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HOMOGENIZATION AND LOCALIZATION
IN LOCALLY PERIODIC TRANSPORT

Grégoire Allaire1, Guillaume Bal2 and Vincent Siess3

Abstract. In this paper, we study the homogenization and localization of a spectral transport equa-
tion posed in a locally periodic heterogeneous domain. This equation models the equilibrium of particles
interacting with an underlying medium in the presence of a creation mechanism such as, for instance,
neutrons in nuclear reactors. The physical coefficients of the domain are ε-periodic functions modu-
lated by a macroscopic variable, where ε is a small parameter. The mean free path of the particles is
also of order ε. We assume that the leading eigenvalue of the periodicity cell problem admits a unique
minimum in the domain at a point x0 where its Hessian matrix is positive definite. This assumption
yields a concentration phenomenon around x0, as ε goes to 0, at a new scale of the order of

√
ε which is

superimposed with the usual ε oscillations of the homogenized limit. More precisely, we prove that the
particle density is asymptotically the product of two terms. The first one is the leading eigenvector of a
cell transport equation with periodic boundary conditions. The second term is the first eigenvector of
a homogenized diffusion equation in the whole space with quadratic potential, rescaled by a factor

√
ε,

i.e., of the form exp
�− 1

2ε
M(x − x0) · (x − x0)

�
, where M is a positive definite matrix. Furthermore,

the eigenvalue corresponding to this second term gives a first-order correction to the eigenvalue of the
heterogeneous spectral transport problem.
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Introduction

This paper is devoted to the homogenization of a transport equation in a locally periodic medium. We
consider the following eigenvalue problem for the transport equation




εv · ∇φε(x, v) + Σε(x, v)φε(x, v)−
∫

V

σε(x, v′, v)φε(x, v′) dv′

= λε

∫
V

fε(x, v′, v)φε(x, v′) dv′ in Ω × V

φε = 0 on Γ− = {(x, v) ∈ ∂Ω × V , v · n(x) < 0}

(1)
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where Ω is a bounded convex domain, V is the velocity space, and the coefficients (or cross-sections) are
periodically oscillating functions defined by

Σε(x, v) = Σ
(
x,
x

ε
, v

)
, σε(x, v′, v) = σ

(
x,
x

ε
, v′, v

)
, fε(x, v′, v) = f

(
x,
x

ε
, v′, v

)
. (2)

The ε-scaling in front of the advection term in (1) means that the mean free path is of the same order as the
period ε. In nuclear reactor physics, equation (1) is known as the criticality problem for neutron transport. It
expresses the balance between the production of neutrons by fission (the right hand side of (1)) and its absorption
or scattering in the reactor core and leakage at the boundary (the left hand side of (1)). The unknowns are the
neutron density (or flux) φε(x, v) and the eigenvalue λε (the inverse of which is called multiplication factor),
which measures the balance between the production and removal of neutrons. Since only positive densities have
a physical meaning, the only relevant solution turns out to be the first eigenvector (positive and unique up to a
multiplicative constant). There are of course other physical motivations for the study of (1), including photon
transport, radiative transfer, and semi-conductors.

Since the pioneering work of Larsen [19–21] (not to mention the previous physics literature), many papers
have been devoted to the time evolution version of problem (1) (see e.g. [8, 12, 16, 17, 27]). The eigenvalue
problem (1) was studied in [2, 7]. In all these papers, there is always an assumption of pure periodicity, which
means that the coefficients in (2) depend solely on the fast variable y = x/ε and not on the slow variable x. In
truth the papers [17] and [16] do not make precisely such an assumption but rather assume that the resulting
local behavior is not oscillating, i.e. depends on x but not on y = x/ε. In any case, the possibility of a strong
coupling of the fast and slow variables has never been explored in full generality with coefficients defined by (2).
We address this problem under a suitable structural assumption and show that the homogenized limit is very
different from that obtained in the purely periodic case. To explain our results we introduce the cell eigenvalue
problem which is defined for each x ∈ Ω by


