz1,
diff(diff(f(z1,z2,23,24),23),z1)=vald2fd=z3dz1,
diff(diff(f(z1,z2,23,24),z4),z1)=vald2fdz4dz1 } ,
diff( valdfdzl , z1 ) ))):

subsdfdz := proc(expr) simplify(subs(
{diff(£(z1,22,23,z4),z1)=valdfdzl,
diff(diff(f(z1,z2,23,24),z1),z1)=vald2fdz1dz1,
diff(diff(f(z1,z2,23,24),22),z1)=vald2fd=z2dz1,
diff(diff(f(z1,z22,23,24),23),z1)=vald2fd=z3dz1,
diff(diff(f(z1,z2,23,24),z4),z1)=vald2fdz4dz1 },

> expr )) end:
Let us see the coefficient of dz; Adzy now. It turns out that it is affine with
respect to the function g with the coefficient below in front of 3. Hence,

C1 = 0 may be solved explicitly for 3, the expression for 3 is called “valbeta”.

> simplify(subs( diff(lambda(zl,z2,z3,z4,w2),w2)=LALA ,
coeff(
collect( coeff(dOmegaimod , &~ (d(z1),d(z2)) ) ,
beta(z1,z2,23,z4,v1,w2,vidot,v2dot) )
s beta(z1,z2,23,z4,v1l,w2,vidot,v2dot) ) ));

VVVVVYV VVVYV

>
>
>
>

%g(z],z?,z?,d)
A z1, 22,23, 24, w2)

> valbeta := factor(solve(coeff (dOmegalmod,&”(d(z1),d(z2)))=0,
> beta(zl1,z2,23,z4,v1l,w2,vidot,v2dot))):

Let us replace A by its value, and % by the expression subsdfdzl in
valbeta and call the new expression valbetaS:

> valbetaS := map(factor,

> collect( subsdfdz(subslambda( valbeta )),vl)):

> degree(valbetaS,vil);

3
The expression valbetaS is polynomial of degree 3 with respect to vy.
From (7.56), we got an expression for % (LALA, from which we derived

an expression for A summed up in the substitution routines “subslambda”
and “subsdfdz1”) and an expression for § (valbetaS). Let us check that it is
all we can get, i.e. these substitution make equation (7.56) trivially true:

> subsdfdz( subslambda( simplify (subs(
> beta(z1,z2,23,z4,v1,w2,vidot,v2dot)=valbetas$,
> dOmegaimod )) ) );

0

We now turn to (7.57), i.e. to d2s.

> dOmega3 := factor ( value(d(Omega3)) )
The routine “modOm3” below computes the expression of a form modulo
Omegas by substituting dzy with “valdz4”, the linear combination of dzq,
dz9 and dzz which is equivalent to dzy modulo 3:

> map( getform, [op(wcollect(Omega3))]) ; coeff( Omega3, d(z4));
[d(21),d(22),d(23),d(=4)]

—A(21,22,23, 24, w2)
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valdz4 := map(factor,wcollect( solve( Omega3=0, d(z4) ) )):
map(getform, [op(valdz4)]);
modOm3 := proc(forme)

simplify(subs( d(z4)=valdz4 , forme )) end :

[d(z1),d(22),d(23)]

VVVYV

Let us now compute d€23 modulo €25. In the expression “dOmegadmod”
below, not only have we performed the above substitution, but we have also
removed all the terms containing do; or dvg, which will be useless...

> dOmega3mod := map(factor, wcollect( simplify( subs(

> diff(diff(lambda(z1,z2,23,z4,w2),w2),w2)=0,
> modOm3( simplify(subs([d(vidot)=0,d(v2dot)=0],
> dOmega3 )) )) ) )):

Let us check that the forms that appear in dOmega3 and dOmega3mod
are these we expect:

> map( getform, [op(wcollect(dOmega3))]) ;
> map(getform,[op(dOmegaSmod)]) ;

[d( 1) & (24) d(21) &M d(w2),d(22) &M d(w2),d( 21 ) &"d( vl ),

d(22)&"d(#4), (z,?)&/\ (vidot),d(22) &" d(v2dot ),
d(z2)&MNd(v1),d(24) & (w,?) d(z1)&"d(22),
d(22)&"d(23),d(21) & d(23),d(23) & d( 24),
d(23)& (v]),d(zé’)&/\ (w2),d(23)&"d(vidot),
d(z3) & d(v2dot),d( 21)&"d(vidot),d(z1)&" d(v2dot )]

[d(z1) &N d(w2),d(22) & d(w2),d(z1) & d(vl),d(22) & d(vl),
d(z1)&Nd(22),d(22) & d(23),d(21) & d(23),
d(z3)&"Nd(vl),d(23) & d(w2)]

We now compute € A3 modulo Q3, it is the expression called “Omega33-
dmod”.

