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STABILIZATION OF THE WAVE EQUATION
BY ON-OFF AND POSITIVE-NEGATIVE FEEDBACKS ∗
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Abstract. Motivated by several works on the stabilization of the oscillator by on-off feedbacks, we
study the related problem for the one-dimensional wave equation, damped by an on-off feedback a(t)ut.
We obtain results that are radically different from those known in the case of the oscillator. We consider
periodic functions a: typically a is equal to 1 on (0, T ), equal to 0 on (T, qT ) and is qT -periodic. We
study the boundary case and next the locally distributed case, and we give optimal results of stability.
In both cases, we prove that there are explicit exceptional values of T for which the energy of some
solutions remains constant with time. If T is different from those exceptional values, the energy of all
solutions decays exponentially to zero. This number of exceptional values is countable in the boundary
case and finite in the distributed case. When the feedback is acting on the boundary, we also study
the case of postive-negative feedbacks: a(t) = a0 > 0 on (0, T ), and a(t) = −b0 < 0 on (T, qT ), and we
give the necessary and sufficient condition under which the energy (that is no more nonincreasing with
time) goes to zero or goes to infinity. The proofs of these results are based on congruence properties and
on a theorem of Weyl in the boundary case, and on new observability inequalities for the undamped
wave equation, weakening the usual “optimal time condition” in the locally distributed case. These
new inequalities provide also new exact controllability results.
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1. Introduction

Motivated by several works on ordinary differential equations [1, 11,12,31,34,35], we consider first the wave
equation in one space dimension, damped by a boundary on-off feedback a(t)ut, where a : R+ −→ R+ is a
bounded nonnegative function that can sometimes be equal to zero:

utt − uxx = 0, x ∈ (0, 1), t ≥ 0,
u(0, t) = 0, t ≥ 0,
ux(1, t) = −a(t)ut(1, t), t ≥ 0,
(u(x, 0), ut(x, 0)) = (u0(x), u1(x)), x ∈ (0, 1),

(1.1)

where (u0, u1) is given in V × L2(0, 1) (with V = {v ∈ H1(0, 1) | v(0) = 0}).
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Next we consider the wave equation in one space dimension, damped by a locally distributed on-off feedback
a(t)χω(x)ut, where ω ⊂ (0, 1):

utt − uxx = −a(t)χω(x)ut, x ∈ (0, 1), t ≥ 0,
u(0, t) = u(1, t) = 0, t ≥ 0,
(u(x, 0), ut(x, 0)) = (u0(x), u1(x)), x ∈ (0, 1),

(1.2)

where (u0, u1) is given in H1
0 (0, 1)× L2(0, 1).

In both cases we define the energy of u by

∀t ≥ 0, Eu(t) =
1
2

∫ 1

0

(ux2(x, t) + ut
2(x, t)) dx.

We are interested in the asymptotic behavior of the energy. We consider the typical case where

a(t) = a0 > 0 for t ∈ [0, T ), a(t) = 0 for t ∈ [T, qT ) and a is qT -periodic (1.3)

for some integer q ≥ 2. In both cases, we prove that there is a set of explicit exceptional values for T for which
the energy of some solutions remains constant with time. If T is not one of those exceptional values, the energy
decays exponentially to zero (and the more T is close to such an exceptional value, the slowlier it decays). This
set is countable in the boundary case, given by

1
T
∈
q−1⋃
p=1

q

2p
N,

and only finite in the locally distributed case: if ω = ((1/2)− λ, (1/2) + λ) ⊂ (0, 1), it is given by

1
T
∈
q−1⋃
p=1

q

p
N and (q − 1)T > 2λ.

We also characterize (in term of support) the initial conditions that create solutions whose energy does not
decay to zero.

Motivated by a question of Zuazua and [7], we consider also positive-negative feedbacks for (1.1): a is qT -
periodic and

a(t) = a0 > 0 for t ∈ [0, T ), a(t) = −b0 < 0 for t ∈ [T, qT ). (1.4)

Note that in this case the energy is only nonincreasing during the time intervals [mqT,mqT + T ), and non-
decreasing during the other time intervals. If T is exceptional, then the energy of some solutions increases to
infinity. If T is not exceptional, we give the necessary and sufficient condition that tells that, roughly speaking,
the energy of all solutions goes exponentially to zero, or the energy of some solutions go exponentially to infinity:
for example if 1/T /∈ Q, then denoting

K0 :=
(
a0 − 1
a0 + 1

)1/q (
b0 + 1
b0 − 1

)(q−1)/q

;

stability holds if and only if K0 < 1. In particular, note that stability always holds if a0 = 1 (for all b0 6= 1).
For the boundary case, our proofs are based on congruence properties and a theorem of Weyl. For the

distributed case, they are based on new observability inequalities: “on-off” observability inequalities, that tells



338 P. MARTINEZ AND J. VANCOSTENOBLE

that, roughly speaking, if T0 is the minimal time that one need to observe the solution, then observing it “half
of the time” can be sufficient (in fact only some parts of the time interval (0, T0) are useful).

Our results are radically different from those of the wave equation damped by linear time-dependent feedbacks
a(t)u′ when a is always positive (possibly decaying to zero), and even radically different from those of the
ordinary differential equations damped by on-off feedbacks.

More precisely, our results are the following:

2. Main results

2.1. Main results for boundary on-off dampings

First consider the problem (1.1) and the following function a:

a(t)

0 T qT

t

Figure 1.

Such on-off feedback laws have been widely studied in the case of ordinary differential equations, but seem
to have never been studied for partial differential equations. We prove the following:

Theorem 2.1. Assume (1.3). For all (u0, u1) ∈ V × L2(0, 1), there exists a unique u solution of (1.1).
Moreover,
(i) if

1
T
∈
q−1⋃
p=1

q

2p
N, (2.1)

there exists some (u0, u1) ∈ V × L2(0, 1) such that Eu(t) remains constant with time: Eu(t) = Eu(0) > 0 for
all t ≥ 0;
(ii) if

1
T
/∈
q−1⋃
p=1

q

2p
N, (2.2)

then for all (u0, u1) ∈ V × L2(0, 1), the energy Eu(t) of the solutions of (1.1) decays uniformly exponentially
to 0 (or achieves zero in finite time in the particular case a0 = 1).

Remarks.
1. The non stability result in the exceptional case (2.1) is radically different from what happens for ordinary

differential equations, or even for partial differential equations like (1.1) when the function a decreases to
zero remaining always positive (see [25]).
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2. We also characterize (in term of support) the initial conditions that create solutions whose energy does
not decay to zero. Moreover, in the non-exceptional case (2.2), we provide estimates on the “extinction
time” (where the energy is equal to zero), and we give optimal estimates when q = 2 and q = 3.

3. We also give explicit and optimal estimate of the exponent of the exponential decay of the energy or of
the extinction time in the particular case a0 = 1. See Section 5.

2.2. Main results for boundary positive-negative feedbacks

Now we consider the more general case of positive-negative feedbacks: the function a is now 2T -periodic to
simplify:

T 2T

a(t)

t

Figure 2.

In this case, note that the energy is only nonincreasing on the time intervals [2mT, 2mT+T ) and nondecreas-
ing the other time intervals. There are some works when the feedback is of the type b(x)u′, where the function
b depends on x (and not on t) and is of indefinite sign, but “more positive than negative” (see, e.g., Freitas and
Zuazua [7], Benaddi and Rao [5]) But to our knowledge, such time dependent positive-negative feedbacks laws
have never being studied. We prove the following:

Theorem 2.2. Assume (1.4) with q=2. Assume that b0 6= 1. Then for all (u0, u1) ∈ V × L2(0, 1), there exists
a unique u solution of (1.1). Moreover,

(i) if T satisfies (2.1), that is simply 1/T ∈ N in this case (q = 2), then there exists some (u0, u1)
∈ V × L2(0, 1) such that Eu(t) goes exponentially to infinity as t→∞;

(ii) if 1/T = p′/q′ where p′ and q′ are relatively primes, denote
KT :=

(
a0−1
a0+1

)1/2 (
b0+1
b0−1

)1/2

if q′ is even,

KT :=
(
a0−1
a0+1

)(q′−1)/2q′ (
b0+1
b0−1

)1−(q′−1)/2q′

if q′ is odd;
(2.3)

then if KT < 1, the energy of all solutions goes exponentially to zero (as Kt
T ), an if KT > 1, the energy

of some solutions goes exponentially to infinity (as Kt
T );

(iii) if 1/T /∈ Q, denote

K0 :=
(
a0 − 1
a0 + 1

)1/2(
b0 + 1
b0 − 1

)1/2

; (2.4)
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then if K0 < 1, the energy of all solutions goes exponentially to zero (as Kt
0), an if K0 > 1, the energy of

some solutions goes exponentially to infinity (as Kt
0).

Remarks.
1. It is interesting to note that if a0 = 1, then for all values of b0 (except b0 = 1 for which we have no

solution), we obtain exponential decay.
2. Part (iii) relies on a theorem of Weyl: if θ /∈ Q, then the sequence ({nθ})n is not only dense but also

equidistributed in [0, 1). (As usual, {x} denotes the fractional part of x.) Consequently, the critical value
K0 that appears in (iii) does not depend on T .

3. Theorem 2.2 could easily be extended to the general case q ≥ 2; the critical value in part (iii) would
become

K̃0 :=
(
a0 − 1
a0 + 1

)1/q (
b0 + 1
b0 − 1

)1−1/q

·

2.3. Main results for locally distributed on-off feedbacks

Now we consider the problem (1.2), where ω is the open nonempty subset ((1/2)− λ, (1/2) + λ) of (0, 1), a
is the time periodic function (1.3) and (u0, u1) is given in H1

0 × L2(0, 1). We prove the following:

Theorem 2.3. Assume (1.3) and assume that 0 < λ ≤ 1/2.

(i) If

1
T
∈
q−1⋃
p=1

q

p
N and (q − 1)T > 2λ,

then there exists initial conditions (u0, u1) ∈ H1
0 ×L2(0, 1) such that the energy of the solutions of (1.2) remains

constant with time: Eu(t) = Eu(0) > 0 for all t ≥ 0.

(ii) If (
1
T
∈
q−1⋃
p=1

q

p
N and (q − 1)T < 2λ

)
, or

(
1
T
6∈
q−1⋃
p=1

q

p
N

)
, (2.5)

then the energy of the solutions of (1.2) decays uniformly exponentially to 0.

Once again, this is radically different from what happens for ordinary differential equations, or even for the
damped wave equation when the function a decreases to zero remaining always positive. In the case (2.5), we
prove the uniform decay of the energy thanks to new observability inequalities:

2.4. “On-off” observability inequalities

Considering the undamped problem
φtt − φxx = 0, x ∈ 0, 1), t ≥ 0,
φ(0, t) = φ(1, t) = 0, t ≥ 0,
(φ(x, 0), φt(x, 0)) = (φ0(x), φ1(x)), x ∈ (0, 1),

(2.6)

it is well known that if 0 < a < b < 1 and T ∗ > 2 max(a, 1− b), then the solutions of (2.6) satisfy the following
observability inequality

Eφ(0) ≤ C

∫ T∗

0

∫ b

a

φ2
t (x, t) dxdt (2.7)
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for some positive constant C = C(T ∗) (see Haraux [9] and Zuazua [37]). This is optimal in the sense that you
cannot have this inequality with some T ∗ < 2 max(a, 1− b). In our case, for example, if λ > 1/8, then we can
apply it with T ∗ = 3/4 and we obtain

Eφ(0) ≤ C

∫ 3/4

0

∫ (1/2)+λ

(1/2)−λ
φ2
t (x, t) dxdt. (2.8)

We improve this inequality showing that

Eφ(0) ≤ C

∫ 1/4

0

∫ (1/2)+λ

(1/2)−λ
φ2
t (x, t) dxdt + C

∫ 3/4

1/2

∫ (1/2)+λ

(1/2)−λ
φ2
t (x, t) dxdt. (2.9)

This is coherent with the fact that each optic ray touches the damping region during the time intervals (0, 1/4)
or (1/2, 3/4).

More generally, we prove the following:

Theorem 2.4. Assume 1/T ∈
⋃q−1
p=1

q
p N and (q − 1)T < 2λ. Then there exists C > 0 such that, for all φ

solution of (2.6),

Eφ(0) ≤ C
∫ q−1

0

a(t)
∫
ω

φ2
t (x, t) dxdt. (2.10)

Note that this obviously also gives new exact controllability results, applying the method H.U.M. of J.-L. Lions
[22]: given (u0, u1) ∈ H1

0 (Ω) × L2(Ω), there exists a control h ∈ L2((0, 1/4)× (1/2, 3/4), L2(ω)) such that the
solution of the problem 

utt − uxx = χω(x)h(t, x), x ∈ (0, 1), t ≥ 0,
u(0, t) = u(1, t) = 0, t ≥ 0,
(u(x, 0), ut(x, 0)) = (u0(x), u1(x)), x ∈ (0, 1),

(2.11)

satisfies u(3/4) = 0 = ut(3/4). This implies that the control h that drives the system from the state (u0, u1)
to the rest has only to act on the time intervals (0, 1/4) and (1/2, 3/4). Our observability inequalities or exact
controllability results are coherent with the general results related on the rays propagation for systems with
time independent coefficients (see [2,3]). Moreover we provide a direct proof of these inequalities, and we would
like to emphasize that our method can also provide results for semilinear wave equations (see [26]).