 v · ∇yψ + Σψ =

∫
V

σψ dv′ + λ∞(x)
∫

V

fψ dv′ in Y

y 7→ ψ(x, y, v) Y − periodic,
(3)

where (λ∞(x), ψ(x, y, v)) is the first or leading eigencouple and Y = (0, 1)N . Our structural assumption is
that the function x 7→ λ∞(x) admits a unique minimum at x0 ∈ Ω and that its Hessian matrix is positive
definite at x0. We also make a no-drift assumption which amounts to a phase-space symmetry condition (this
assumption can be removed as was shown in [7]). Our main result (see (32) for a formal asymptotic result
and Th. 3.2 for a precise statement) is that, asymptotically as ε tends to zero, the first eigenfunction of (1)
behaves as

φε(x, v) ≈ ψ
(
x0,

x

ε
, v

)
exp

(
−M(x− x0) · (x− x0)

2ε

)
, (4)

where M is a positive definite matrix depending on some homogenized properties and on the Hessian of λ∞

at x0. It is clear from (4) that φε is localized near x0 at a length scale of order
√
ε. Furthermore, the first

eigenvalue can be expanded as

λε = λ∞(x0) + ελ1 + o(ε),

where λ1 is explicit in terms of M and other homogenized quantities (see (26, 31), and Rem. 3.1). Even when
the coefficients do not oscillate (i.e. are functions of x but not of x/ε) the asymptotic result (4) is non trivial
and new to the best of our knowledge. Our results extend a previous study made in [4] on a similar eigenvalue
problem for a diffusion equation. Related results on diffusion equations may be found in [3, 18], and [24].
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The paper is organized as follows. In the next section we introduce our notation and detailed assumptions, and
we recall some basic mathematical properties of transport equations. Section 2 is devoted to the homogenization
of (1) by means of asymptotic expansions. This method is formal but it has the advantage of being easily
accessible without any knowledge of functional analysis. Section 3 is devoted to a detailed presentation of
the rigorous convergence results concerning the homogenization of (1). The proofs of these results are given in
Sections 4 and 5. More precisely, Section 4 focuses on a priori estimates for a source problem associated with (1),
while Section 5 is concerned with the proof of the homogenization process, using the two-scale convergence
method. Finally, Section 6 is devoted to some auxiliary cell problems.

1. Assumptions and notation

This section is devoted to a precise statement of our main assumptions and to a brief presentation of our
notation and of classical results in transport theory that are necessary for our analysis. We include these known
results (without proofs) for completeness, and we refer to, e.g. [2, 6, 11] for details. We first give the detailed
assumptions on the physical parameters that are used throughout this paper.
(H1) The domain Ω is a convex bounded open set of RN , and the velocity space V is a compact subset of

RN which does not contain 0. Furthermore V is assumed to be the closure of an open set, and its
N -dimensional measure is normalized to have |V | = 1.

(H2) The cross-sections Σ(x, y, v), σ(x, y, v′, v), and f(x, y, v′, v) are of class C2 in x ∈ Ω and measurable in y.
They are positive, bounded Y -periodic functions in y, where Y = (0, 1)N is the unit cube, and there exists
a positive constant C > 0 such that, for a.e. (x, y, v, v′),

f(x, y, v′, v) ≥ C,

Σ(x, y, v) −
∫

V

σ(x, y, v′, v) dv′ ≥ C,

Σ(x, y, v) −
∫

V

σ(x, y, v, v′) dv′ ≥ C.

(5)

Remark 1.1. There are possible variants of assumption (H2) which may be more appropriate for some appli-
cations. For example, as it stands, (H2) implies that particle creation occurs everywhere, which is not the case
in neutron transport where fission takes place only in the nuclear fuel and not in the moderator. This can easily
be corrected by replacing the first inequality in (5) by

σ(x, y, v′, v) + f(x, y, v′, v) ≥ C, a.e. (x, y, v, v′)

with f ≥ 0 and f 6≡ 0. This implies that the sum of fission and scattering is positive everywhere. Up to some
additional technicalities, all our results also hold in this framework.