> map( getform, [op(Omega3d)]l);

[d(z1),d(22),d(23),d(24),d(vl),d(w2)]

Omega3dmod := map(factor,wcollect(simplify(
subs ( diff(diff(lambda(z1,z2,23,z4,w2),w2),w2)=0,
modOm3( Omega3d ) )))):

map( getform, [op(Omega3dmod)]) ;
[d(z1),d(22),d(23),d(vl),d(w2)]

> Omega33dmod := map( factor, wcollect(Omegal & Omega3dmod)):
The coefficient of dzs is rather simple in “dOmega3mod” and “Omega33-
dmod”:

> ccl
> ¢cc2

- coeff( Omega33dmod , & (d(z3),d(w2)) ) ;
coeff( dOmega3mod , &~ (d(z3),d(w2)) ) ;

ccl == N z21, 22,23, 24, w2)
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cc? = (%1 vl (%f( 21722723724 ))

+ %1 p( 21,22, 23, 24, vl , w2, vidot, v2dot)

- %1 (%f( 21722723724)) — %1 vl (% g(z],z,?,z?,d))
2 (0 ) _
+ %1 ol (824 g(z1,22,23,2])

d
(W (21,22,23,24,v1, w2, vidot, v,?dot)) A z1, 22,23, 24, w2)
w

)/(A(z],z27z3,z47w2))

9,
%1 := W/\(Z],ZQ,Z3’,Z4,U)2)

> factor( ccl*coeff(dOmega3mod,&”(d(z3),d(w2)))
> + cc2*coeff (Omega33dmod, &~ (d(z3),d(w2))) ) ;

0

Equation (7.57) implies ccldOmega3unmod — cc20mega33dmod = 0.
It turns out that the coeflicient of dzo A dw, allows one to solve for p:

> valrho := factor( solve( simplify(

> ccl*coeff (dOmega3mod,&” (d(z2),d(w2)))

> + cc2*coeff (Omega33dmod, &~ (d(z2),d(w2)))) = 0,

> rho(z1,22,23,z4,v1,w2,vidot,v2dot))):

> valrhoS := map(factor,collect(

> subsdfdz(subslambda( simplify(

> subs( beta(z1,z2,z3,z4,v1,w2,vidot,v2dot)=valbetaS ,

\

valrho )) ) ), vl1)):
valrhoS is an expression of valrho where 3 and A are substituted for the
values computed above. It is shorter than valrho:

> [nops(expand(numer(valrho))) , nops(expand(numer(valrhoS)))];

[56,23]
Let us now compute the coeflicient of dzg A dws, and call it EE:
> EE := factor(
> ccl*coeff (dOmega3mod, &~ (d(z2),d(=23)))
> + cc2#coeff(Omega33dmod, &~ (d(z2),d(23))) ):

It turns out that it is a rather large expression:

> nops(numer(EE)); denom(EE);
7510

A 21, 22,23, 24, w2)?

This expression is large enough that if we simply substitute 5 and rho
with valrhoS and valbetaS, it takes more that 100MBytes to compute the
result.

To round this problem, we shall take advantage of the fact that valbetaS,
valrhoS and EE are polynomial with respect to vy, and use the expressions
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“rho77” and “beta77” which are polynomials of the right degree in the inde-
terminate vy, with coefficients some generic functions of (21, 22, 23, z4, w2)...
Of course, when these coeflicients are substituted for the right functions,
“tho77” and “beta77” have the same values as “valrhoS” and “valbetaS”

> degree(valbetaS,vl); degree(valrhoS,vl);

3

2
> BB3 := coeff( valbetaS , vl , 3 );
> BB2 := coeff( valbetaS , vl , 2 ):
> BBl := coeff( valbetaS , vl , 1 ):
> BBO := coeff( valbetaS , vl , 0 ):