3. Relation to literature

3.1. The time-independent case

We are interested in the asymptotic behavior of the energy of the solutions of (1.1). First we recall that if
the function a is constant:

a(t) = a0 > 0 for all t ∈ R+,

then for all (u0, u1) given in V × L2(0, 1), there exists a unique solution u of (1.1) and its energy Eu(t) decays
exponentially to 0 as t goes to infinity. More precisely, it is easy to prove that:

– if a0 = 1, then Eu(t) achieves 0 in finite time in time t = 2: Eu(2) = 0;
– if a0 6= 1 then Eu(t)→ 0 exponentially as t→∞ with an explicit decay rate that depends on a0:

∀t ≥ 0, Eu(t) ≤ Eu(0)e−ω(t/2−1) with ω = 2 ln
∣∣∣a0 + 1
a0 − 1

∣∣∣ > 0.
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On the other hand, with the same feedback a(t) = a0 > 0 for all t ∈ R+, exponential decay of the solutions
of (1.2) follows easily from the multiplier method.

Of course, in both cases, the exponential decay of the energy for this problem is also an easy consequence of
the general “optic rays condition” of Bardos et al. [2]: it is clear that each optic ray touches the damping region
(the point 1) in time at most 2 in the case of boundary damping, and crosses the region ω in time at most 2 in
the case of locally distributed damping.

Remark. The proof of the extinction in finite time follows directly from D’Alembert Formula (see the beginning
of the proofs of Th. 2.1, (ii) or Prop. 5.1). Note that extinction in finite time was proved in [16] (see Th. 0.5,
p. 6): for the wave equation with a boundary feedback acting at both extremities (x = 0 and x = 1), Komornik
obtained the extinction in time t = 1. In our case, since the feedback only acts at one extremity (x = 1), we
have the same phenomenon but we need twice more time before the extinction.

Note that this phenomenon is related to the radiation boundary conditions (see [4]), which correspond to the
fact that there is no reflection from the boundary into the domain. Indeed, in the case of the wave equation,
the boundary condition ux(1, t) + ut(1, t) = 0 is a radiation boundary condition.

3.2. The time-dependent case

Now we consider the asymptotic behavior of the energy under time-dependent feedback laws. This problem
has been largely studied when the damping term is “not too small” (in order to prevent underdamping) or “not
too large” (to prevent overdamping), that means when there exists some positive and nonincreasing continuous
function σ : R+ −→ R+ that satisfies

∀t ≥ 0, σ(t) ≤ a(t) ≤ 1
σ(t)

, (3.1)∫ +∞

0

σ(τ) dτ =∞. (3.2)

In this case, for both problem (1.1) and problem (1.2), the energy decays with an explicit decay rate: there
exists ω > 0 such that

∀t ≥ 0, Eu(t) ≤ Eu(0)e1−ω
R
t
0 σ(τ) dτ . (3.3)

On the other hand, if
∫ +∞

0
a(τ) dτ < ∞, there are some solutions whose energy does not decay to 0. (For

more general results about stabilization properties using nonlinear time-dependent dampings g(t, ut), see,
e.g. [25, 27,32] and the references therein.)

3.3. The on-off case

Here we are interested in the asymptotic behavior of the energy under on-off dampings: we assume that the
function a may vanish on non-zero measure sets, and we want to study the asymptotic behavior of the energy.
To our knowledge, such works have not yet been done in the case of partial differential equations. Bardos
et al. [2] (p. 1029) noted just that invisible solutions may appear in the case of time-dependent coefficients, and
their existence has to be studied on each case. Note also that in our case the family of invisible solutions is not
at all finite dimensional.

However this has been widely studied in the case of ordinary differential equations (see [1, 11,12,31,34,35]).
The typical problem is the oscillator damped by an on-off damping

u′′ + a(t)u′ + u = 0; (3.4)
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the energy decays to zero if the damping is “sufficiently active”: in the case where the function a is equal to 1
on a sequence of disjoint intervals In and nonnegative elsewhere, then the energy decays to 0 if∑

n

|In|3 =∞, (3.5)

and 3 is the best possible exponent (see [31]). In particular, this implies that under (3.5), the localization of
the damping time intervals In is not important; Pucci and Serrin noted that “the exact switching times can
be of great importance” (p. 831 in [31]) in some situations where (3.5) is not satisfied but 0 is still a global
attractor of the problem if the switching times are correctly set. More general cases are studied, in particular
the case where the function a is equal to some positive constant mn on In, and then 0 is a global attractor of
the problem if some condition like (3.5) is satisfied (the condition lies on the divergence of some series whose
general term contains |In| and min (mn,

1
mn

) in order to prevent underdamping and overdamping).
The case of partial differential equations damped by on-off dampings (applied at the boundary or locally

distributed in the domain) is radically different from the case of ordinary differential equations: even in the
simplest case where the function a is equal to 1 on [0, T ) and to 0 on [T, 2T ), and is 2T -periodic, there are values
of T for which the energy does not decay to zero, although the conditions

∫ +∞
0

a(τ) dτ =∞ and
∑
n |In|3 =∞

(where In := (2nT, (2n+ 1)T ) are clearly satisfied.

4. Comments on the results and optic rays propagation

4.1. Comments in the case of boundary feedback

Our proof is based on D’Alembert formula and on congruence properties. In fact this congruence properties
are equivalent to study the optic rays propagation; we prove that if T is not one of those exceptional values,
each ray touches the boundary point x = 1 (where the dissipative condition is applied) in time at most 2NT +2,
where NT depends on T and at an instant time t where the damping is effective. In Figure 3 we present an
example where the value of T is exceptional (T = 1/5). We can see that there exists a ray that touches the
boundary only at times when the feedback is non active (or of the wrong sign in the case of positive-negative
feedbacks):

0 1 2 3 4

1

x

t

Figure 3.

In Figure 4, we present an example where the value of T is not exceptional (T = 2/5). In this case, we can
see that each ray will touch the damping region at a time when the feedback is active.

This property is quite natural with respect to the general optic rays condition for time independent feed-
backs [2]. However, we do not know if this theory can be adapted in this case of a time dependent feedback
a(t)ut(1, t) (and moreover with a function a that is not continuous), and even if it is true, it is not easy to
determine explicitly the exceptional values of T .
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0 1 2 3 4

1

x

t

Figure 4.

4.2. Comments in the case of locally distributed feedback

We are interested in the asymptotic behavior of the energy Eu of the solutions of (1.2). First we recall that
if the function a is constant on R+, then Eu decays exponentially to 0, for all nonempty open subset ω wherever
its location in (0, 1) (see, e.g. [8]). A geometrical explanation of this is that each optic ray touches the damping
region ω in time at most 2 (see [3]). (Note that in the case of a symmetrical open subset ω := (1/2−λ, 1/2 +λ)
with 0 < λ ≤ 1/2, each optic ray touches the damping region in time at most 1).

Here we consider the case where a is the periodic function defined by (1.3) and where ω := (1/2−λ, 1/2 +λ)
with 0 < λ ≤ 1/2 (λ = 1/2 means that the feedback is uniformly distributed in (0, 1)). There is no problem for
the existence and the regularity of the solution, solving successively on the time intervals (0, T ), (T, 2T ), ...

First consider the case of a uniformly distributed damping, i.e. we assume λ = 1/2. In this case, note that it
is clear that each optic ray crosses the damping region during a period when the damping is effective. In this
case, we prove positive results of exponential stabilization.

Next consider the more interesting case of a locally distributed damping: 0 < λ < 1/2. Note carefully that
there are some values of T and some values of λ for which some rays cross the damping region when the feedback
is non active. For example, take T = 1/2, λ < T/2 = 1/4, and consider the optic rays that leaves the point
x = T/2 = 1/4 and that goes to the left (towards the point x = 0) at time t = 0: this ray describes the
segment [1/4, 3/4] (that contains the dissipative region) in direct sens or in the other sens during the time
intervals [T, 2T ], [3T, 4T ], ..., thus during periods when a(t) = 0. The same situation occurs if 1/T ∈ 2N with
2λ < T . We obtain negative results of exponential stabilization in all these cases, and positive results in the
other cases, which is coherent with the optic rays condition known for time independent feedbacks [2].

Note that the situation is much more complex than the case of boundary damping: even when T takes some
“exceptional” values, we can still have exponential decay of the energy of the solutions, provided that the
damping region is large enough. Note also that when the damping region is “large enough” (in particular when
ω = (0, 1), then we find a result analogous to the one related to ordinary differential equation, since we obtain
stabilization for all T > 0.

At last, note that the previous positive results of uniform exponential stabilization are still true if we just
assume that a ∈ L∞(R+;R+) is qT -periodic such that a(t) ≥ a0 > 0 for t ∈ [0, T ). On the same way, the
negative results of uniform exponential stabilization are still true if we just assume that a ∈ L∞(R+;R+) is
qT -periodic such that a(t) = 0 for t ∈ [T, qT ).

5. Other results and comments on the proofs

5.1. Other results in the case of a boundary on-off feedback

5.1.1. Optimal estimates of the extinction time

We complete Theorem 2.1 giving optimal estimates of the “extinction time” τT = 2NT + 2, where the energy
achieves zero in the particular case a0 = 1. Note that this also give optimal estimate of the exponential energy
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decay in the general case since it is given by

∀t ≥ 0, Eu(t) ≤ Eu(0)e−ω(t/(2NT+2)−1).

We denote by d(x,N) the distance between x and N. We assume that T < 2 since if T ≥ 2, then we already
know that Eu(t) = 0 for all t ≥ 2.

First consider the typical case q = 2. We recall from Theorem 2.1 that if 1/T ∈ N, the energy of some
solutions does not decay to zero. In the other case, we give optimal estimates on the “extinction time”:

Proposition 5.1. Assume (1.3) with q = 2. Then if 1/T 6∈ N, then for all (u0, u1) ∈ V × L2(0, 1), Eu(t)
achives zero in finite time. More precisely,

∀t ≥ 2NT + 2, Eu(t) = 0, (5.1)

where NT is the smallest integer such that

2NT d
(

1
T
,N
)
≥ 1. (5.2)

Moreover, NT is optimal in the following sense: there exists some (u0, u1) ∈ V × L2(0, 1) such that Eu(2NT )
= Eu(0) > 0.

Next we look to the general case. We also give optimal estimates of the “extinction time” when q = 3 and
we give general estimates of the “extinction time” in the general case:

Proposition 5.2. Assume (1.3) and assume (2.2).
(i) Assume that q = 3. If

d

(
2

3T
,N
)
≤ 1

3
, (5.3)

let NT be the smallest integer such that

3d
(

2
3T

,N
)
NT ≥ 2;

and if

1
3
< d

(
2

3T
,N
)
<

1
2
, (5.4)

let N ′T be the smallest integer such that(
1− 2d

(
2

3T
,N
))

N ′T ≥
2
3
− d

(
2

3T
,N
)
, (5.5)

and NT := 2N ′T − 1; then Eu(t) = 0 for all t ≥ 2NT + 2. Moreover, NT is optimal in the following sense: there
exists some initial conditions such that Eu(2NT ) = Eu(0) > 0.
(ii) In the general case, we have the following estimate: Eu(t) = 0 for all t ≥ 2mN + 2, where m and N are
integers chosen such that

0 <
{
m

{
2
qT

}}
≤ 1
q

and N

{
m

{
2
qT

}}
≥ q − 1

q
(5.6)

(where {x} denotes the fractional part of x).
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Remark. Such m always exists under (2.2). It would be interesting to find in a general way the best time τT
for which Eu(t) = 0 if t ≥ τT , like we did for q = 2 and q = 3.

5.1.2. Extension to nonlinear feedbacks

Combining the methods used in [36] with the method used for the proof of Proposition 5.1, we can also study
the wave equation damped by a boundary nonlinear on-off feedback:

utt − uxx = 0, x ∈ (0, 1), t ≥ 0,
u(0, t) = 0, t ≥ 0,
ux(1, t) = −a(t) g(ut(1, t)), t ≥ 0,
(u(x, 0), ut(x, 0)) = (u0(x), u1(x)), x ∈ (0, 1),

where a is defined by (1.3) and where g is increasing. Once again, when T is exceptional, we have not stability,
and when T is not exceptional, we easily prove that there is still uniform stabilization, with explicit decay rate
that depends on g.

5.2. Remarks on the proof in the case of a locally distributed feedback

5.2.1. Link between on-off stabilization and on-off observability

To prove Theorem 2.3 in the typical case q = 2, we first reduce the problem to the proof of an observability
inequality for the wave equation without damping (see Prop. 10.1): there is uniform exponential stabilization
of solutions of (1.2) if and only if the solutions of (2.6) satisfy, for some T ∗ > 0,

Eφ(0) ≤ C

∫ T∗

0

a(t)
∫
ω

φ2
t (x, t) dxdt. (5.7)

Then to prove this inequality, we will have to distinguish the following different cases:

• λ = 1/2 and T > 0. It is the case of a uniformly distributed damping. In this case, we can easily prove
the observability inequality using spectral decomposition of the solutions of the wave equation;
• λ < 1/2 and 1/T /∈ 2N. In this case, we use the fact that T is not an exceptional value as we did in the

case of boundary feedback, to obtain similar congruence properties. And combining these properties with
the spectral decomposition made in the previous case, we deduce the observability inequality;
• λ < 1/2, 1/T ∈ 2N and 2λ < T . In this case, we construct solutions that never “see the damping” such

that the observability inequality does not hold;
• λ < 1/2, 1/T ∈ 2N and 2λ > T . To treat this case, we need new observability inequalities (see Prop. 5.2)

presented in the following section.

5.2.2. On-off observability inequalities

Consider the problem (2.6). The following result is well known:

Theorem 5.1 (Haraux [9]). Let (a, b) ⊂ (0, 1) be a given interval. Set

T ∗0 = 2max (a, 1− b).

Then for all T ∗ > T ∗0 , there exists C > 0 such that, for all φ solution of (2.6),

Eφ(0) ≤ C

∫ T∗

0

∫ b

a

φ2
t (x, t) dxdt. (5.8)
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This is optimal in the sense that you cannot have this inequality with some T ∗ < 2 max(a, 1− b). In our case,
the condition “T ∗ > 2 max(a, 1− b)” becomes “T ∗ + 2λ > 1”. Consequently, if we assume 2λ > 1− T , we can
directly deduce uniform exponential stabilization from Theorem 5.1.