Introducing the Hilbert space

W 2(Ω × V ) = {u ∈ L2(Ω × V ), v · ∇u ∈ L2(Ω × V )}, (6)

assumptions (H1) and (H2) allow to state the following existence result.

Theorem 1.2. The spectral problem (1) has at most a countable number of eigenvalues and of associated
eigenvectors in W 2(Ω × V ). Furthermore, there exists a real and positive eigenvalue, of smallest modulus, with
multiplicity one, and such that its associated eigenvector is the unique (up to a multiplicative constant) positive
eigenvector of (1).

The proof of Theorem 1.2, which is in the spirit of other results in [11] (Chap. 21), can be found in [6]. As a
consequence of Theorem 1.2, only the first eigenvector of (1) has a physical meaning as a particle density.
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As we shall see in the sequel, the asymptotic behavior of the eigenvectors of (1) is partly governed by the first
eigenvector of another eigenvalue problem, similar to (1) but posed in the unit periodicity cell Y with periodic
boundary conditions. Denoting by λ∞(x) and ψ(x, y, v) its first eigenvalue and eigenvector, the infinite medium
problem is defined for each parameter x ∈ Ω by



v · ∇yψ(x, y, v) + Σ(x, y, v)ψ(x, y, v)=
∫

V

σ(x, y, v′, v)ψ(x, y, v′) dv′

+λ∞(x)
∫

V

f(x, y, v′, v)ψ(x, y, v′) dv′

y 7→ ψ(x, y, v) Y − periodic.

(7)

We shall also need an adjoint problem to (7), which has the same first eigenvalue λ∞(x) with a different first
eigenvector ψ∗(x, y, v). Introducing the adjoint cross-sections

f∗(x, y, v′, v) = f(x, y, v, v′) and σ∗(x, y, v′, v) = σ(x, y, v, v′),

this adjoint problem is defined by


−v · ∇yψ
∗(x, y, v) + Σ(x, y, v)ψ∗(x, y, v)=

∫
V

σ∗(x, y, v′, v)ψ∗(x, y, v′) dv′

+λ∞(x)
∫

V

f∗(x, y, v′, v)ψ∗(x, y, v′) dv′

y 7→ ψ∗(x, y, v) Y − periodic.

(8)

As a corollary of Theorem 1.2 there exist leading eigenvalues and eigenvectors for the cell problems (7) and (8),
which can be chosen positive.

Theorem 1.3. There exists a common eigenvalue λ∞(x) to both problems (7) and (8), which is real, positive, of
smallest modulus, with multiplicity one, and such that the respective eigenvectors ψ and ψ∗ are positive elements
of W 2(Y × V ).

We are now in a position to give our next assumptions.
(H3) We assume that x 7→ λ∞(x) admits a unique minimum at x0 ∈ Ω and that its Hessian matrix is positive

definite at x0. Without loss of generality, we suppose that x0 = 0

λ∞(x) = λ∞(0) + xkxl λ
2
kl + o(|x|2),

and (λ2
kl)1≤k,l≤N is a positive definite matrix.

(H4) Finally, we need the additional hypothesis that the drift flux

J(x) =
∫

Y

∫
V

vψ(x, y, v)ψ∗(x, y, v) dydv (9)

vanishes at x = 0, i.e. J(0) = 0.

Remark 1.4. Assumption (H3) is somehow generic as soon as we are interested in non-constant eigenvalues
λ∞(x). Let us mention at least one (simple) case when it holds true: take Σ(x, y, v) = Σ0(y, v), σ(x, y, v′, v)
= σ0(y, v′, v) and f(x, y, v′, v) = k(x)f0(y, v′, v) so that λ∞(x) = λ0/k(x), and (H3) is satisfied for a properly
chosen function k(x).