8 2
BB3 = — (@ (21,22,23,24 ))

> RR2 := coeff( valrhoS , vi, 2 );
> RR1 := coeff( valrhoS , vi, 1 );
> RRO := coeff( valrhoS , vi, 0 ):

RR2 = — (% g( 21,22, 23,24 ))

RR1:=2)0(z21,22,23,2{)cc(z1,22,23,2{ )+ 2X0( 21, 22,23, 24 ) w2

_ (%f(z]w?,z&d)) + (% (z],z,?,z3,z4))

> rho77 := RR2 * v1"2 + RR1 * vi + RO0(z1,z2,z3,z4,w2)
> beta77 := BB3 * v1~3 + B2(z1,z2,z3,z4,w2) * v1~2
> + Bi1(z1,z2,z3,z4,w2) * vl + B0(z1,z22,23,z4,u2)
Let us check that when performing the correct substitutions, beta77 =
valbetaS and rho77 = valrhoS

> factor(subs( RO(z1,z2,z3,2z4,w2)=RRO,
> valrhoS - rho77) );

> factor(subs( [ B0(z1,z2,z3,z4,w2)=
> BBO,B1(z1,z2,2z3,z4,w2)=BB1,
> B2(z1,z2,z3,24,w2)=BB2 ],
> valbetaS - beta77) );
0
0

Now we substitute in the expression EE :
> EE77 := collect(simplify(subs(

> [beta(z1,z2,23,z4,v1,w2,vidot,v2dot)=beta’?7,
> rho(z1,22,23,z4,v1,w2,vidot,v2dot)=rho77] ,
> EE )),vi):

> degree( EE77 , v1);
5

The leading coeflicient turns out to be zero when substituting A:
> factor( subslambda( coeff( EE77 , vl , 5 ) ));

0
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And the coeflicient of degree 4 is

> factor( subsdfdz(subslambda( simplify(

> subs( [ RO(z1,z2,z23,24,w2)=RRO ,

> B2(z1,z2,z3,z4,w2)=BB2 ] ,

> coeff( EE77 , v1 , 4 ) 1)) ) ) );

% (% (z],z,?,z3,z4)) (w2 +cc(z1,22,23,24))2N0( 21, 22,28, 24 )?
z

It has to be zero, hence ) is identically zero.
STEP 4. If o, A and b satisfy (7.56) with A identically zero, then &3, cannot
vanish and b must be given by

2
b= . (7.104)
83,1
This may easily be proved without the help of the program Maple.
Since A = 0, we have ] = wsy, 23 =w; — bws + awsy, but from lemma

7.6, d€y satisfies (7.45), i.e.
dwy = 0 modulo {wy, Q3, 93}

From lemma 7.8 with = Q3, Ay = 1, Ay = @ and A3 = —b, the above
relation implies that b (()5%71 — 27v) is identically zero on U, but we assume
here that b does not vanish, hence 13(3%71 — 2~ must be identically zero, and
therefore 5%71 does not vanish (because v does not vanish), and b is given by
(7.104).

STEP 5. If a, A and b satisfy (7.56)-(7.57) with A identically zero and b is
given by b = 51—7, there is a unique possible value for «, and f and g must

2,1
be of the form (4.16)-(4.17).
This is done in the following Maple session which is the continuation of the

previous one. a
Session run with Maple V' Release 3, continued
All the previous definitions remain valid, but we assign A to be identically

Zero:

> lambda := proc(z1,z2,z3,z4,w2) 0 end :
First we need to compute b —i.e. J— i.e. implement step 4. To this end,
we compute d€2; A Q1 A Q3 A Q3.

dOmegalext := factor( dOmegal & Omegal &~ Omega3
&~ Omega3d ):

getform(dOmegalext) ;
nops(getcoeff (dOmegalext));

&MNd(21),d(22),d(23),d(z{),d(vl))

>
>
>
>

2
This is a monomial form of degree 5, whose coefficient must therefore be
identically zero. We divide by D; which does not vanish :
> EEE1 := factor( getcoeff(dOmegalext) / (-D1) ):
This expression EEE1 is affine with respect to the function (3, and its
coeflicient does not vanish :

> coeff( EEE1 , beta(zl1,z2,z3,z4,vl,w2,vidot,v2dot) );
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(884 (21,22,23 z4))