For example, consider the case q = 2 and T = 1/2. Note that in this case, the condition “2λ > T” of
Theorem 2.3 is exactly the same as the previous condition “2λ > 1 − T” i.e. it is “λ > 1/4”. So we can
apply (5.8) with T ∗ = T = 1/2 and we obtain

Eφ(0) ≤ C

∫ 1/2

0

∫ (1/2)+λ

(1/2)−λ
φ2
t (x, t) dxdt = C

∫ 1

0

a(t)
∫
ω

φ2
t (x, t) dxdt, (5.9)

which is exactly what we need to prove that the energy decays exponentially to zero in this case. This proves
Theorem 2.3 in the case q = 2 and T = 1/2.

For T 6= 1/2, the two conditions are not the same. We still can deduce results of uniform exponential
stabilization from Theorem 5.1, but it is not sufficient to prove Theorem 2.3.

For example, consider the case T = 1/4. If we assume λ > (1 − T )/2 = 3/8, we can apply (5.8) with
T ∗ = T = 1/4 and we obtain

Eφ(0) ≤ C

∫ 1/4

0

∫ (1/2)+λ

(1/2)−λ
φ2
t (x, t) dxdt ≤ C

∫ 1

0

a(t)
∫
ω

φ2
t (x, t) dxdt, (5.10)

which proves that the energy decays exponentially to zero in this case. Note that the assumption “λ > (1 −
T )/2 = 3/8” and this inequality correspond, as we can see in Figure 5, to the fact that each optic ray crosses
the damping region during the period (0, T ) = (0, 1/4).

     x

0 1 2

t

Figure 5.
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If we consider the same case T = 1/4 under the assumption of Theorem 2.3 when q = 2, i.e. with λ > T/2
= 1/8, we can still apply (5.8) but only with T ∗ = 3/4, and we obtain

Eφ(0) ≤ C

∫ 3/4

0

∫ (1/2)+λ

(1/2)−λ
φ2
t (x, t) dxdt

= C

∫ 1/4

0

∫ (1/2)+λ

(1/2)−λ
φ2
t (x, t) dxdt + C

∫ 1/2

1/4

∫ (1/2)+λ

(1/2)−λ
φ2
t (x, t) dxdt

+ C

∫ 3/4

1/2

∫ (1/2)+λ

(1/2)−λ
φ2
t (x, t) dxdt

= C

∫ 1

0

a(t)
∫
ω

φ2
t (x, t) dx+ C

∫ 1/2

1/4

∫ (1/2)+λ

(1/2)−λ
φ2
t (x, t) dxdt, (5.11)

but we need

Eφ(0) ≤ C
∫ 1

0

a(t)
∫
ω

φ2
t (x, t) dxdt

= C

∫ 1/4

0

∫ (1/2)+λ

(1/2)−λ
φ2
t (x, t) dxdt + C

∫ 3/4

1/2

∫ (1/2)+λ

(1/2)−λ
φ2
t (x, t) dxdt. (5.12)

to solve our problem. Note that the assumption “λ > 1/8” and this inequality correspond, as we can see in
Figure 6, to the fact that each optic ray crosses the damping region during the period (0, 1/4) or during the
period (1/2, 3/4).

0

     x

1 2

t

Figure 6.

More generally, we prove the following new “on-off” observability inequalities:

Theorem 5.2. Let ` ∈ N. Assume T = 1/(2`) and T/2 < λ ≤ 1/2. Then there exists C > 0 such that, for
all φ solution of (2.6),

Eφ(0) ≤ C
`−1∑
p=0

∫ (2p+1)T

2pT

∫ 1/2+λ

1/2−λ
φ2
t (x, t) dxdt = C

∫ 1

0

a(t)
∫
ω

φ2
t (x, t) dxdt. (5.13)
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Inequality (5.13) is exactly what we need to prove the exponential decay of the solutions of (1.2) when q = 2,
1/T ∈ 2N and 2λ > T .

Note that in the general case (q 6= 2), the proof of Theorem 2.3 is based on Theorem 2.4. Theorem 2.4 is the
generalization of Theorem 5.2 and its proof is similar to the proof of Theorem 5.2.

Remark. In fact repeating the arguments of the proof of Theorem 5.2, one shall prove that

Eφ(0) ≤ C
∫ T∗

0

a(t)
∫
ω

φ2
t (x, t) dxdt. (5.14)

with T ∗ := KqT + ρ at the place of q − 1, where K ∈ N, ρ ∈ (0, T ) and T ∗ > 1− 2λ. These are the optimal
conditions: indeed, one cannot expect that (5.14) holds true with T ∗ < 1 − 2λ (this value is optimal when
a(t) = 1 for all t), and T ∗ has necessarily to be written KqT + ρ: in the other case, equation (5.14) would be
satisfied with a strictly smaller value of K.

It is interesting to note that these results are optimal in the following sense: if T > 2λ, then we can construct
some initial conditions (φ0, φ1) for which Eφ(0) = 1 while

`−1∑
p=0

∫ (2p+1)T

2pT

∫ 1/2+λ

1/2−λ
φ2
t (x, t) dxdt =

∫ 1

0

a(t)
∫
ω

φ2
t (x, t) dxdt = 0. (5.15)

This result correspond to the fact that, as we can see in Figure 7, there exists some optic rays that never
cross the damping region at a time when the damping is effective. See Figure 7 in the case T = 1/4 with
λ < T/2 = 1/8.

0 1 2

t

     x

Figure 7.

5.2.3. Other application of the observability inequalities: Exact controllability results

Theorem 5.2 also obviously gives new exact controllability results, applying the method H.U.M. of J.-L.
Lions [22]: given (u0, u1) ∈ H1

0 (Ω) × L2(Ω), there exists a control h ∈ L2((∪`−1
p=0(2pT, (2p + 1)T ), L2(ω)) such

that the solution of the problem
utt − uxx = χω(x)h(t, x), x ∈ (0, 1), t ≥ 0,
u(0, t) = u(1, t) = 0, t ≥ 0,
(u(x, 0), ut(x, 0)) = (u0(x), u1(x)), x ∈ (0, 1),

(5.16)
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satisfies u(1−T ) = 0 = ut(1−T ). This implies that the control h that drives the system from the state (u0, u1)
to the rest acting only on the time intervals (2pT, (2p+ 1)T ) for p = 0, · · · , `− 1, so, roughly speaking, “only
half of the time”. We will generalize these results to prove that in fact we can find a control that drives the
system from the state (u0, u1) to the rest acting only on a finite number of well-chosen time intervals, whose
total lenght is arbitrarily short (see [26]).

5.2.4. Open questions

1. It is an interesting open question to know what happens when 1/T ∈ 2N and 2λ = T . This should be
compared to the results of pointwise stabilization or pointwise controllability (see, e.g. [14]).

2. Our proof does not allow us to obtain results for nonlinear on-off feedbacks.
3. It should also be interesting to study the problem with positive negative feedbacks (1.4).

6. Proof of Proposition 5.1 (on-off boundary feedback when q = 2)

We make the proofs in the case a0 = 1. Our method can easily be extended to the general cases a0 > 0, in
order to prove that the energy decays exponentially to zero.

6.1. The useful formula for the energy

Let us consider the absolutely continuous function f : (−1,+∞) −→ R defined on (−1, 1) by:

∀y ∈ (−1, 0), f(y) :=
1
2

∫ y

0

u0
x(−z)− u1(−z) dz,

∀y ∈ (0, 1), f(y) :=
1
2

∫ y

0

u0
x(z) + u1(z) dz,

and on (1,+∞) by induction thanks to the expression

f ′(y + 1) = k(y) f ′(y − 1) with k(y) :=
a(y)− 1
a(y) + 1

a.e. y ≥ 0. (6.1)

Note that this is equivalent to say that

f ′(y + 1) + f ′(y − 1) = −a(y)(f ′(y + 1)− f ′(y − 1)) a.e. y ≥ 0. (6.2)

Hence, using the d’Alembert’s formula, we easily verify that the following expression gives a solution of the
problem (1.1) (and that this solution is unique):

∀(x, t) ∈ (0, 1)× (0,∞), u(x, t) = f(t+ x)− f(t− x).

(Relation (6.2) gives ux(1, t) = −a(t)ut(1, t).)
We see that the energy of u satisfies

∀t ≥ 0, Eu(t) =
1
2

∫ 1

0

(u2
x(x, t) + u2

t (x, t)) dx =
∫ 1

−1

f ′(t+ s)2 ds.

Now set N ∈ N and t ∈ (0, 2) such that f ′(t− 1) ∈ R. We deduce from (6.1) that

f ′(t+ 2N + 1) = k(t+ 2N)f ′(t+ 2N − 1) = · · · =
(

N∏
m=0

k(t+ 2m)

)
f ′(t− 1).
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Denote

KN (t) :=
N∏
m=0

|k(t+ 2m)|.

Hence we get that

Eu(2N + 2) =
∫ 2

0

KN(t)2f ′(t− 1)2 dt. (6.3)

Note that for t ∈ (0, 2), the quantity f ′(t− 1) depends only on the initial conditions (u0, u1). In the following,
we will study the function KN .

6.2. Proof of Proposition 5.1

Note that in this case the function k satisfies:{
k(t) = 0 if t ∈ G2 :=

⋃
n∈N[2nT, (2n+ 1)T ),

k(t) = −1 if t ∈ B2 :=
⋃
n∈N[(2n+ 1)T, (2n+ 2)T ).

Hence KN (t) = 1 if and only if t, t+ 2, · · · , t+ 2N lie in B2, and KN(t) = 0 in the other case. (G2 is the set of
the “good” values of t and B2 is the set of the “bad” values of t).

Write

2 = 2`T + rT, with ` ∈ N and 0 ≤ r < 2. (6.4)

First assume that r = 0 (i.e. 1/T ∈ N): this implies that [T, 2T ) ⊂ [0, 2) ∩ B2 and if t ∈ B2, for example
t ∈ [T, 2T ), then t+ 2 = t+ 2`T ∈ [T + 2`T, 2T + 2`T ) ⊂ B2, and, in the same way, t+ 4, · · · , t+ 2N are all
in B2; hence KN (t) = 1 for all N ∈ N and all t ∈ B2. Thus, for all N ∈ N,

Eu(2N + 2) =
∫

[0,2)∩B2

KN(t)2f ′(t− 1)2 dt+
∫

[0,2)∩G2

KN (t)2f ′(t− 1)2 dt =
∫

[0,2)∩B2

f ′(t− 1)2 dt =: E∞.

Consequently, since the energy is nonincreasing and its value at times 2N + 2 remains constant, it is constant
on [2,+∞) and equal to E∞. This quantity depends only on the initial conditions (u0, u1) and is non equal to
zero if the initial conditions are well chosen. Note that for all t ≥ 2, Eu(t) = E∞, and E∞ = 0 if and only if
the function t 7→ f ′(t− 1) is equal to zero on [0, 2)∩B2. In particular, if u0 and u1 are such that the function f
is compactly supported in {t : t+ 1 ∈ B2 ∩ [0, 2)}, then the energy of the associated solution remains constant
with time.

Now assume that 0 < r ≤ 1. (Note that in this case, dT = d(1/T,N) = r/2 > 0.) We claim that KN(t) = 0
if N ≥ 1

r . This follows from the following lemma (see the proof later):

Lemma 6.1. Fix N ≥ 1
r . Given t ∈ [0, 2), it is not possible for t, t+ 2, · · · , t+ 2N to be all in B2.

In other words, Lemma 6.1 means that each optic ray touches the boundary point x = 1 in time at most 2N
and at an instant time t where the damping is effective. Note also that Lemma 6.1 implies that KN (t) = 0 for
all t ∈ [0, 2), thus Eu(2N + 2) = 0, which proves (5.1) in this case.

At last we assume that 1 < r < 2. (Note that in this case, dT = 1 − r/2 > 0.) This case is completely
analogous to the previous one. We claim that KN (t) = 0 if N ≥ 1

2−r . This follows from the following lemma
(see the proof later):
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Lemma 6.2. Fix N ≥ 1
2−r . Given t ∈ [0, 2), it is not possible for t, t+ 2, · · · , t+ 2N to be all in B2.

On the same way, it implies KN(t) = 0 for all t ∈ [0, 2) if N(2 − r) ≥ 1, and so Eu(2N + 2) = 0. This
proves (5.1) in this case, which ends the proof of Proposition 5.1.

Proof of Lemma 6.1. We assume that 0 < r ≤ 1 and we prove the result by contradiction: assume that t,
t+ 2, · · · , t+ 2N are all in B2 for some t ∈ [0, 2). Then first t ∈ [0, 2)∩B2: hence there exists n0 ∈ N such that
t ∈ [(2n0 + 1)T, (2n0 + 2)T ); then using 2 = 2`T + rT with 0 < rT ≤ T , we deduce

t+ 2 ∈ [(2n0 + 1)T + 2`T, (2n0 + 2)T + 2`T + T ) = [(2`+ 2n0 + 1)T, (2`+ 2n0 + 2)T )
∪ [(2`+ 2n0 + 2)T, (2`+ 2n0 + 2)T + T ).

Note that [(2` + 2n0 + 1)T, (2` + 2n0 + 2)T ) ⊂ B2 whereas [(2` + 2n0 + 2)T, (2` + 2n0 + 3)T ) ⊂ G2. Since
t + 2 ∈ B2, then t + 2 ∈ [(2` + 2n0 + 1)T, (2` + 2n0 + 2)T ); an easy induction argument shows that for all
m ∈ {0, · · · , N}

t+ 2m ∈ [(2m`+ 2n0 + 1)T, (2m`+ 2n0 + 2)T ).

Thus we deduce (with m = N and using t ≥ (2n0 + 1)T ),

(2n0 + 1)T + 2N ≤ t+ 2N < (2N`+ 2n0 + 2)T,

which implies that

rNT = N(2− 2`T ) < T,

which is false.