Remark 1.5. The assumption (H4), J(0) = 0, can be interpreted as a symmetry condition in the phase space
(or a no-drift condition), as explained in [2] or [6]. It is quite usual in this type of problem (for example, it is
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imposed in [16,17]). In most practical cases, assumption (H4) holds true. For example, J(0) = 0 when V = −V
(in the sense that v ∈ V ⇒ −v ∈ V ) and the cross sections do not depend on the velocity variable (this is the
so-called one-velocity isotropic case), or when the cross-sections are symmetric with respect to v, and the cell Y
has cubic symmetry. The paper [7] addresses the case when the drift J(0) is not zero and the coefficients are
purely periodic functions. We briefly discuss another possible hypothesis when J(0) 6= 0 in Section 6.

In the sequel we shall also need the following results. Since the smallest eigenvalue λ∞(x) is simple, the
classical Fredholm alternative for compact operators yields an existence result for (7) with a source term.

Proposition 1.6. Let x ∈ Ω be fixed and let λ∞(x) and ψ(x, y, v) be the first eigenvalue and eigenvector of (7).
Let S(x, y, v) be a source term in L2(Y × V ). Then there exists a solution ϕ(x, y, v) ∈ W 2(Y × V ) of




v · ∇yϕ(x, y, v) + Σ(x, y, v)ϕ(x, y, v) =
∫

V

σ(x, y, v′, v)ϕ(x, y, v′) dv′

+λ∞(x)
∫

V

f(x, y, v′, v)ϕ(x, y, v′) dv′ + S(x, y, v)

y 7→ ϕ(x, y, v) Y − periodic

if and only if S is orthogonal to the first eigenvector ψ∗ of (8), i.e., S satisfies the compatibility condition∫
Y

∫
V

S(x, y, v)ψ∗(x, y, v) dydv = 0.

Furthermore, if it exists, the solution ϕ is unique up to the addition of a multiple of ψ.

The first eigenvectors ψ and ψ∗ are bounded from above and below by positive constants as stated in the
following proposition, based on the averaging lemma [14] and Sobolev inequalities, the proof of which can be
found in [2].

Proposition 1.7. Let ψ and ψ∗ be the first positive eigenvectors of problems (7) and (8), respectively. Then
there exist two positive constants 0 < C ≤ C′ such that, for a.e. (x, y, v),

0 < C ≤ ψ(x, y, v) ≤ C′ and 0 < C ≤ ψ∗(x, y, v) ≤ C′.

Finally, we state a compactness result for transport equations which is a straightforward variation of the classical
velocity averaging lemma of [14, 15].

Lemma 1.8. Let uε(z, v) be a family of functions of W 2(RN × V ) such that there exists a positive constant C
independent of ε satisfying

‖ (1 + |z|)uε(z, v) ‖L2(RN×V ) + ‖ v · ∇uε(z, v) ‖L2(RN×V ) ≤ C.

Then the family
∫

V u
ε(z, v) dv is relatively compact in L2(RN ).

In the sequel, we always assume that hypotheses (H1–H4) hold.

2. Asymptotic expansion

To address the phenomenon of concentration and homogenization for (1) the simplest approach is the classical
technique of two-scale asymptotic expansions, coupled with Taylor expansions around the concentration point
x = 0. This is a formal method which has the advantage of avoiding all the fine points of functional analysis
that are required for a convergence proof. Therefore, we believe it is interesting even though we shall not use
the results of this section in our convergence theorem of Section 3. Remark that it is possible to justify the
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asymptotic expansion by a careful study of the remainder terms, but this method has two drawbacks. First,
it requires smoother physical data. Second, it gives a full justification only of the first term in the expansion
although the expansion contains four terms. This phenomenon is well documented in [4].

The first step of the derivation is to approximate the following functions around x = 0 by their Taylor
expansions (the Einstein convention of summation over repeated indices is used)



Σ (x, y, v) = Σ0 (y, v) + xkΣ1
k (y, v) + xkxl Σ2

kl (y, v) + o(|x|2)
σ (x, y, v′, v) = σ0 (y, v′, v) + xkσ

1
k (y, v′, v) + xkxl σ

2
kl (y, v′, v) + o(|x|2)

f (x, y, v′, v) = f0 (y, v′, v) + xkf
1
k (y, v′, v) + xkxl f

2
kl (y, v′, v) + o(|x|2)

ψ(x, y, v) = ψ0(y, v) + xkψ
1
k(y, v) + xkxl ψ

2
kl(y, v) + o(|x|2)

λ∞(x) = λ∞(0) + xkxl λ
2
kl + o(|x|2).