One may therefore get § from the equation EEE1=0 . Below, “valbeta”
the value of 8 as the solution of EEE1=0. For convenience, we call Dy the
constant term in EEEL, so that g will be equal to Dy/(2 824)

> D2 := factor(coeff( EEE1 ,

> beta(z1,z2,23,z4,v1,w2,vidot,v2dot),
> 0 )):
> valbeta := solve( EEE1=0,
> beta(zl z2,23,z4,v1,w2,vidot,v2dot) ):

Let us check that 8 = Dy/(2 824)
> normal( valbeta — D2 / (2*diff(g(z1,z2,23,z4),z4)) );
0

Here we shall check that the only possible value for b —i.e. 1/valbeta
with valbeta computed above— is given by = 51 . Let us first compute v and

5%71 and then check the equality. To Compute v and 5271, we use the fact
that, from (4.8),

dWQ/\WQ/\dJQ/\J)Q = 5%714,01/\@1/\(,02/\@2/\4:&2
dWQ/\WQ/\wl = 'ywl/\wl/\wg/\wg
domega2 := wcollect(value(d(omega2))):

omega2dd := wcollect( DOT ( omega2d)):

Form0O := factor(omegal& omegald& omega2& omega2d& omega2dd):
Forml := factor(domega2& omega2& omega2d& omega2dd):

getform(FormO) ;getform(Formi);
delta21l := factor( getcoeff(Forml)/getcoeff(Form0) ):

&MNd(z1),d(22),d(23),d(2{),d(vl))

&MNd(z1),d(22),d(23),d(2{),d(vl))

VV VV VV

Form2 := factor(omegal& omegald& omega2& omega2d):
Form3 := factor(domega2& omega2& omegal):

VvV VYV

getform(Form2) ;getform(Form3);
Gamma := factor( getcoeff(Form3)/getcoeff(Form2) ):

&MNd(21),d(22),d(23),d(24))

&MNd(21),d(22),d(23),d(24))
83 1 is equal to =Dy /Dy and 7 to —%/Dl
> factor( delta211l * D1 / D2);
-1

> factor( Gamma * D1 ) ;

(884 (21,22,23 z4))

Esaim: Cocv, JUNE 1997, VoL. 2, pp. 151-230



ON DYNAMIC FEEDBACK LINEARIZATION OF CONTROL SYSTEMS 221

Hence ;ﬂ =252 Og 2 /D5, which is equal to 1/valbeta.

To compute p, we shall compute dQ23 modulo {4, Q3}, which is a fortiori
zero from (7.57).

In order to compute modulo {2y, Q3}, we simply substitute dzs, dzo with
“valdz3” and “valdz2”, the monomial forms in dz; which is equal to each of

them modulo {Qy,Q3}.

> coeff (Omegal,d(z3));

> vvaldz3 := solve( Omegal=0 , d(z3) );
vvaldz3 == d( 21 )g( 21,22,23,24 ) —d(=21) 23 (884 f( 21,22, 23, 24 ))
z
—d(=z1) 23 vl i(l 2,23, 24)
z1) z3 v 8Z4gz,z,z,z

+d(22) (%f(z],z?,z&d)) +d(22) vl (%g(z],z?,z&d))

Omega3mod := wcollect( simplify(
subs( { d(z3)=vvaldz3 ,
beta(z1,z2,23,z4,v1,w2,vidot,v2dot)=valbeta}
, Omega3 )
* diff(g(z1,z2,23,2z4),24) / D1 ));

VVVVYV

2

Omega3mod = (% 23 vl (8242
2

(884 (+1,22, 23 24)) _Zg (8842f(z1 22,23 24))) d(=1)
+(_101 (88;23;(21722,23724))
(88; f( 21,22, 23 z4))) d(22)

)

> valdz2 := factor( solve( Omega3mod=0 , d(z2) ));

0? d
valdz2 := (23’ vl (8242 g( 21,22, 23, 24 )) -2 (@ (21,22,23, 24 ))

123 (£;f(z1,z2,z3,z4))) d(zf)/(

0? 92
(82—42f( 21, 22,23, 24 )) + vl (82—423;(;:1, 22,23, 24 )))