Proof of Lemma 6.2. We assume that 1 < r < 2 and we prove by contradiction that it is not possible for t,
t+ 2, · · · , t+ 2N to be all in B2 if N ≥ 1/(2− r). Indeed, if t, t+ 2, · · · , t+ 2N are all in B2, then

t+ 2N ∈ [(2N(`+ 1) + 2n0 + 1)T, (2N(`+ 1) + 2n0 + 2)T ),

hence (using t ≤ (2n0 + 2)T ),

(2n0 + 1)T + (2`+ 2)NT ≤ t+ 2N < (2n0 + 2)T + 2N,

which implies that

N(2− r) < 1.

Proof of the optimality of the result. Note that our result is optimal: assume that 0 < r ≤ 1 and denote NT
the smallest integer such that rNT ≥ 1. Hence we have:

1
r
≤ NT <

1
r

+ 1− ε

for ε small enough. Then it is easy to verify that if t ∈ [T, (1 + ε)T ) ∩ [0, 2), then t, t + 2, · · · , t + 2(N − 1)
are all in B2 and so if the initial conditions are such that the corresponding function f is supported in [T − 1,
(1 + ε)T − 1) ∩ [−1, 1), then Eu(2NT ) = Eu(0), whereas Eu(2NT + 2) = 0.

The same phenomenom occurs if 1 ≤ r < 2.
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7. Proof of Theorem 2.1 (on-off boundary feedback in the general case)

Now we assume that a = 1 on [0, T ), a = 0 on [T, qT ) and a is qT -periodic. Define{
Gq :=

⋃
n∈N[qnT, (qn+ 1)T ),

Bq :=
⋃
n∈N[(qn+ 1)T, q(n+ 1)T ).

Write

2 = q`T + rT, with ` ∈ N and 0 ≤ r < q. (7.1)

7.1. Stability if T is different of some exceptional values

We prove the following:

Lemma 7.1. Assume that

r /∈ L := {r0 = 0} ∪
{
rs,p =

s

p
q : p = 2, · · · , q − 1, s = 1, · · · , p− 1

}
· (7.2)

Then the energy of every solution achieves zero in finite time.

Note that r ∈ L if and only if (2.1) is satisfied.

Proof of Lemma 7.1. First assume that there exists m ≥ 1 and k ∈ N such that

kq < mr ≤ kq + 1 i.e. mr ∈ (0, 1] mod q. (7.3)

Then we claim that the energy of every solution achieves zero in finite time: indeed denote ρ := mr−kq ∈ (0, 1]
and choose N such that Nρ ≥ q − 1; then if t, t + 2, · · · , t + 2Nm are all in Bq, then of course t, t + 2m,
t+ 4m, · · · , t+ 2Nm are all in Bq; but

t+ 2m = t+mqlT +mrT = t+ ρT + q(ml + k)T = t+ ρT mod qT,

and thus t, t + ρT , t + 2ρT , · · · , t + NρT are all in Bq, which is not possible since ρ ∈ (0, 1] and Nρ ≥ q − 1
(same proof as Lem. 6.1). Hence Eu(2mN + 2) = 0.

Let us specify the real numbers r that satisfy (7.3). For r ∈ (0, q), denote ρ′ := r
q ∈ (0, 1). Condition (7.3)

is equivalent to say that there exists m ≥ 1 such that

{mρ′} ∈
(

0,
1
q

]
, (7.4)

where {x} denotes the fractional part of x. This is clearly true if ρ′ := 1
q′ with q′ ≥ q (and m := 1); this is also

true if ρ′ := p′

q′ with q′ ≥ q and pgcd (p′, q′) = 1: indeed, there exists (p′′, q′′) such that p′′p′ − q′′q′ = 1, and
then p′′ρ′ = 1

q′ + q′′; at last (7.4) is also true if ρ′ /∈ Q, since in that case the set {{mρ′},m ∈ N} is everywhere
dense in [0, 1). Thus if r /∈ L, equation (7.3) is satisfied, and the proof of Lemma 7.1 is complete.

7.2. Non stability if T is equal to one of those exceptional values

We prove that if r ∈ L, then we have no more strong stability property.
First, for all q ≥ 2, the result is clear for the value r = r0 = 0. Indeed in this case we have 2 = q`T . It

implies that: (t ∈ Bq) =⇒ (t + 2 ∈ Bq). Thus it is sufficient to prove that there exists a non empty interval
I ⊂ [0, 2[∩Bq, which is clear since T < 2.
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Next we assume that q ≥ 3 and we prove this result for all the values r = rs,p = sq/p with p ∈ {2, ..., q − 1}
and s ∈ {1, ..., p− 1}. Indeed in this case we have

2 = q`T +
s

p
qT. (7.5)

Note that it implies that if t ∈ Bq, then t+ 2p ∈ Bq. Thus, if we set

E = {t ∈ [0, 2[ : t, t+ 2, t+ 4, ..., t+ 2(p− 1) ∈ Bq},

it is sufficient to prove that there exists a non empty interval I ⊂ E .
Let I = [T, qT/p[. We verify that I 6= ∅ (since q/p > 1) and I ⊂ [0, 2) (since T ≤ 2p/sq ≤ 2p/q from (7.5)).

Moreover I ⊂ Bq (indeed I ⊂ [T, qT )).
It remains to prove that τ2k(I) ⊂ Bq for all k ∈ {1, 2, ..., p− 1}, where τ2k denotes the translation of 2k. Fix

k ∈ {1, 2, ..., p− 1}. There exist n1, n2 ∈ N such that

sk = n1p+ n2 with 0 ≤ n2 ≤ p− 1. (7.6)

Then using (7.5, 7.6) and using n2 + 1 ≤ p, we obtain

τ2k(I) =
[
T + 2k,

1
p
qT + 2k

)
=
[
T + qk`T +

sk

p
qT,

1
p
qT + qk`T +

sk

p
qT

)
=
[
(k`+ n1)qT + T +

n2

p
qT, (k`+ n1)qT +

n2 + 1
p

qT

)
⊂ [(k`+ n1)qT + T, (k`+ n1)qT + qT ) ⊂ Bq,

which proves the result.

8. Proof of Theorem 2.2 (positive-negative boundary feedbacks)

It is easy to see that now, with the notations used in the previous sections, we have

Eu(2N + 2) =
∫ 2

0

KN (t)2f ′(t− 1)2 dt

with

KN (t) =
∣∣∣∣a0 − 1
a0 + 1

∣∣∣∣PN (t) ∣∣∣∣b0 + 1
b0 − 1

∣∣∣∣N+1−PN (t)

,

where PN (t) is equal to the number of m ∈ {0, · · · , N} such that t + 2m ∈ G2. If T is exceptional, then we
can find initial conditions such that PN (t) = 0 for all t and all N , hence the energy of such solutions grows
exponentially to infinity. If T is not exceptional i.e. if 1/T /∈ N, we have seen that there exists NT such that
for all t, there exists at least one mt ∈ {0, · · · , NT } such that t+ 2mt ∈ G2, hence PNT (t) ≥ 1. We deduce that

Eu(2NT + 2) ≤ Eu(0)
∣∣∣∣a0 − 1
a0 + 1

∣∣∣∣ ∣∣∣∣b0 + 1
b0 − 1

∣∣∣∣NT ·
Obviously, this gives a sufficient condition on the exponential decay, but it is far from being optimal. Indeed, we
proved that we can find initial conditions such that PNT (t) = 1, but then nothing tells that P2NT (t) = 2, and
in fact this is wrong in general. So we have to study carefully the function PN , and obtain asymptotic uniform
(in t) estimates as N →∞. More precisely we have to study the ratio PN (t)/(N + 1) and its limit as N →∞.
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8.1. The cyclic case: 1/T ∈ Q \ N
Let 1/T = p′/q′ where p′ and q′ are relatively prime integers. We have to study the numbers of integers m

such that {
1

2T
(t+ 2m)

}
=
{
t

2T
+
m

T

}
=
{
t′ +

mp′

q′

}
∈
[
0,

1
2

)
,

where t′ = t/(2T ). Note that {
t′ +

mp′

q′

}
=
{
t′ +

{
mp′

q′

}}
·

Since {{
mp′

q′

}
,m ∈ N

}
=
{{

mp′

q′

}
,m ∈ {0, · · · , q′ − 1}

}
=
{

0,
1
q′
,

2
q′
, · · · , q

′ − 1
q′

}
,

it is sufficient to count the number of the q′ terms

{t′} ,
{
t′ +

1
q′

}
,

{
t′ +

2
q′

}
, · · · ,

{
t′ +

q′ − 1
q′

}
,

that are in [0, 1
2 ). Since we have q′ real numbers separated by the distance 1/q′, we have exactly q′/2 elements

in [0, 1
2 ) if q′ is even, and (q′ − 1)/2 or (q′ + 1)/2 elements in [0, 1

2 ) if q′ is odd. Then given N , it is sufficient to
write N = q′ν + r′ with 0 ≤ r′ < q′ to get estimates of PN (t).

If q′ is even, we get the estimates

ν
q′

2
≤ PN (t) ≤ (ν + 1)

q′

2
·

Hence

Eu(0)
∣∣∣∣a0 − 1
a0 + 1

∣∣∣∣(ν+1)q′ ∣∣∣∣b0 + 1
b0 − 1

∣∣∣∣2(N+1)−(ν+1)q′

≤ Eu(2N + 2) ≤ Eu(0)
∣∣∣∣a0 − 1
a0 + 1

∣∣∣∣νq′ ∣∣∣∣b0 + 1
b0 − 1

∣∣∣∣2(N+1)−νq′

,

and the behavior of the energy at infinity depends on

KT :=
∣∣∣∣a0 − 1
a0 + 1

∣∣∣∣1/2 ∣∣∣∣b0 + 1
b0 − 1

∣∣∣∣1/2 :

if KT < 1, the energy goes to 0 as Kt
T ; if KT > 1, then the energy goes to infinity as Kt

T .
If q′ is odd, we get the estimate

ν
q′ − 1

2
≤ PN (t) ≤ (ν + 1)

q′ + 1
2
·

Hence

ν
q′

2
≤ PN (t) ≤ (ν + 1)

q′

2
·

Eu(0)
∣∣∣∣a0−1
a0+1

∣∣∣∣(ν+1)(q′+1) ∣∣∣∣b0+1
b0−1

∣∣∣∣2(N+1)−(ν+1)(q′+1)

≤Eu(2N + 2)≤Eu(0)
∣∣∣∣a0−1
a0+1

∣∣∣∣ν(q′−1) ∣∣∣∣b0+1
b0−1

∣∣∣∣2(N+1)−ν(q′−1)

,
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and the behavior of the energy at infinity depends on

KT :=
∣∣∣∣a0 − 1
a0 + 1

∣∣∣∣(q′−1)/2q′ ∣∣∣∣b0 + 1
b0 − 1

∣∣∣∣1−(q′−1)/2q′

:

if KT < 1, the energy goes to 0 as Kt
T ; if K0 > 1, then we can always find initial conditions (the “worst initial

conditions”) such that the energy behaves exactly as Kt
T .

8.2. The equidistributed case: 1/T 6∈ Q
When θ := 1/T /∈ Q, using a consequence of a theorem of Weyl (see, e.g. [28]), we know that the set

{{t′ +mθ},m ∈ N} is uniformly distributed in [0, 1). Hence PN (t) ∼ (N + 1)/2 as N →∞. However we need
some uniformity in t to conclude.

In fact, using the same ideas contained in the proof of the consequence of Weyl’s theorem, we will prove that
the sequence of functions t 7→ PN (t)/(N + 1)− 1/2 converges to 0 uniformly in t ∈ [0, 2] as N →∞.

Indeed, we will prove the following:

Lemma 8.1. For all continuous 1-periodic function,

Sn(ft)→
∫ 1

0

ft(x) dx =
∫ 1

0

f(x) dx as n→∞

uniformly with respect to t ∈ R, where we denote ft(x) := f(x+ t) and

Sn(f) :=
1

n+ 1

n∑
k=0

f(kθ).

Then it is easy to conclude: denote χ the 1-periodic function equal to 1 on [0, 1/2) and 0 on [1/2, 1), and
χ(t)(x) = χ(x+ t). Then we are interested in studying

PN (t) =
N∑
k=0

χ

(
t

2T
+
k

T

)
= (N + 1)SN (χt/2T ).

Choose ε > 0 and denote fε and Fε two continuous and 1-periodic functions such that

0 ≤ fε ≤ χ ≤ Fε,∫ 1

0

Fε(x)− fε(x)dx ≤ ε.

Then

(N + 1)SN (fε,t/2T ) ≤ PN (t) ≤ (N + 1)SN (Fε,t/2T ).

Hence ∣∣∣∣PN (t)
N + 1

−
∫ 1

0

χ(x) dx
∣∣∣∣ ≤ ∣∣∣∣SN (Fε,t/2T )−

∫ 1

0

χ(x) dx
∣∣∣∣+
∣∣∣∣SN (fε,t/2T )−

∫ 1

0

χ(x) dx
∣∣∣∣

≤
∣∣∣∣SN (Fε,t/2T )−

∫ 1

0

Fε(x) dx
∣∣∣∣+
∣∣∣∣SN (fε,t/2T )−

∫ 1

0

fε(x) dx
∣∣∣∣ + 2ε ≤ 4ε

using Lemma 8.1 and choosing N large enough (independent of t).



STABILIZATION BY ON-OFF FEEDBACKS 357

Hence in the case q = 2, PN (t)/(N + 1)→ 1/2 as N →∞ and uniformly with respect to t. Hence the energy
behaves as (∣∣∣∣a0 − 1

a0 + 1

∣∣∣∣1/2 ∣∣∣∣b0 + 1
b0 − 1

∣∣∣∣1/2
)t
·

Proof of Lemma 8.1. Let f : R→ R continuous and 1-periodic. Let

Q : x 7→
M∑
m=0

cme2iπmx

be a trigonometrical polynomial function close to f in the space of the continuous bounded functions endowed
with the usual ‖ · ‖∞. Denote ft(x) := f(x+ t) and Qt(x) := Q(x+ t), and

Sn(f) :=
1

n+ 1

n∑
k=0

f(kθ).