(10)

Here we use the following notation. For any function g(x), we define g1
k = ∂g

∂xk
(x = 0), and g2

kl = 1
2

∂2g
∂xk∂xl

(x = 0).
We also define 2(λ2

kl) as the Hessian matrix of x 7→ λ∞(x) at x = 0, where λ∞ is assumed to reach its minimum.
Following [4], where a similar problem for the diffusion equation is considered, we introduce the following

ansatz for the first eigenpair of (1)



φε(x, v) = exp

(
−Mx · x

2ε

) [
φ0

(x
ε
, v

)
+ xkφ

1
k

(x
ε
, v

)
+ xkxl φ

2
kl

(x
ε
, v

)
+ εφ3

(x
ε
, v

)
+ rε(x, v)

]
λε = λ0 + ελ1 + o(ε)

(11)

where φ0, φ1
k, φ2

kl, and φ3 are Y -periodic functions in their first argument to be determined, M is an unknown
symmetric positive definite matrix, and rε is a small remainder term. The matrix M being positive definite, we
notice that, for any p ∈ N,

‖ xp exp
(−Mx·x

2ε

) ‖Lr(Ω)

‖ exp
(−Mx·x

2ε

) ‖Lr(Ω)

≈ O(ε
p
2 ) for any r ∈ [1,+∞].

Assuming that the first term φ0 in the asymptotic expansion is normalized such that its L2-norm is 1, then the
second term φ1 = (φ1

k) will be of order
√
ε, and the third and fourth terms φ2 = (φ2

kl) and φ3 of order ε. After
some algebra, we find

∇(φε) =
1
ε

exp
(
−Mx · x

2ε

) [
∇yφ

0
(x
ε
, v

)
+ (xk∇yφ

1
k −Mxφ0)

(x
ε
, v

)
+

(
xkxl ∇yφ

2
kl −Mxxkφ

1
k

) (x
ε
, v

)
+ ε

(
φ1 + ∇yφ

3
) (x

ε
, v

)
+ r

′ε(x, v)
]
,

where, as usual, ∇x and ∇y denote partial derivatives with respect to the slow variable x and fast variable y,
respectively, and r

′ε is a remainder term. Identifying all terms according to their power in x and ε, we obtain
a cascade of equations from which we keep the four first ones. The zeroth order terms yield

v · ∇yφ
0 + Σ0φ0 =

∫
V

σ0φ0 + λ0

∫
V

f0φ0. (12)

The first order terms in x give for all k ∈ {1, ..., N}

vi(∂yiφ
1
k −Mikφ

0) + (Σ0φ1
k + Σ1

kφ
0) =

∫
V

(σ0φ1
k + σ1

kφ
0) + λ0

∫
V

(f0φ1
k + f1

kφ
0), (13)
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where ∂yi denotes the i-th component of the gradient ∇y. The second order terms in x give for all k, l
∈ {1, ..., N},

vi(∂yiφ
2
kl −Milφ

1
k) + (Σ0φ2

kl + Σ1
kφ

1
l + Σ2

klφ
0) =

∫
V

(σ0φ2
kl + σ1

kφ
1
l + σ2

klφ
0) + λ0

∫
V

(f0φ2
kl + f1

kφ
1
l + f2

klφ
0)

(14)

(the formula (14) has to be symmetrized with respect to k, l since xkxl is itself symmetric), and the first order
terms in ε yield

vi(φ1
i + ∂yiφ

3) + Σ0φ3 =
∫

V

σ0φ3 + λ0

∫
V

f0φ3 + λ1

∫
V

f0φ0. (15)

Eventually, solving these equations leads to the asymptotic behavior of φε. Equation (12) allows us to deter-
mine φ0 and λ0. Equations (13) and (14) allow us to determine φ1

k and φ2
kl, and some compatibility conditions

will give us the expression for M . Finally, equation (15) determines the ε order term φ3 and its solvability
condition gives the first order corrector λ1 for the eigenvalue.