> valdz3 := factor( subs( d(z2)=valdz2 , vvaldz3 ));
Esaim: Cocv, JUNE 1997, VoL. 2, pp. 151-230




222 JEAN-BAPTISTE POMET

2

valdz3 == d( z1) (v] (88—42 g( 21,22, 23, 24 )) g(z1,22,23,24)
z

92
+ (82—42f( 21,22, 23, 24 )) g(z1,22,23,24)

—2 (%f(zl,z,?,z&d)) %1—201%12) /(

0? 0?
(8 e f( 21,22, 23 z4))—|—v] (82—42g(217z2,z3,z4)))

9,
%1 := @g(zl,z,?,zS,M)

dOmega3mod13 := map(factor,wcollect( simplify(

subs( {d(z2)=valdz2,d(z3)=valdz3,
beta(z1,z2,23,z4,v1,w2,vidot,v2dot)=valbeta} ,

dOmega3 )))):

valrho := solve( coeff(dOmega3mod13,d(z1)&~d(v1))=0 ,
rho(z1,22,23,z4,vl,w2,vidot,v2dot) );

VV VVVYV

L 9 2
valrho 1= 5 ( (824 f( 21,22, 23 24)) %1° vl

0? 0

+ (82—423;(21722’23724)) (@g(217227237z4)) f(21,22,25,24)
0? 0

_ (32—42&);(21722723724)) g(z1,22,23,24) (@f(217227237z4))

+ 201 %1 (883 (21,22,23 24))

2
+ %1 (82—42g(z1,z2,z3,z4)) w2
( & 1,22, 23 :> ( 0 1,22,23, ) 1,22, 23

- 82—42g(27Z7Z7Z4) 84 (Z ey & 24) (27272724)
0? 0

— (82—42g(21722723,z4)) (821 f( 21,22, 23 24))

+ 2 %12 (%f( 21,22, 23,2 ))

0? 0
— 28 (82—42g(217227z37z4 )) (@f(zj7z27z3,z4 ))

2
+ (82—42 g( 21,22, 23, 24 )) (% g( 21,22, 23, 24 )) zf — 2012%13)
/%17
%1 := %g(z],z?,z&d)

Let us substitute the value of p in dQ23 modulo {4, Q3}.

> factor(simplify(subs(
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> rho(z1,z2,23,z4,vl,w2,vidot,v2dot) = valrho ,
> (2/D1) * dOmega3modi3 )));

—(d(21) &M d( 4))(2% ( Z f( 21,22, 23 z4))

+2%1 vl (8243 g(21,22,23, 24 ))

0? 0?
—3 (8242g(z1722723,z4)) (8 e f( 21,22, 23 24))

82 2
— 3wl (82—423;(21722723724)) )/(%1
0? 92
((8 e f( 21,22, 23 z4))—|—v] (82—42g(21722,z3,z4))))

9,
%1 := @g(zl,z,?,zS,M)

> EE := collect( numer(getcoeff( " )) ,vl);

3
FE = (—2 %1 (82—43 g( 21,22, 23, 24 ))

92 ?
+3 (82—42g(z1722723,z4)) ) vl
93
—2%1 (82—43f(21722723724))

9> 0
+3 (82—428;(21722723724)) (82—42f(21722723724 ))

9,
%1 =9 (21,22,23,24)

Both the coefficient of vy and the constant coefficient must be zero, this
gives exactly the PDEs (7.52)-(7.53):

> PDE1 := -coeff(EE,vl); PDE2 := —coeff(EE,v1,0);

3
PDE1 :=2 (% g( 21,22, 23, 24 )) (8243 g(21,22,23,24 ))

9? :
-3 (82—42g(z1722723,z4))
3

PDE2 :=2 (%g(z],z?,z&d )) (82—43f( 21722723724))

0? 0’
-3 (82—42g(21722723724 )) (8742f(21722723724 ))

Hence from lemma 7.9 f and g must be given by f = valf and g = valyg
with:

> valf := ( a0(z1,z2,z3) + al(zl1,z2,z3) * z4
> + a2(z1,z2,z3) * z4°2 )
> / ( c0(z1,22,23) + c1(z1,22,23) * z4 ) ;
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> valg := ( b0(z1,z2,2z3) + b1(z1,22,23) * z4 )
> / ( c0(z1,22,23) + c1(z1,22,23) * z4 ) ;
al( 21,22, 23 ) +al(z1,22,23) 24 +a2( 21,22, 23) 24>