First we verify that property for the polynomial function Q: since

Qt(x) =
M∑
m=0

cme2iπm(x+t) =
M∑
m=0

cme2iπmte2iπmx

=
∫ 1

0

Qt(x) dx+
M∑
m=1

cme2iπmte2iπmx,

we easily see that

∣∣∣∣Sn(Qt)−
∫ 1

0

Qt(x) dx
∣∣∣∣ =

∣∣∣∣∣ 1
n+ 1

n∑
k=0

M∑
m=1

cme2iπmte2iπmkθ

∣∣∣∣∣
≤ 1
n+ 1

M∑
m=1

|cm|
∣∣∣∣∣
n∑
k=0

e2iπmkθ

∣∣∣∣∣
≤ 1
n+ 1

M∑
m=1

|cm|
∣∣∣∣ 2
1− e2iπmθ

∣∣∣∣ ≤ c(Q)
n+ 1

,

where c(Q) is some constant that depends on Q but not on t.
Next we conclude the proof of Lemma 8.1:∣∣∣∣Sn(ft)−

∫ 1

0

ft(x) dx
∣∣∣∣ ≤ |Sn(ft)− Sn(Qt)|+

∣∣∣∣Sn(Qt)−
∫ 1

0

Qt(x) dx
∣∣∣∣ +
∣∣∣∣∫ 1

0

Qt(x) dx−
∫ 1

0

ft(x) dx
∣∣∣∣

≤ 2‖f −Q‖∞ +
c(Q)
n+ 1

·
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Hence, given ε > 0, there exists some polynomial function Qε and nε such that for all n ≥ nε we have∣∣∣∣Sn(ft)−
∫ 1

0

ft(x) dx
∣∣∣∣ ≤ 2‖f −Qε‖∞ +

c(Qε)
n+ 1

≤ 3ε

for all t ∈ R.

9. Proof of Proposition 5.2 (estimate of the extinction time)

Proof of (ii). When T is not an exceptional value, the proof of Theorem 2.1 provides an estimate of the time
in which the energy achieves zero: we proved that Eu(2mN + 2) = 0 if m and N are integers chosen such that

0 <
{
m

{
2
qT

}}
≤ 1
q

and N

{
m

{
2
qT

}}
≥ q − 1

q
, (9.1)

which proves (ii).

Remark. Note that if q = 2, we can retrieve the result of Proposition 5.1. Indeed if q = 2, equation (9.1)
means that

0 <
{
m
r

2

}
≤ 1

2
and Nρ ≥ 1, (9.2)

where 2 = 2`T + rT with 0 < r < 2 and ρ := {mr}. Thus in particular if 0 < r < 1, then (9.2) is satisfied
with m := 1 and N the smallest integer such that Nr ≥ 1, so we find again the result proved after Lemma 6.1.
However, in the case 1 < r < 2, we do not retrieve directly the optimal estimates proved in Lemma 6.1. Indeed,
when r = 1 + ε with ε > 0 and small, equation (9.2) gives a really bad estimate: it is satisfied for m = 2 and
N has to be large enough such that 2Nε ≥ 1. However we can overcome this difficulty with an argument of
symmetry:

Lemma 9.1. Assume that q ≥ 2 and that T and T ′ satisfy{
2
qT ′

}
= 1−

{
2
qT

}
· (9.3)

Denote

Bq(T ) :=
⋃
n∈N

[(qn+ 1)T, q(n+ 1)T )

and

Bq(T ′) :=
⋃
n∈N

[(qn+ 1)T ′, q(n+ 1)T ′).

Fix N ∈ N. Then if t, t+ 2, · · · , t+ 2N are all in Bq(T ), then t′, t′ + 2, · · · , t′ + 2N are all in Bq(T ′), with

t′ :=
(
t+ 2N
T

)
T ′.
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Note that (9.3) means that

2 = q`T + rT = q`′T ′ + r′T ′

with r′ = q − r.
Hence returning to the case q = 2 with 1 < r < 2, we deduce from Lemma 9.1 that for all t, t, t+2, · · · , t+2N

cannot be all in B2 if Nr′ = N(2− r) ≥ 1.

Remark. In a general way, if r ∈ (0, 1], Lemma 7.1 gives us the optimal estimate on N : choosing m = 1,
k = 0, we obtain that Eu(2N + 2) = 0 if Nr ≥ q − 1, and Lemma 9.1 allows us to say that if q − 1 ≤ r < q,
then Eu(2N + 2) = 0 if N(q − r) ≥ q − 1, and it is easy to see that these values of N are the best possible (as
in the case q = 2).

Proof of Lemma 9.1. First note that t ∈ Bq(T ) implies that t′ ∈ Bq(T ′). Next note that

t′ + 2
T ′

=
t+ 2N
T

+ q`′ + r′ =
t+ 2N
T

+ q`′ + q − 2
T

+ q` =
t+ 2(N − 1)

T
+ q(1 + `+ `′),

and we easily verify that for all m ∈ {0, · · · , N} we have

t′ + 2m
T ′

=
t+ 2(N −m)

T
+mq(1 + `+ `′).

Hence t+ 2(N −m) ∈ Bq(T ) implies that t′ + 2m ∈ Bq(T ′).
Proof of (i). Now we study carefully the case q = 3 and we prove (i). Write

2 = 3`T + rT, with ` ∈ N and 0 < r < 3 : (9.4)

Theorem 2.1 implies that the energy achieves zero in finite time if r is different from 0 and 3/2. When 0 < r ≤ 1
and when 2 ≤ r < 3 (i.e. when we are in the case (5.3)), we already know the best possible estimate. It remains
to study the case 1 < r < 2 or only the case 3

2 < r < 2 using Lemma 9.1. Note that we are in the case (5.4).
First we prove the following:

Lemma 9.2. Assume that 3
2 < r < 2. Fix N ′ ≥ 1

2r−3 and choose N := 2N ′. Given t ∈ [0, 2), it is not possible
for t, t+ 2, · · · , t+ 2N to be all in B3.

Note that Lemma 9.2 implies that the energy achieves zero in time at most 2N + 2, but is weaker than (5.5).

Proof of Lemma 9.2. Assume that 3/2 < r < 2. Assume that t, t+ 2, · · · , t+ 2N = t+ 4N ′ are all in B3 and
assume that t ∈ [(3n0 +1)T, (3n0+3)T ). It is interesting to distinguish the two cases t ∈ [(3n0 +1)T, (3n0+2)T )
and t ∈ [(3n0 + 2)T, (3n0 + 3)T ).

Assume first that t ∈ [(3n0 + 1)T, (3n0 + 2)T ). Then, using that 2 = 3`T + rT with T < rT < 2T ,

t+ 2 ∈ [(3n0 + 1)T + 3`T + T, (3n0 + 2)T + 3`T + 2T ).

Since t+ 2 is in B3, this gives that

t+ 2 ∈ [3n0T + 3`T + 2T, 3n0T + 3`T + 3T ).

Using that t+ 4 is in B3, we obtain

t+ 4 ∈ [3n0T + 3T + 6`T + T, 3n0T + 3T + 6`T + 2T ).
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Then we can easily prove by induction that for all m ∈ {0, · · · , N ′} we have

t+ 4m ∈ [3n0T + 3mT + 6m`T + T, 3n0T + 3mT + 6m`T + 2T ).

Thus, for all m ∈ {0, · · · , N ′} we have

3n0T + T ≤ t+ (2r − 3)mT < 3n0T + 2T, (9.5)

and for all m ∈ {0, · · · , N ′ − 1} we have

3(n0 + `)T + 2T ≤ t+ 2 + (2r − 3)mT < 3(n0 + `)T + 3T. (9.6)

Assume that 3
2 < r < 2. Since t ≥ 3(n0 + 1)T , we easily derive from (9.5) that

3n0T + T + (2r − 3)N ′T < 3n0T + 2T,

which contradicts our choice of N ′. When 1 < r < 3
2 , the reasonment is identical. And then we can treat

similarily the case t ∈ [(3n0 + 2)T, (3n0 + 3)T ).

However we did not use all the informations we had: we only used the fact that t, t + 4, · · · , t + 4N ′ were
in B3. Now we prove the following optimal result:

Lemma 9.3. (i) Let N ′T be defined (5.5) and NT := 2N ′T − 1 Then given t ∈ [0, 2), it is not possible for t,
t+ 2, · · · , t+ 2NT to be all in B3.

Proof of (ii). Moreover there exists a non empty interval I ⊂ [0, 2) such that τ2k(I) ⊂ B3 for all k ∈ {0, · · · ,
NT − 1}, where τ2k denotes the translation of 2k.

Note that Lemma 9.3 implies that if you choose initial conditions supported in I, then Eu(2NT ) = Eu(0)
whereas for every solution v, Ev(2NT + 2) = 0.

Proof of Lemma 9.3. (i) It is based on (9.5) and (9.6). Assume that 3/2 < r < 2. Assume that t, t+ 2, · · · ,
t + 4N ′ − 2 are all in B3. Note that it implies that t+ 4N ′ is also in B3 (indeed if t′ ∈ B3 and t′ + 2 ∈ B3, we
can deduce, using 3/2 < r < 2, that t′ + 4 ∈ B3). Then we derive from (9.5) and (9.6) that

t+ (2r − 3)N ′T < 3n0T + 2T, (9.7)

and

t+ 2 + (2r − 3)(N ′ − 1)T < 3(n0 + `)T + 3T. (9.8)

But we easily verify that (9.8) implies (9.7) since r < 2. Then, using t ≥ 3(n0 + 1)T and 2 = 3lT + rT , we
deduce from (9.8) that

3n0T + T + (2r − 3)(N ′ − 1)T < 3n0T + (3− r)T,

thus (2r − 3)N ′ < r − 1. But N ′T (defined by (5.5)) is the smallest integer such that

(2r − 3)N ′T ≥ r − 1.

Hence it is not possible for t, t+ 2, · · · , t+ 4N ′T − 2 to be all in B3.
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(ii) On the other hand, it is possible to find a small interval I ⊂ B3 ∩ [0, 2) such that for all t ∈ I, t, t+ 2, · · · ,
t+ 4N ′T − 4 = t+ 2(NT − 1) are all in B3. Indeed consider t′ := (1 + ε′)T , with ε′ > 0 (and small). Then (9.8)
is satisfied for N ′ := N ′T − 1:

T + 2 + (2r − 3)(N ′ − 1)T = T + 3`T + rT + (2r − 3)(N ′T − 2)T < 3`T + (1 + r + r − 1− 2r + 3)T
= 3`T + 3T ;

hence

(1 + ε′)T + 2 + (2r − 3)(N ′T − 2)T < 3`T + 3T

if ε′ is small enough. Moreover

(1 + ε′)T + 2 = 3`T + (r + 1 + ε′)T ≥ 3`T + 2T.

Thus, for ε′ small enough, we have{
3`T + 2T ≤ t′ + 2 < t′ + 2 + (2r − 3)(N ′T − 2)T < 3`T + 3T,
T ≤ t′ < t′ + (2r − 3)(N ′T − 1)T < 2T,

hence we deduce from (9.5–9.6) that t′, t′ + 2, · · · , t′ + 4(N ′T − 1) are all in B3.

10. Proof of Theorem 2.3 when q = 2 (locally distributed on-off feedback)

The previous proofs were based on the d’Alembert’s formula, which is not valid for the solutions of (1.2).
Hence we will need the following useful caracterization of uniform exponential decay of the energy by an
observability inequality. This generalizes the classical caracterization known in the case of time independent
feebacks (see Haraux [8]). Since it is completely general, we set it in a general case.

10.1. The useful tool

Let Ω be an open bounded domain of RN and ω an open subset of Ω. Consider the problems
utt −∆u = −a(t)χω(x)ut on Ω× R+,

u = 0 on ∂Ω× R+,

u(0) = u0, ut(0) = u1,

(10.1)


φtt −∆φ = 0 on Ω× R+,

φ = 0 on ∂Ω× R+,

φ(0) = φ0, φt(0) = φ1.

(10.2)

Then:

Proposition 10.1. Assume that the function a : R+ → R+ is bounded and periodic of period T̃ . Then there
exists T ∗ = K∗T̃ for some K∗ ∈ N and C > 0 such that for all (φ0, φ1) ∈ H1

0 (Ω)× L2(Ω)

Eφ(0) ≤ C
∫ T∗

0

∫
ω

a(t)φt(x, t)2 dxdt (10.3)
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if and only if the solutions of (10.1) decay uniformly exponentially to 0, that means if there exists T1 > 0 and
δ > 0 such that for all (u0, u1) ∈ H1

0 (Ω)× L2(Ω), we have

∀t > 0, Eu(t) ≤ Eu(0)eδ(T1−t). (10.4)

This property is well known in the case of time independant feedbacks (i.e. when the function a remains constant
with time) and the proof is easily adaptable in the case where a is a time periodic function. To be complete,
we give the proof of Proposition 10.1 in Section 13.

Now consider again Ω = (0, 1) and the function a : R+ → R+ defined by (1.3). It is natural to look first to
the uniformly distributed case before studying the locally distributed case.

10.2. Proof of Theorem 2.3 when q = 2 and ω = (0, 1)

In this section we consider the case where the feedback is uniformly distributed in (0, 1). Using Proposi-
tion 10.1, to prove the uniform exponential decay of the solutions of (1.2), it is sufficient to prove that the
solutions of (2.6) satisfy

Eφ(0) ≤ C
∫ T∗

0

∫
Ω

a(t)φt(x, t)2 dxdt (10.5)

for some T ∗ > 0. Equation (10.5) follows from 5.1, but there is also a simple direct proof based on spectral
decomposition that we recall here: usual computations give that all the solutions of (2.6) are

φ(x, t) =
∞∑
k=1

(Ak cos(kπt) +Bk sin(kπt))
√

2 sin(kπx),

and their energy (that is constant with time) is

Eφ(0) =
π2

2

∞∑
k=1

k2(Ak2 +Bk
2).