2.1. Zeroth order equation

Since at x = 0 the functions in (10) coincide with the zero-order terms in their Taylor expansions, the zeroth
order equation (12) is simply the periodic cell problem (7) at x = 0. Thanks to Theorem 1.3, equation (12) has
thus a unique positive solution given by

φ0(y, v) = ψ0(y, v), λ0 = λ∞(0), (16)

where ψ0(y, v) is equal to ψ(x = 0, y, v) up to some multiplicative constant depending on the normalization
of φε.

2.2. First order equation in x

For each k, equation (13) can be written as follows

v · ∇yφ
1
k + Σ0φ1

k =
∫

V

σ0φ1
k + λ0

∫
V

f0φ1
k + g1

k, (17)

where the source term g1
k is given by

g1
k = viMikψ

0 − Σ1
kψ

0 +
∫

V

σ1
kψ

0 + λ0

∫
V

f1
kψ

0.

According to the Fredholm alternative of Proposition 1.6, these equations can be solved if and only if the
source-term g1

k is orthogonal to ψ0∗(y, v) = ψ∗(0, y, v), i.e.,

∫
Y

∫
V

[
viMikψ

0 − Σ1
kψ

0 +
(∫

V

σ1
kψ

0

)
+ λ0

(∫
V

f1
kψ

0

)]
ψ0∗ = 0. (18)

Upon differentiating the infinite medium equation (7) with respect to x at x = 0, we obtain

v · ∇yψ
1
k + Σ0ψ1

k + Σ1
kψ

0 =
∫

V

σ0ψ1
k +

∫
V

σ1
kψ

0 + λ0

∫
V

f0ψ1
k + λ0

∫
V

f1
kψ

0, (19)
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which admits ψ1
k = (∂xk

ψ0)(x = 0) as a solution. Still, it admits a solvability condition given by

∫
Y

∫
V

[
−Σ1

kψ
0 +

(∫
V

σ1
kψ

0

)
+ λ0

(∫
V

f1
kψ

0

)]
ψ0∗ = 0. (20)

Thus, equation (13) is solvable if and only if

∫
Y

∫
V

viMikψ
0ψ0∗ = 0,

or equivalently if and only if

M

∫
Y

∫
V

vψ0ψ0∗ = 0.

The latter equation holds thanks to hypothesis (H4), hence (13) admits solutions. We shall see later on that M is
a symmetric positive definite matrix, so (H4) is a necessary and sufficient solvability condition for equation (13).
The solution φ1

k of (17) can be written as the sum of two terms

φ1
k = −Mkjχ

j + ψ1
k, (21)

where ψ1
k is defined in (10) and χj is the solution of the following equation

v · ∇yχ
j + Σ0χj =

∫
V

σ0χj + λ0

∫
V

f0χj − vjψ
0. (22)

Since J(0) = 0, the solvability condition of this equation is verified, and therefore χj is uniquely defined up to
a multiple of ψ0. Notice that terms proportional to ψ0 can be incorporated into φ0 in (16).

2.3. Second order equation in x

For each k, l, equation (14) can be rewritten as

v · ∇yφ
2
kl + Σ0φ2

kl =
∫

V

σ0φ2
kl + λ0

∫
V

f0φ2
kl + g2

kl,

where the source term is given by

g2
kl = viMilφ

1
k − Σ1

kφ
1
l − Σ2

klψ
0 +

∫
V

σ1
kφ

1
l +

∫
V

σ2
klψ

0 + λ0

∫
V

f1
kφ

1
l + λ0

∫
V

f2
klψ

0. (23)