If .=
valf c0(z1,22,28)+cl(z1,22,23) 24

bO( z1,22,23) + bl(z1,22,23) 24

c0(z1,22,23) +cl(z1,22,23) 24

We now compute d€23 A 23 and 24 A Qg A 3, but for this we first assign p
and [ to be equal to the values computed above:

valg :=

> rho := proc(zl,z2,z3,z4,vl,w2,vidot,v2dot) valrho end :
beta := proc(zl,z2,z3,z4,v1,w2,vidot,v2dot) valbeta end :

\

> dOmega3ext3 := map(factor,wcollect(
> dOmega3&~Omega3 * diff(g(z1,z2,23,z4),24)"2
> / D1 "27)):

> Omega3extlext3dot3 := map(factor,wcollect(
> Omega3&~Omegal & Omega3d )):

> map(getform, [op(Omega3extiext3dot3)]);
(&M (d(21),d(22),d(23)), &N(d( 21 ),d(23),d( vl ),

EMNd(21),d(22),d( 1)), &MN(d(22),d(28),d(vl)),
&M(d(21),d(23),d( 24 )), &M(d(21),d(22),d( 24 )),
&M(d(22),d(23),d(24))]

factor( ( coeff( Omegal3extlext3dot3 ,
&~ (d(z1),d(z3),d(v1)) )
+ 23 * coeff( Omega3extlext3dot3 ,
&~ (d(z2),d(z3),d(v1)) ) ) / D172 );

1

Hencq the terms in dz; A dz3 Advy and dzy Adzs A dvy in the expression of
Q1 A Q3 A Q3 cannot both vanish. But when f and g are given by valf and
valg, dQ23 A Q3 is given by

VVVYV

> factor(simplify(
> subs( {f(z1,z2,23,z4)=valf,g(z1,22,23,z4)=valg}l, dOmega3ext3 )
> ));
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&MNd(21),d(22),d(23)) ((% bl(z],z,?,zé’)) cl(z1,22,23)

—cl(z1,22,23) 23 (% a2(z1, 22, 23))

z

- (% a2(z1, 22, 23)) cl(z1,22,23)

0
+ (Wbl(zl 22 23)) 2(z1,22,23)

—bl(21,22,23) (% a2( 21,22, 23))

+a2(z1,22,23) (% cl( 21,22, 23))

z

—bl(z1,22,23) (% cl(z1, 22, 23’)) —a2(z1,22,23)?
V4

123 (%cl(z] 22 z3)) 2( 21, 22 23))/

(c0( 21, 22,28 ) +cl(21,22,23) 2} )*
Hence this form can be a multiple of Q1 A Q3 A Q3 only if it is identically
zero. This implies that the following expression must be identically zero:

> EDP3 := numer(getcoeff( " ));

EDP3 := (% bl(z],z,?,zé’)) cl(z1,22,23)

—cl(z1,22,23) 23 (%aQ(z],zQ,zS))
22

— (8% a2(z],z2,z3)) cl( 21, 22,23)
+ (ibl(zl 22 23)) 2(z1,22,23)
023
—bl(21,22,23) (iaQ(zl,z,?,z?))
023

+a2(z1,22,23) (% cl( 21,22, 23))
z

(z],z,?,zé’)) —a2(z1,22,23)?

—bl(21,22,23) (%Cl

+ 28 (%61(21 22 23)) 2(21,22,23)
This is exactly the PDE (4.17) as shown below:

> Gamma := ( b1(z1,z2,z3) - 23 * a2(z1,z2,2z3) ) * d(z1)
> + a2(z1,z2,z3) * d(z2) - c1(z1,z2,z3) * d(z3);

= (bl(21,22,23) — z3a2(21,22,23))d( 21 )+ a2(z1,22,23)d(22)
—cl(z1,22,23)d(23)
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> factor(value( d(Gamma) &~ Gamma ));
&MNd(21),d(22),d(23)) ((% bl(z],z,?,zé’)) cl(z1,22,23)
z

—cl(z1,22,23) 23 (%aQ(z],zQ,zS))

d
—(87&2(21 22 23)) 1(21,22,23)

0
+ (87b1(21 22 23)) 2(z1,22,23)