First let us observe that we can assume that T < 1: indeed if T ≥ 1

∫ 1

0

∫
Ω

φt(x, t)2 dxdt =
∫ 1

0

∫
Ω

( ∞∑
k=1

(−kπAk sin(kπt) + kπBk cos(kπt))
√

2 sin(kπx)

)2

dxdt

=
∫ 1

0

∞∑
k=1

k2π2(−Ak sin(kπt) +Bk cos(kπt))2 dt

=
π2

2

∞∑
k=1

k2(Ak2 +Bk
2) = Eφ(0).
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Now assume that T < 1 and compute the right-hand side of (10.5) with T ∗ = T :

∫ T

0

∫
Ω

a(t)φt(x, t)2 dxdt =
∫ T

0

∫
Ω

( ∞∑
k=1

(−kπAk sin(kπt) + kπBk cos(kπt))
√

2 sin(kπx)

)2

dxdt

=
∫ T

0

∞∑
k=1

k2π2(−Ak sin(kπt) +Bk cos(kπt))2 dt

= π2
∞∑
k=1

k2(αkAk2 + βkBk
2 + 2γkAkBk),

with

αk :=
T

2
− 1

4kπ

[
sin(2kπt)

]T
0
,

βk :=
T

2
+

1
4kπ

[
sin(2kπt)

]T
0
,

γk :=
1

4kπ

[
cos(2kπt)

]T
0
.

Let us denote the symmetric matrix

Mk =
(
αk γk
γk βk

)
=:

T

2
Id+Nk.

The matrix Mk has two real eigenvalues rk ≤ sk. The proof of (10.5) will be complete if we prove that there
exists α > 0 such that rk ≥ α > 0 for all k ∈ N∗. Indeed, if we denote ψk := (Ak, Bk) ∈ R2, and (· | ·) the
euclidean product of R2, we have∫ T

0

∫
Ω

a(t)φt(x, t)2 dxdt = π2
∞∑
k=1

k2
(
Mk · ψk | ψk

)
≥ απ2

∞∑
k=1

k2(Ak2 +Bk
2) = 2αEφ(0).

So let us study the eigenvalues of Nk; the trace of Nk is equal to 0, thus Nk has two opposite eigenvalues. We
compute its determinant to know them:

detNk =
−1

16k2π2

[(
[sin(2kπt)]T0

)2

+
(

[cos(2kπt)]T0
)2
]

= −
(

sin(kπT )
2kπ

)2

·

Hence

rk =
T

2
−
∣∣∣∣sin(kπT )

2kπ

∣∣∣∣ =
T

2

(
1−

∣∣∣∣ sin(kπT )
kπT

∣∣∣∣) ≥ T

2
(1− CT )

where

CT := sup
k

∣∣∣∣ sin(kπT )
kπT

∣∣∣∣ = max
k

∣∣∣∣ sin(kπT )
kπT

∣∣∣∣ < 1.

10.3. Proof of Theorem 2.3 when q = 2 and ω = (1/2− λ, 1/2 + λ) in the case 1/T 6∈ 2N
Write

1 = 2`T + rT, with 0 < r < 2. (10.6)
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Then we have the following:

Lemma 10.1. When 0 < r ≤ 1, let Nr the smallest integer such that rNr ≥ 1, and when 1 ≤ r < 2, let Nr the
smallest integer such that (2− r)Nr ≥ 1. Then for all t ∈ [0, 1], a(t) + a(t+ 1) + · · ·+ a(t+Nr) ≥ 1.

Proof of Lemma 10.1. We let it to the reader since it is very similar to Lemma 6.1: denote G2 := ∪n[2nT, 2nT+
T ) and B2 := R+ \G, and verify that, given t ∈ [0, 1], it is not possible for t, t+1, · · · , t+Nr to be all in B2.

Now we are ready to prove that (10.3) is satisfied with T ∗ := Nr + 1.
First verify that φt(x, t + 2) = φt(x, t), and φt(x, t + 1) = −φt(1 − x, t). Then using the fact that ω is

symmetrical with respect to 1/2, we obtain that∫
ω

φt(x, t+ 1)2 dx =
∫
ω

φt(x, t)2 dx.

Therefore we have∫ T∗

0

∫
ω

a(t)φt(x, t)2 dxdt =
Nr∑
m=0

∫ (m+1)T

mT

a(t)
∫
ω

φt(x, t)2 dxdt

=
Nr∑
m=0

∫ 1

0

a(t+m)
∫
ω

φt(x, t+m)2 dxdt

=
Nr∑
m=0

∫ 1

0

a(t+m)
∫
ω

φt(x, t)2 dxdt

=
∫ 1

0

(
Nr∑
m=0

a(t+m)

)∫
ω

φt(x, t)2 dxdt ≥
∫ 1

0

∫
ω

φt(x, t)2 dxdt.

But from 5.1, we have ∫ 1

0

∫
ω

φt(x, t)2 dxdt ≥ CλEφ(0).

Once again there is also a simple proof based on spectral decomposition:

∫ 1

0

∫
ω

φt(x, t)2 dxdt =
∫ 1

0

∫
ω

∞∑
k=1

∞∑
l=1

(−kπAk sin(kπt) + kπBk cos(kπt))

(−lπAl sin(lπt) + lπBl cos(lπt)) (2 sin(kπx) sin(lπx)) dxdt

=
∞∑
k=1

∞∑
l=1

(∫ 1

0

(−kπAk sin(kπt) + kπBk cos(kπt)) (−lπAl sin(lπt) + lπBl cos(lπt)) dt
)

(∫
ω

2 sin(kπx) sin(lπx) dx
)
.

It is easy to verify first that when k = l:∫ 1

0

(−kπAk sin(kπt) + kπBk cos(kπt))2 dt =
π2

2
k2(Ak2 +Bk

2),
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and ∫
ω

2 sin(kπx)2 dx = 2λ
(

1− (−1)k
sin(2kπλ)

2kπλ

)
≥ 2λ(1− Cλ)

(remember that Cλ < 1); next when k 6= l, we verify that∫ 1

0

(−kπAk sin(kπt) + kπBk cos(kπt)) (−lπAl sin(lπt) + lπBl cos(lπt)) dt = 0

if k + l is even, and ∫
ω

2 sin(kπx) sin(lπx) dx = 0

if k + l is odd. Hence

∫ 1

0

∫
ω

φt(x, t)2 dxdt = λπ2
∞∑
k=1

k2(Ak2 + Bk
2)
(

1− (−1)k
sin(2kπλ)

2kπλ

)
≥ λπ2(1 − Cλ)

∞∑
k=1

k2(Ak2 + Bk
2).

10.4. Proof of Theorem 2.3 when q = 2 and ω = (1/2− λ, 1/2 + λ) in the case 1/T ∈ 2N
and 2λ < T

Now we assume that

1 = 2`T and 2λ < T. (10.7)

We will construct some solutions φ of (2.6) such that Eφ(0) 6= 0 and such that

∀T ∗ > 0,
∫ T∗

0

a(t)
∫
ω

φ2
t (x, t) dxdt = 0. (10.8)

It will first prove that Theorem 5.2 is optimal. Moreover it implies that aχωφt ≡ 0. Thus φ is also solution
of (1.2) with Eφ(t) = Eφ(0) > 0 for all t ≥ 0, which proves Theorem 2.3 when q = 2 in this case.

First remark that, since 1 = 2`T , a is 1-periodic, thus to obtain (10.8), it is sufficient to prove∫ 1

0

a(t)
∫
ω

φt
2(x, t) dxdt = 0. (10.9)

Let us consider f : (−1,+∞) → R an absolutely continuous function (that we will choose later) such that
f ′ ∈ L2

loc(−1,∞) and such that f is 2-periodic. Then we define

φ(x, t) = f(t+ x) − f(t− x), (x, t) ∈ (0, 1)× R+.

We easily verify that φ is solution of (2.6). Note also that

Eφ(0) =
∫ 1

−1

f ′(s)2 ds =
∫ 3/2+λ

−1/2−λ
f ′(s)2 ds, (10.10)
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and ∫ 1

0

a(t)
∫
ω

φ2
t (x, t) dxdt =

`−1∑
m=0

∫ (2m+1)T

2mT

a(t)
∫ 1/2+λ

1/2−λ
(f ′(t+ x)− f ′(t− x))2 dxdt. (10.11)

For all m ∈ {0, ..., `− 1}, we have {
t ∈ (2mT, (2m+ 1)T )
x ∈ (1/2− λ, 1/2 + λ)

(10.12)

=⇒
{
t+ x ∈ (am, bm) := (2mT + 1/2− λ, (2m+ 1)T + 1/2 + λ)
t− x ∈ (αm, βm) := (2mT − 1/2− λ, (2m+ 1)T − 1/2 + λ)

Using that 2λ < T , we verify that

−1/2− λ = α0 < β0 < α1 < ... < αl−1 < βl−1 < a0 < b0 < a1 < ... < bl−1 < 3/2− λ. (10.13)

Then we denote

A =

(
l−1⋃
m=0

(am, bm)

)
∪
(
l−1⋃
m=0

(αm, βm)

)
.

Now we choose f . It is sufficient to determine f(s) for s ∈ (−1/2− λ, 3/2− λ) since f is 2-periodic. First we
decide to choose f(s) = 0 for all s ∈ A so that, from (10.11) and (10.12), we have (10.9). Then we can choose
f on (−1/2− λ, 3/2− λ) \ A such that f(−1/2− λ) = f(3/2− λ) and Eφ(0) 6= 0. It is possible from (10.10)
and from (10.13) since it implies that (−1/2− λ, 3/2− λ) \A 6= ∅.

10.5. Proof of Theorem 2.3 when q = 2 and ω = (1/2 − λ, 1/2 + λ) and 1/T ∈ 2N and
2λ > T

We assume that

1 = 2`T and 2λ > T. (10.14)

Then Theorem 2.3 when q = 2 follows directly from Proposition 10.1 and Theorem 5.2.

11. Proof of Theorem 5.2 (observability inequalities)

Notations and preliminaries

We will first consider smooth solution φ of (2.6) and next we will deduce the result for all solution φ of (2.6)
with (φ0, φ1) ∈ H1

0 (0, 1)× L2(0, 1) by an argument of density.
Assume T = 1/(2`) and 2λ > T . There exists λ′ such that λ > λ′ > T/2. We introduce δ = λ′ − T/2 > 0

and η = δ/8.
We can apply Theorem 5.1 to the interval (a′, b′) = (1/2− λ′, 1/2 + λ′) in space and (η, 1− T − η) in time,

since we have
1− T − 2η > 2 max(a′, 1− b′) = 1− 2λ′.

Hence there exists C > 0 such that, for all solution of (2.6),

Eφ(0) ≤ C

∫ 1−T−η

η

∫ 1/2+λ′

1/2−λ′
φ2
t (x, t) dxdt.
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For all smooth solution φ of (2.6), we also define

∀(x, t) ∈ [0, 1]× R+, f(x, t) = φ2
t (x, t) + φ2

x(x, t).

So the starting point of the proof will be the following inequality: there exists C > 0 such that, for all smooth
solution φ of (2.6),

Eφ(0) ≤ C

∫ 1−T−η

η

∫ 1/2+λ′

1/2−λ′
f(x, t) dxdt. (11.1)

Step 1. The main step of the proof is the following lemma (proved in Sect. 11.1):

Lemma 11.1. Using the previous assumptions and notations, there exists C > 0 such that, for all smooth
solution φ of (2.6),

l−2∑
p=0

∫ (2p+2)T+η

(2p+1)T−η

∫ 1/2+λ′

1/2−λ′
f(x, t) dxdt ≤ C

l−1∑
p=0

∫ (2p+1)T−η

2pT+η

∫ 1/2+λ′

1/2−λ′
f(x, t) dxdt. (11.2)

If we combine (11.1) with Lemma 11.1, we obtain: there exists C > 0 such that, for all φ solution of (2.6),

Eφ(0) ≤ C

∫ 1−T−η

η

∫ 1/2+λ′

1/2−λ′
f(x, t) dxdt = C

l−1∑
p=0

∫ (2p+1)T−η

2pT+η

∫ 1/2+λ′

1/2−λ′
f(x, t) dxdt

+ C
l−2∑
p=0

∫ (2p+2)T+η

(2p+1)T−η

∫ 1/2+λ′

1/2−λ′
f(x, t) dxdt

≤ C′
l−1∑
p=0

∫ (2p+1)T−η

2pT+η

∫ 1/2+λ′

1/2−λ′
φ2
t (x, t) + φ2

x(x, t) dxdt. (11.3)

Step 2. We use the following lemma (proved in Sect. 11.2):

Lemma 11.2. For all ν > 0, ε > 0 and for all ν ≤ T1 ≤ T2, ν ≤ α ≤ β ≤ 1− ν, there exists Cε > 0 such that,
for all smooth solution φ of (2.6),∫ T2

T1

∫ β

α

φ2
x(x, t) dxdt ≤ Cε

∫ T2+ν

T1−ν

∫ β+ν

α−ν
φ2
t (x, t) + φ2(x, t) dxdt + εEφ(0). (11.4)

For all p ∈ {0, . . . , l − 1}, we apply Lemma 11.2 to T1 = 2pT + η, T2 = (2p + 1)T − η, α = a′ = 1/2− λ′ and
β = b′ = 1/2 + λ′ and with 2ν < min(η, λ − λ′). Combined with (11.3), this gives: for all ε > 0, there exists
Cε > 0 such that, for all φ solution of (2.6),

Eφ(0) ≤ Cε

l−1∑
p=0

∫ (2p+1)T−η+ν

2pT+η−ν

∫ 1/2+λ′+ν

1/2−λ′−ν
φ2
t (x, t) + φ2(x, t) dxdt + εEφ(0)

≤ Cε

l−1∑
p=0

∫ (2p+1)T−η+ν

2pT+η−ν

∫ 1/2+λ−ν

1/2−λ+ν

φ2
t (x, t) + φ2(x, t) dxdt + εEφ(0).
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If we chose ε small enough, we deduce: there exists C > 0 such that, for all smooth solution φ of (2.6),

Eφ(0) ≤ C
l−1∑
p=0

∫ (2p+1)T−η+ν

2pT+η−ν

∫ 1/2+λ−ν

1/2−λ+ν

φ2
t (x, t) + φ2(x, t) dxdt. (11.5)

Moreover by density, this inequality still holds for all solution φ of (2.6) with (φ0, φ1) ∈ H1
0 (0, 1)× L2(0, 1).