In truth, g2
kl is symmetric with respect to k, l so that equation (23) should be symmetrized (for brevity we do

not include the symmetric terms in (23)). Again, this equation admits a solution if and only if g2
kl is orthogonal

to ψ0∗. Owing to (21), the source term g2
kl can be recast as

g2
kl = −viMilMkjχ

j + viMilψ
1
k + Σ1

kMljχ
j − Σ1

kψ
1
l − Σ2

klψ
0

+
∫

V

(−σ1
kMljχ

j + σ1
kψ

1
l + σ2

klψ
0) + λ0

∫
V

(−f1
kMljχ

j + f1
kψ

1
l + f2

klψ
0),
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which after reordering yields

g2
kl = −MilMkj viχ

j +Mil

(
viψ

1
k + Σ1

kχ
i −

∫
V

σ1
kχ

i − λ0

∫
V

f1
kχ

i

)

+
(
−Σ1

kψ
1
l − Σ2

klψ
0 +

∫
V

(σ1
kψ

1
l + σ2

klψ
0) + λ0

∫
V

(f1
kψ

1
l + f2

klψ
0)

)
.

Upon differentiating the infinite medium equation (7) twice in x at x = 0, we obtain

v · ∇yψ
2
kl + Σ0ψ2

kl + Σ1
kψ

1
l + Σ2

klψ
0 =

∫
V

(σ0ψ2
kl + σ1

kψ
1
l + σ2

klψ
0)

+λ0

∫
V

(f0ψ2
kl + f1

kψ
1
l + σ2

klψ
0) + λ2

kl

∫
V

f0ψ0,

which admits a solution by construction. We rewrite this equation as

v · ∇yψ
2
kl + Σ0ψ2

kl =
∫

V

σ0ψ2
kl + λ0

∫
V

f0ψ2
kl

+
[
−Σ1

kψ
1
l − Σ2

klψ
0 +

∫
V

(σ1
kψ

1
l + σ2

klψ
0) + λ0

∫
V

(f1
kψ

1
l + f2

klψ
0) + λ2

kl

∫
V

f0ψ0

]
.

Its solvability condition reads

∫
Y

∫
V

[
−Σ1

kψ
1
l − Σ2

klψ
0 +

∫
V

(σ1
kψ

1
l + σ2

klψ
0)λ0

∫
V

(f1
kψ

1
l + f2

klψ
0) + λ2

kl

∫
V

f0ψ0

]
ψ0∗ = 0. (24)

Thus, the solvability condition of (14) is

−MilMkj

∫
Y

∫
V

viχ
jψ0∗ +Mil

∫
Y

∫
V

[
viψ

1
k + Σ1

kχ
i −

(∫
V

σ1
kχ

i

)
− λ0

(∫
V

f1
kχ

i

)]
ψ0∗

− λ2
kl

∫
Y

∫
V

(∫
V

f0ψ0

)
ψ0∗ = 0. (25)

As explained before, this equation has to be symmetrized with respect to k and l. This yields a quadratic
matrix equation for the unknown M , which reads

MkjD
S

jiMil +BkiMil +MkiBil = Akl,

or

MD
S
M +BM +MB

∗
= A, (26)

where

Akl = λ2
kl

∫
Y

∫
V

∫
V

f0(y, v′, v)ψ0(y, v)ψ0∗(y, v′) dy dv dv′, (27)

Bki =
∫

Y

∫
V

[
viψ

1
k + Σ1

kχ
i −

(∫
V

σ1
kχ

i

)
− λ0

(∫
V

f1
kχ

i

)]
ψ0∗, (28)
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and DS denotes the symmetrical part of D, which is given by the Kubo formula (see [8, 19, 27])

Dij = −
∫

Y

∫
V

viχ
jψ0∗. (29)

Equation (26) is a Riccati equation, which is classical in Control Theory. The following theorem, which can be
found in [26] (pp. 225-235) or in [25], ensures that this equation admits a unique symmetric positive definite
solution.

Theorem 2.1. Let D and A be symmetric definite positive square matrices, and let B be a square matrix of
the same size. Let us consider the Riccati matrix equation

MDM +BM +MB∗ = A.

Then there exists a unique symmetric definite positive solution M of this equation.