—bl(21,22,23) (% a2( 21,22, 23))

+a2(z1,22,23) (8% cl( 21,22, 23))

—bl(z1,22,23) (% cl( 21,22, 23’)) —a2(z1,22,23)?
22

+ 28 (82 1( 21, 22 z3)) 2( 21, 22 23))

> factor( EDP3 - getcoeff( " ) );
0

&. CONCLUSION

The present paper provides, for the 4-dimensional affine system (1.5),
some new necessary and sufficient conditions for existence of linearizing out-
puts depending on z and w. These conditions are easily computable. They
also allow one to treat 3-dimensional non-affine systems. This is very much
related to dynamic feedback linearization, or flatness, as explained in sec-
tion 2, but this paper is however not a general answer to dynamic feedback
linearizability of 4-dimensional systems with 2 inputs, for the following three
reasons that are subjects for future research to end the study of this small
dimension.

One restriction comes from the regularity assumptions. The example pre-
sented in section 5 shows that they are not necessary. A thorough treatment
of singularities, or at least a clear identification of the real singularities of
dynamic feedback linearization is therefore not achieved.

We also restrict our attention to “endogenous feedback”. See [18, 11] for a
discussion of general dynamic feedback and endogenous dynamic feedback.
Note that the authors of this latter reference have announced a proof of
the fact that general dynamic linearizability would imply linearizability by
endogenous dynamic feedback, at least away from some singularities.

We have further restricted the class of dynamic linearization by requiring
that the linearizing output depend on z and w only. The natural follow-
up to this work is to decide whether systems which are not (z, u)-dynamic
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feedback linearizable are simply not dynamic feedback linearizable (at least
endogenously), or if some are (z, u, @)-dynamic linearizable for example ...
In fact, no example of a system of these dimensions which admits no pair
of linearizing outputs depending on x and u but admits some depending
on more time-derivatives of u has ever been exhibited. Since these dimen-
sions are usually these of academic examples —because it is the smallest
non-trivial ones— and have been studied a lot, it may seem reasonable to
conjecture that the systems that are proved in the present paper to be non
(2, u)-dynamic linearizable are indeed not linearizable by endogenous dy-
namic feedback.

Let us finally make a remark on the method of the proofs. In a sense, the
present results amount to giving conditions for some nonlinear partial differ-
ential equations to have solutions (see section 2.6). Since the PDEs are high
order —see (2.16)-(2.17), and for (2, u)-dynamic linearization, the order is
higher— one might think that some sophisticated tools for checking inte-
grability, like Spencer cohomology, should be involved. It turns out however
that the proofs are all elementary, and never make use of more sophisti-
cated tools than Frobenius theorem. Actually, when using the infinitesimal
Brunovsky form and writing the equations for the coefficients of decomposi-
tion in elementary transformations of the invertible transformation “P(%)”’
instead of writing directly the equations for the linearizing outputs, as in the
proof of theorem 4.2 or the “alternative” proof of case 6 in theorem 3.1, we
use Frobenius theorem to write the equations in a convenient way (like the
equation (7.55)-(7.56)-(7.57) for theorem 4.2), but then the arguments used
to give conditions for existence of solutions to these equations are in a sense
even not first order like Frobenius theorem, but “zeroth order”, i.e. the solu-
tions a, A and b in the case (7.55)-(7.56)-(7.57) may be explicitly computed
(expression involving functions in the equations of the system) from part of
the equations, and the compatibility conditions are obtained by substituting
these expressions in the remaining equations. It is of course tempting to ask
whether in general when using the infinitesimal Brunovsky form to test for
existence of linearizing outputs depending on a pre-defined number of time-
derivatives of the inputs, this feature always appears —the equations for the
coeflicients of the invertible transformation contain enough non-differential
equations to obtain them solving non-differential equations— or if this is
particular to the small dimensions considered here.

APPENDIX: SOME FACTS ON PFAFFIAN SYSTEMS

In this section, we recall some very basic definitions on Pfaffian systems,
and some precise facts we are going to use. For details or proofs, see e.g.
[25] or [6].