Step 3. Now we use the following lemma (proved in Sect. 11.3):

Lemma 11.3. Let I ′ $ I ⊂ [0, T ′] with T ′ > 0 and let ω′ $ ω ⊂ (0, 1). Assume that there exists C > 0 such
that, for all φ solution of (2.6) with (φ0, φ1) ∈ H1

0 (0, 1)× L2(0, 1),

Eφ(0) ≤ C

∫
I′

∫
ω′
φ2
t (x, t) + φ2(x, t) dxdt. (11.6)

Then there exists C > 0 such that, for all φ solution of (2.6) with (φ0, φ1) ∈ H1
0 (0, 1)× L2(0, 1),∫

I′

∫
ω′
φ2(x, t) dxdt ≤ C

∫
I

∫
ω

φ2
t (x, t) dxdt. (11.7)

If we apply this lemma to ω′ = (1/2 − λ + ν, 1/2 + λ − ν), ω = (1/2 − λ, 1/2 + λ), I ′ = ∪l−1
p=0[2pT + η − ν,

(2p + 1)T − η + ν] and I = ∪l−1
p=0[2pT, (2p+ 1)T ], equation (5.13) follows directly from (11.5), which ends the

proof of Theorem 5.2.

11.1. Proof of Lemma 11.1

The proof is divided in two steps.
The first step is based on a method introduced by Haraux in [9] that consists of exchanging the role of the two

variables x and t. In [9], Haraux used this method to an estimate of an integral over (0, 1)× (T/2− ν, T/2 + ν)
(for some ν small) by an integral over (a, b) × (0, T ). Here we use it to obtain an estimate of an integral over
(1/2− δ/2, 1/2 + δ/2)× (0, T ) by an integral over (1/2− λ, 1/2 + λ)× I. The proof is based on Lemma 11.4.

In the second step, we estimate the integral over (1/2−λ, 1/2+λ)×(0, T ) by an integral over (1/2−δ/2, 1/2+
δ/2) × (0, T ). In the case of [9], we had directly an estimate of the integral over (0, 1)× (0, T ) by an integral
over (0, 1)× (T/2− ν, T/2 + ν) that followed from the energy equality obtained when we multiply the equation
by φt and take the integral over x ∈ (0, 1). Here the role of x and t are opposite. So the proof is based on
Lemma 11.5, that gives the equality that we obtain when we multiply the equation by φx and take the integral
over t.

Step 1. In a first step, we will prove the following inequalities: there exists C > such that, for all solution φ
of (2.6),

∀p ∈ {1, . . . , l − 2}, ∀t ∈ [(2p+ 1)T − η, (2p+ 1)T + T/2],∫ 1/2+δ/2

1/2−δ/2
f(x, t) dx ≤ C

∫ (2p+1)T−η

(2p+1)T−3η

∫ 1/2+λ′−η

1/2−λ′+η
f(x, σ) dxdσ. (11.8)

∀p ∈ {1, . . . , l − 2}, ∀t ∈ [(2p+ 1)T + T/2, (2p+ 1)T + η],∫ 1/2+δ/2

1/2−δ/2
f(x, t) dx ≤ C

∫ (2p+2)T+3η

(2p+2)T+η

∫ 1/2+λ′−η

1/2−λ′+η
f(x, σ) dxdσ. (11.9)

Proof of (11.8). The proof is based on the following lemma (proved in Sect. 11.4):
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Lemma 11.4. For all t, ξ such that 0 ≤ a′ + (t− ξ) ≤ b′ − (t− ξ) ≤ 1,

d
dt

∫ b′−(t−ξ)

a′+(t−ξ)
f(x, t) dx ≤ 0.

We can apply this lemma for all t, ξ such that 0 ≤ t− ξ ≤ (b′− a′)/2 = λ′, and take the integral between t0 and
t such that t0 ≤ t, which gives:

∀t0, t, ξ such that 0 ≤ t0 − ξ ≤ t− ξ ≤ λ′,∫ 1/2+λ′−(t−ξ)

1/2−λ′+(t−ξ)
f(x, t) dx ≤

∫ 1/2+λ′−(t0−ξ)

1/2−λ′+(t0−ξ)
f(x, t0) dx. (11.10)

For all p ∈ {1, . . . , l− 2}, we choose

t ∈ [(2p+ 1)T − η, (2p+ 1)T + T/2], and ξ ∈ [(2p+ 1)T − 4η, (2p+ 1)T − 2η], (11.11)

and we take t0 = ξ + η. Note that t0 ∈ [(2p+ 1)T − 3η, (2p+ 1)T − η].
Under condition (11.11), we can verify, using the definition of η,

0 ≤ η = t0 − ξ ≤ t− ξ ≤
T

2
+ 4η = λ′ − δ

2
≤ λ′. (11.12)

Therefore we can apply (11.10), which gives: for all t, ξ satisfying (11.11),

∫ 1/2+λ′−(t−ξ)

1/2−λ′+(t−ξ)
f(x, t) dx ≤

∫ 1/2+λ′−η

1/2−λ′+η
f(x, ξ + η) dx. (11.13)

From (11.12), we deduce that, for all t, ξ satisfying (11.11), we have

1
2
− λ′ + (t− ξ) ≤ 1

2
− δ

2
≤ 1

2
+
δ

2
≤ 1/2 + λ′/2− (t− ξ),

which implies

∫ 1/2+δ/2

1/2−δ/2
f(x, t) dx ≤

∫ 1/2+λ′−(t−ξ)

1/2−λ′+(t−ξ)
f(x, t) dx. (11.14)

On the other hand, using the average formula, we have:
∃ξ0 such that (2p+ 1)T − 3η ≤ ξ0 + η ≤ (2p+ 1)T − η and

∫ 1/2+λ′−η

1/2−λ′+η
f(x, ξ0 + η) dx =

1
2η

∫ (2p+1)T−η

(2p+1)T−3η

∫ 1/2+λ′−η

1/2−λ′+η
f(x, σ) dxdσ. (11.15)

Since ξ0 ∈ [(2p+ 1)T − 4η, (2p+ 1)T − 2η], we can choose ξ = ξ0 in (11.13), and using (11.14) and (11.15), we
obtain (11.8).

Proof of (11.9). We can prove (11.9) by a similar proof proceeding backward in t.
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Step 2. We use the following lemma (proved in Sect. 11.5):

Lemma 11.5. For all 0 ≤ T1 ≤ T2 and for all x0 ∈ (1/2− λ′, 1/2 + λ′),∫ T2

T1

f(x0, t) dt ≤ 1
δ

∫ T2

T1

∫ 1/2+δ/2

1/2−δ/2
f(x, t) dxdt+

∫ 1/2+λ′

1/2−λ′
f(x, T1) + f(x, T2) dx.

For all p ∈ {1, . . . , l−1}, we apply this lemma to T1 = (2p+1)T−σ1 and T2 = (2p+2)T+σ2 where we choose σ1

and σ2 as following: using the average formula, there exists σ1 such that 2pT+η ≤ (2p+1)T−σ1 ≤ (2p+1)T−η
and ∫ 1/2+λ′

1/2−λ′
f(x, (2p+ 1)T − σ1) dx =

1
T − 2η

∫ (2p+1)T−η

2pT+η

∫ 1/2+λ′

1/2−λ′
f(x, t) dxdt,

and there exists σ2 such that (2p+ 2)T + η ≤ (2p+ 2)T + σ2 ≤ (2p+ 3)T − η and∫ 1/2+λ′

1/2−λ′
f(x, (2p+ 2)T + σ2) dx =

1
T − 2η

∫ (2p+3)T−η

(2p+2)T+η

∫ 1/2+λ′

1/2−λ′
f(x, t) dxdt.

Applying Lemma 11.5 and using that σ1, σ2 ≥ η, we deduce, for all x0 ∈ (1/2− λ′, 1/2 + λ′),∫ (2p+2)T+η

(2p+1)T−η
f(x0, t) dt ≤

∫ (2p+2)T+σ2

(2p+1)T−σ1

f(x0, t) dt ≤ 1
δ

∫ (2p+2)T+σ2

(2p+1)T−σ1

∫ 1/2+δ/2

1/2−δ/2
f(x, t) dxdt

+
∫ 1/2+λ′

1/2−λ′
f(x, (2p+ 1)T − σ1) + f(x, (2p+ 2)T + σ2) dx

≤ 1
δ

∫ (2p+1)T−η

(2p+1)T−σ1

∫ 1/2+δ/2

1/2−δ/2
f(x, t) dxdt+

1
δ

∫ (2p+2)T+η

(2p+1)T−η

∫ 1/2+δ/2

1/2−δ/2
f(x, t) dxdt

+
1
δ

∫ (2p+2)T+σ2

(2p+2)T+η

∫ 1/2+δ/2

1/2−δ/2
f(x, t) dxdt

+
1

T − 2η

∫ (2p+1)T−η

2pT+η

∫ 1/2+λ′

1/2−λ′
f(x, t) dxdt+

1
T − 2η

∫ (2p+3)T−η

(2p+2)T+η

∫ 1/2+λ′

1/2−λ′
f(x, t) dxdt.

We use that (2p + 1)T − σ1 ≥ 2pT + η, (2p + 2)T + σ2 ≤ (2p + 3)T − η and that 1/2 − λ′ ≤ 1/2 − δ/2 ≤
1/2 + δ/2 ≤ 1/2 + λ′, to obtain∫ (2p+1)T−η

(2p+1)T−σ1

∫ 1/2+δ/2

1/2−δ/2
f(x, t) dxdt ≤

∫ (2p+1)T−η

2pT+η

∫ 1/2+λ′

1/2−λ′
f(x, t) dxdt,

and ∫ (2p+2)T+σ2

(2p+2)T+η

∫ 1/2+δ/2

1/2−δ/2
f(x, t) dxdt ≤

∫ (2p+3)T−η

(2p+2)T+η

∫ 1/2+λ′

1/2−λ′
f(x, t) dxdt.

And using (11.8) and (11.9), we obtain, for all x0 ∈ (1/2− λ′, 1/2 + λ′),∫ (2p+2)T+η

(2p+1)T−η
f(x0, t) dt ≤ C

∫ (2p+1)T−η

2pT+η

∫ 1/2+λ′

1/2−λ′
f(x, t) dxdt + C

∫ (2p+3)T−η

(2p+2)T+η

∫ 1/2+λ′

1/2−λ′
f(x, t) dxdt.

Finally, taking the integral over x0 ∈ (1/2− λ′, 1/2 + λ′), we obtain (11.2).
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11.2. Proof of Lemma 11.2

We use a localization argument like in Haraux [9]. We multiply equation (2.6) by φ and we use the relations
φttφ = (φφt)t − φ2

t and φxxφ = (φφx)x − φ2
x. We obtain

φ2
x = φ2

t − (φφt)t + (φφx)x.

Let ζ be a fixed C∞ function compactly supported in (α − ν, β + ν) × (T1 − ν, T2 + ν) such that 0 ≤ ζ ≤ 1 on
(α − ν, β + ν) × (T1 − ν, T2 + ν) and ζ ≡ 1 on (α, β) × (T1, T2). We multiply the previous equation by ζ and
integrate it over (x, t) ∈ (α− ν, β + ν)× (T1 − ν, T2 + ν), which gives∫ T2

T1

∫ β

α

φ2
x dxdt =

∫ T2

T1

∫ β

α

φ2
xζ dxdt ≤

∫ T2+ν

T1−ν

∫ β+ν

α−ν
φ2
xζ dxdt

≤
∫ T2+ν

T1−ν

∫ β+ν

α−ν

(
φ2
t − (φφt)t + (φφx)x

)
ζ dxdt

≤
∫ T2+ν

T1−ν

∫ β+ν

α−ν
φ2
t dxdt (11.16)

+

∣∣∣∣∣
∫ T2+ν

T1−ν

∫ β+ν

α−ν
(φφt)tζ dxdt

∣∣∣∣∣+

∣∣∣∣∣
∫ T2+ν

T1−ν

∫ β+ν

α−ν
(φφx)xζ dxdt

∣∣∣∣∣ .
Moreover we have ∣∣∣∣∣

∫ T2+ν

T1−ν

∫ β+ν

α−ν
(φφt)tζ dxdt

∣∣∣∣∣ =

∣∣∣∣∣
∫ T2+ν

T1−ν

∫ β+ν

α−ν
(φφt)ζt dxdt

∣∣∣∣∣
≤ 1

2
‖ζt‖∞

∫ T2+ν

T1−ν

∫ β+ν

α−ν

(
φ2 + φ2

t

)
dxdt. (11.17)

And we also have, for all ε > 0,∣∣∣∣∣
∫ T2+ν

T1−ν

∫ β+ν

α−ν
(φφx)xζ dxdt

∣∣∣∣∣ =

∣∣∣∣∣
∫ T2+ν

T1−ν

∫ β+ν

α−ν
(φφx)ζx dxdt

∣∣∣∣∣
≤ 1

4ε
‖ζx‖2∞

∫ T2+ν

T1−ν

∫ β+ν

α−ν
φ2 dxdt+ ε

∫ T2+ν

T1−ν

∫ β+ν

α−ν
φ2
x dxdt. (11.18)

Then Lemma 11.2 follows from (11.16, 11.17) and (11.18) with ε chosen small enough.