A Pfaffian system I of rank r around a point can be defined as a mod-
ule (over smooth functions) of differential 1-forms which is generated by r
1-forms which are point-wisely linearly independent around this point, or
also as an ideal of differential forms (of arbitrary degrees, with the exterior
product as “multiplication”), which has the peculiarity of being generated
by independent 1-forms. It is defined by giving r independent 1-forms. r
1-forms which generate the same module define the same Pfaffian system.
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A congruence like Q1 = Qo modulo {ny,72,...} where the Q;’s are 2-
forms and the n;’s are 1-forms (we only need this) means modulo the ideal
generated by {1, 72,...}, 1.e. it means that there exists some forms a; such
that Q1 — Qo = m Aag +maAag+...; it is equivalent to (21 — Q2) A A
712 AN...=0.

A Pfaffian system also defines an “orthogonal distribution”, spanned by
the vector fields which annihilate these 1-forms.

We will only be interested in the case m = 1 or m = 2, and we therefore
speak of the Pfaffian system [ = {w} or [ = {wy,ws}.

It is completely integrable if it is, locally, generated by 1 (resp 2) exact
1-forms, or equivalently, by Frobenius theorem, if dw = 0 modulo {w} (resp.
dw; = 0 modulo {wy,w;y} for i = 1,2), or also if the orthogonal distribution
being closed under Lie brackets. We call first integral of the Pfaflian system,
or of the orthogonal distribution a function h such that dh # 0 and dh € I.

DERIVED SYSTEM. For a given Pfaffian system [, consider the module made
of the forms of degree 1 which are in I and whose exterior derivative (form
of degree 2) is also in I; at points where it has constant rank, this module
defines a Pfaffian system called the derived system I(1) of I. Tterating this
process, one ends either with the zero Pfaffian system or with an integrable
one. A Pfaffian system is equal to its first derived system if and only if it is
integrable. In the case of a Pfaffian system of rank 1, either it is integrable or
its derived system is zero; in the case of a Pfaffian system of rank 2 {wy,ws},
either it is integrable, or there exists (non both zero) functions Ay and A;
such that

Ardw; + Agdwy = 0 modulo {wy,ws},

and in this case the first derived system is {Ajw; + Asws} or there exists
no such functions (i.e. the restrictions of dw; and dwy to the annihilator of
{w1,ws3} are two linearly independent bilinear forms), and then the derived
system is zero. The orthogonal distribution to the derived system of a given
Pfaffian system is spanned by the orthogonal distribution to this system plus
all the Lie brackets between two vector fields in this distribution:

(I(l))J_ — IJ_ + I:IJ_7IJ_].

CARTAN CHARACTERISTIC SYSTEM. The Cartan characteristic system C (/)
of a given Pfaffian system I may be defined through the vectors that it
annihilates:

C(H*t = {Xelt/[X, [ cTI*). (8.1)

It is always integrable if it has constant rank, and a Pfaffian system is
integrable if and only if it is equal to its Cartan characteristic system.

There is a basis of the Pfaffian system whose elements are linear combi-
nation of some d;, with coefficients functions of the on ;’s only, where the
;’s are all first integrals of C(/), and C([) is the smallest Pfaffian system
having this property.

For a non-integrable system of rank 1 {w}, it is always possible, where the
rank of the characteristic system is constant, to find 2p independent 1-forms
Esaim: Cocv, JUNE 1997, VoL. 2, pp. 151-230



ON DYNAMIC FEEDBACK LINEARIZATION OF CONTROL SYSTEMS 229

n; such that the rank of {w,m,...,m2} is 2p+ 1 and
dw = mAn + 513A04 + ...+ Nep—1 A1z, modulo {w} (8.2)

and the characteristic system is then {w, n1,...,72,} (and this is automati-
cally completely integrable).

For a non-integrable system of rank 2 {wy,ws}, all we need is the following;:
if it is possible to express this Pfaffian system with 4 variables 1, y2, X3, X4
(i.e. there exists a basis of this Pfaffian system made of two 1-forms which
are linear combinations of dyy,dxs2,dxs,dys with coefficients functions of
X1, X2, X3, X4 only), then its characteristic system is {dx1,dxz2,dxs,dxa},
and for any forms 7, and 7y such that {wy,ws, 71, 72} spans the same module
as {dXh dX27 dX37 dX4}7 we have

dwp, = wl/\FkJ + wg/\FkQ + A Ang (8.3)

for some 1-forms I'y ; and some functions Ay.
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