11.3. Proof of Lemma 11.3

The proof is based on a compactness argument. We assume that (11.7) is false. Then for all n ∈ N, there
exists φn solution of (2.6), such that

∀n ∈ N,
∫
I

∫
ω

φ2
n(x, t) dxdt = 1 (11.19)

and ∀n ∈ N,
∫
I

∫
ω

(φn)2
t (x, t) dxdt ≤ 1

n
· (11.20)
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We introduce, for all φ solution of (2.6),

‖φ‖2X =
∫
I

∫
ω

φ2
t (x, t) + φ2(x, t) dxdt.

From (11.6), it defines a norm that is equivalent to the norm Eφ(0) on the closure X of the space of all solutions
of (2.6). From (11.19) and (11.20), the sequence (φn, (φn)t)n is bounded in X . So, for a subsequence still
denoted by (φn, (φn)t), we can verify that

(φn, (φn)t) ⇀ (φ, φt) weakly in X as n→ +∞,

where φ is a solution of (2.6).
We will prove the following contradiction:∫

I

∫
ω

φ2(x, t) dxdt = 1, (11.21)

and

∀(x, t) ∈ (0, 1)× R+, φ(x, t) ≡ 0, (11.22)

which will prove Lemma 11.3.
First, from (11.6), there exists C,C′ > 0 such that, for all n ∈ N,

∫ 1−T

0

∫ 1

0

(φn)2
t (x, t) + (φn)2

x(x, t) dxdt = 2(1− T )Eφn(0) ≤ C‖φn‖2X ≤ C′.

Therefore (φn)n is bounded in H1((0, 1)× (0, 1− T )), and consequently precompact in L2((0, 1)× (0, 1− T )).
We deduce that, for a subsequence still denoted by (φn), we have φn → φ strongly in L2((0, 1)× (0, 1− T )) as
n→ +∞. Then (11.21) follows from (11.19).

On the other hand, equation (11.20) implies that (φn)t → 0 strongly in L2(ω × I) as n → +∞. Thus we
have φt ≡ 0 on ω × I and φ is solution of (2.6) with (φ(0), φt(0)) ∈ H1

0 (1, 0)× L2(0, 1).
One can construct a sequence of smooth solutions of φε of (2.6) with (φε(0), φεt(0)) ∈ H2(0, 1) ∩H1

0 (1, 0) ×
H1

0 (1, 0) such that

(φε, φεt)→ (φ, φt) as ε→ 0,

and such that φεt ≡ 0 on ωε × Iε where ω′ × I ′ ⊂ ωε × Iε ⊂ ω × I for all ε small enough.
We denote ψε = φεt. Then we have ψε ≡ ψεt0 on I ′ × ω′ and ψε is solution of (2.6) with (ψε(0), ψεt (0)) ∈

H1
0 (1, 0)× L2(0, 1). Thus we can apply (11.6) to ψε, which gives:

Eεψ(0) ≤ C

∫
I

∫
ω

(ψεt )
2(x, t) + (ψε)2(x, t) dxdt = 0.

We deduce that φεt = ψε ≡ 0 on (0, 1) × R+. Therefore φt ≡ 0 on (0, 1) × R+. And since φ is solution
of (2.6), it implies (11.22) , i.e. φ ≡ 0 on (0, 1)× R+. (Indeed, we deduce −φxx(x, t) = 0 on (0, 1) × R+ with
φ(0, t) = φ(1, t) = 0.)
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11.4. Proof of Lemma 11.4

For all t, ξ such that 0 ≤ a′ + (t− ξ) ≤ b′ − (t− ξ) ≤ 1, we compute

d
dt

∫ b′−(t−ξ)

a′+(t−ξ)
f(x, t) dx = −f(b′ − (t− ξ), t)− f(a′ + (t− ξ), t) +

∫ b′−(t−ξ)

a′+(t−ξ)

∂

∂t
f(x, t) dx

= −
(
φ2
t + φ2

x

)
(b′ − (t− ξ), t)−

(
φ2
t + φ2

x

)
(a′ + (t− ξ), t)

+
∫ b′−(t−ξ)

a′+(t−ξ)

(
2φtφtt + 2φxφxt

)
(x, t) dx,

= −
(
φ2
t + φ2

x

)
(b′ − (t− ξ), t)−

(
φ2
t + φ2

x

)
(a′ + (t− ξ), t)

+ 2
(
φtφx

)
(b′ − (t− ξ), t)− 2

(
φtφx

)
(a′ + (t− ξ), t)

+ 2
∫ b′−(t−ξ)

a′+(t−ξ)

(
φt(φtt − φxx)

)
(x, t) dx

= −
(
φt(b′ − (t− ξ), t)− φx(b′ − (t− ξ), t)

)2

−
(
φt(a′ + (t− ξ), t) + φx(a′ + (t− ξ), t)

)2

≤ 0.

11.5. Proof of Lemma 11.5

Multiplying equation (2.6) by φx and integrating over t ∈ [T1, T2], we obtain, for all x ∈ (0, 1),

1
2

d
dx

∫ T2

T1

(φ2
t + φ2

x) dt =
[
φtφx

]t=T2

t=T1

.

Thus, for all x0, x ∈ (0, 1),∫ T2

T1

f(x0, t) dt =
∫ T2

T1

f(x, t) dt+ 2
∫ y=x0

y=x

(
φtφx

)
(y, T2)−

(
φtφx

)
(y, T1) dy.

For all x0 ∈ (1/2− λ′, 1/2 + λ′), the integral over x ∈ (1/2− δ/2, 1/2 + δ/2) gives

δ

∫ T2

T1

f(x0, t) dt =
∫ T2

T1

∫ 1/2+δ/2

1/2−δ/2
f(x, t) dxdt+ 2

∫ x=1/2+δ/2

x=1/2−δ/2

∫ y=x0

y=x

(
(φtφx)(y, T2)− (φtφx)(y, T1)

)
dydx.

Using that 2|φtφx| ≤ f and that (x0, x) ⊂ (1/2 − λ′, 1/2 + λ′) for all x0 ∈ (1/2 − λ′, 1/2 + λ′) and all
x ∈ (1/2− δ/2, 1/2 + δ/2), we deduce:

δ

∫ T2

T1

f(x0, t) dt ≤
∫ T2

T1

∫ 1/2+δ/2

1/2−δ/2
f(x, t) dxdt+

∫ x=1/2+δ/2

x=1/2−δ/2

∣∣∣∣∫ y=x0

y=x

f(y, T2) + f(y, T1) dy
∣∣∣∣ dx

≤
∫ T2

T1

∫ 1/2+δ/2

1/2−δ/2
f(x, t) dxdt + δ

∫ 1/2+λ′

1/2−λ′
f(y, T2) + f(y, T1) dy.

12. Tools for the proof of Theorem 2.3 and Theorem 2.4

When the feedback is uniformly distributed in the domain (λ = 1/2), the proof is the same than in the case
q = 2 (take T ? = T ).
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When the feedback is locally distributed in the domain (ω = (1/2− λ, 1/2 + λ) with λ < 1/2) and T is not
an exceptional value:

1
T
6∈
q−1⋃
p=1

q

p
N,

then there exists NT such that for all t ∈ [0, 1], a(t) + a(t+ 1) + · · ·+ a(t+Nr) ≥ 1. (compare with Lem. 7.1),
and we deduce that (5.7) is satisfied with T ∗ := Nr + 1, (the proof is the same as in the case q = 2).

When
1
T
∈
q−1⋃
p=1

q

p
N and (q − 1)T < 2λ,

then first we apply Theorem 5.1 and we obtain that for all solutions φ of (2.6):

Eφ(0) ≤ C

∫ T∗−η

η

∫
ω

φ2
t (x, t) dxdt,

where T ∗ is chosen like in the remark following Theorem 2.4. Then applying the method used for prove
Theorem 5.2 and the fact that (q − 1)T < 2λ , one obtain (2.10).

At last, if

1
T
∈
q−1⋃
p=1

q

p
N and (q − 1)T > 2λ,

then following Section 10.4 we can construct a solution of (1.2) whose energy remains constant with time.

13. Proof of Proposition 10.1 (link between stabilization and observability)

13.1. Equation (10.3) implies (10.4)

Assume (10.3). Given (u0, u1) ∈ H1
0 (Ω)×L2(Ω), we want to prove that the energy of the solution u of (10.1)

decays exponentially to 0. Set k ∈ N (k will be chosen later): since∫ kT∗

0

∫
ω

a(t)ut2 dxdt = Eu(0)−Eu(kT ∗) ≤ Eu(0),

there exists some p ∈ 0, · · · , k − 1 such that∫ (p+1)T∗

pT∗

∫
ω

a(t)ut2 dxdt ≤ 1
k
Eu(0).

Choose (φ0, φ1) such that the solution of (2.6) satisfies (φ(pT ∗), φt(pT ∗)) = (u(pT ∗), ut(pT ∗)), and consider
w := u− φ: w satisfies 

wtt −∆w = −a(t)χω(x)ut on Ω× R+,

w = 0 on ∂Ω× R+,

w(pT ∗) = 0 = wt(pT ∗).
(13.1)

Note that ∫
Ω

wt
2 dx ≤ 2

∫
Ω

ut
2 + φt

2 dx ≤ 8Eu(0).
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Hence

∀t ≥ pT ∗, Ew(t)−Ew(pT ∗) = −
∫ t

pT∗

∫
ω

a(t)utwt dxdt.

Thus for all t ∈ (pT ∗, (p+ 1)T ∗),

Ew(t) ≤
(∫ (p+1)T∗

pT∗

∫
ω

a(t)2ut
2 dxdt

)1/2(∫ (p+1)T∗

pT∗

∫
ω

wt
2 dxdt

)1/2

≤ sup
√
a

(
1
k
Eu(0)

)1/2

(8T ∗Eu(0))1/2 =
C√
k
Eu(0). (13.2)

Hence using the assumption (10.3) on the problem (2.6), the periodicity of a, and (13.2), we obtain that

∀t ≥ pT ∗, Eφ(t) = Eφ(pT ∗) ≤ C
∫ (p+1)T∗

pT∗

∫
ω

a(t)φt2 dxdt

≤ C
∫ (p+1)T∗

pT∗

∫
ω

(
2a(t)y′2 + 2a(t)wt2

)
dxdt

≤ 2C
k
Eu(0) + 2C supa

2CT ∗√
k
Eu(0). (13.3)

Hence using (13.2) and (13.3), we obtain that

∀t ∈ (pT ∗, (p+ 1)T ∗), Eu(t) ≤ 2Eφ(t) + 2Ew(t) ≤
(
C1

k
+
C2√
k

)
Eu(0) ≤ 1

2
Eu(0)

if k is large enough. Hence

Eu(T1 = kT ∗) ≤ 1
2
Eu(0),

and this implies (10.4) using the periodicity of a.

13.2. Equation (10.4) implies (10.3)

Set (φ0, φ1) ∈ H1
0 (Ω) × L2(Ω). Let y be the solution of (10.1) with (u0, u1) = (φ0, φ1). Set T ∗ > 0. We

deduce from (10.4) that∫ T∗

0

∫
ω

aut
2 dxdt = Eu(0)−Eu(t) ≥ (1− eδ(T1−T∗))Eu(0) ≥ 1

2
Eu(0) (13.4)

if T ∗ is large enough. Choose such T ∗. (Note that T ∗ is independent of (φ0, φ1).) Then we want to prove that
there exists C > 0 (independent of (φ0, φ1)) such that

Eu(0) = Eφ(0) ≤ C
∫ T∗

0

∫
ω

aφt
2 dxdt.

Using (13.4), it is sufficient to prove that there exists C > 0 such that∫ T∗

0

∫
ω

aut
2 dxdt ≤ C

∫ T∗

0

∫
ω

aφt
2 dxdt.
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Once again consider w = u− φ; w is solution of
wtt −∆w + a(t)χω(x)wt = −a(t)χω(x)φt on Ω× R+,

w = 0 on ∂Ω× R+,

w(0) = 0 = wt(0).
(13.5)

Hence

Ew(t) = Ew(0)−
∫ T∗

0

∫
ω

awt
2 dxdt−

∫ T∗

0

∫
ω

aφtwt dxdt ≤
∫ T∗

0

∫
ω

a|φtwt|dxdt.

Set ε > 0: then we have∫
Ω

wt
2 dx ≤ 2Ew(t) ≤ 2

∫ T∗

0

∫
ω

a|φtwt|dxdt

≤ 1
ε

∫ T∗

0

∫
ω

aφt
2 dxdt+ ε

∫ T∗

0

∫
ω

awt
2 dxdt

≤ 1
ε

∫ T∗

0

∫
ω

aφt
2 dxdt+ ε supa

∫ T∗

0

∫
Ω

wt
2 dxdt,

hence integrating over (0, T ∗) and choosing ε > 0 small enough such that εT ∗ sup a < 1, we find that there
exists C > 0 such that ∫ T∗

0

∫
Ω

wt
2 dxdt ≤ C

∫ T∗

0

∫
ω

aφt
2 dxdt.

Note that C depends on T ∗ but not on φ. Now we can easily conclude∫ T∗

0

∫
ω

aut
2 dxdt ≤ 2

∫ T∗

0

∫
ω

(aφt2 + awt
2) dxdt ≤ C′

∫ T∗

0

∫
ω

aφt
2 dxdt,

and that gives (10.3) through (13.4). The proof of Proposition 10.1 is complete.

The authors are grateful to V. Komornik and E. Zuazua for their comments and suggestions on this work.
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