Remark 2.2. In order to compare the results given by asymptotic expansions and two-scale convergence, it is
worth noticing that

Bki =
∂Ji

∂xk
(0) .

This result will be proved in Section 6. In the case where ∇xJ(0) = 0, it allows us to have a simple expression
for M . Indeed, M solves a Riccati equation now of the form

MD
S
M = A

and M is therefore given by

M = D
S − 1

2
(
D

S
1
2AD

S
1
2
) 1

2
D

S − 1
2 . (30)

2.4. The ε order equation

Finally, equation (15) yields the first order corrector to the eigenvalue of our initial problem (1). Equation (15)
can be written as

v · ∇yφ
3 + Σ0φ3 =

∫
V

σ0φ3 + λ0

∫
V

f0φ3 +
[
−viφ

1
i + λ1

∫
V

f0ψ0

]
.

The Fredholm alternative shows that this equation admits a solution if and only if

∫
Y

∫
V

viφ
1
iψ

0∗ = λ1

∫
Y

∫
V

(∫
V

f0ψ0

)
ψ0∗,

which eventually gives us the following correction to the leading eigenvalue

λ1 =

∫
Y

∫
V

viφ
1
iψ

0∗

∫
Y

∫
V

(∫
V

f0ψ0

)
ψ0∗

· (31)
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We have seen that φ1
i = Mijχ

j + ψ1
i , and therefore, as ψ1

i = ∂xiψ(x = 0),

λ1 =
−Mij

∫
Y

∫
V

viχ
jψ0∗ +

∫
Y

∫
V

viψ
1
i ψ

0∗

∫
Y

∫
V

( ∫
V

f0ψ0
)
ψ0∗

=
Tr

(
MD

)
+ γ

σ
,

where σ and γ are given by (34).

2.5. Results of the asymptotic expansion

We will not try here to justify the full ansatz (11) for the eigenvector φε. Instead we will rigorously justify
the result of exponential concentration postulated in (11) in the following sections with a different method, and
will show that the expressions for M , φ0, λ0, and λ1 predicted by the asymptotic expansion are indeed correct.
Let us mention that we will not seek any justifications for the higher order terms φ1

k, φ2
kl, and φ3. Indeed, it is

shown in [4] in the similar case of diffusion equations that the error term rε defined by

φε(x, v) = exp
(
−Mx · x

2ε

) (
φ0

(x
ε
, v

)
+ xkφ

1
k

(x
ε
, v

)
+ xkxlφ

2
kl

(x
ε
, v

)
+ εφ3

(x
ε
, v

))
+ rε (32)

is of order
√
ε in any Lp norm, and hence of the same order as the first corrector term xkφ

1
k.

3. Main results

This section is devoted to the statement of our main result on the homogenization concentration in transport.
Throughout this paper, the heterogeneous and periodic transport eigenvectors are normalized in such a way
that their L2-norm in the phase space is 1,

‖ φε ‖L2(Ω×V )= 1 and ‖ ψ ‖L2(Y ×V )= 1.

We also normalize ψ∗ in such a way that for all x ∈ Ω,

∫
Y

∫
V

∫
V

f(x, y, v′, v)ψ(x, y, v′)ψ∗(x, y, v) dydvdv′ = 1.

3.1. The homogenized problem

We introduce the homogenized eigenvalue problem for the transport equation (1)


−div

(
D∇u) +

(
Az.z + γ

)
u+ z ·

(
B

∗∇u
)

= λσu

u ∈ H1(RN ) ∩ L2
z(R

N ),
(33)

where L2
z(R

N ) = {u(z) ∈ L2(RN ), |z|u(z) ∈ L2(RN )}. This homogenized problem is a convection-diffusion
problem, which is posed on the whole space RN . The homogenized coefficients are given by the following
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formulas 


σ =
∫

Y

∫
V

∫
V

f(0, y, v′, v)ψ(0, y, v′)ψ∗(0, y, v) dydvdv′,

γ =
∫

Y

∫
V

v · ∇xψ(0, y, v)ψ∗(0, y, v) dydv,

Aij = λ2
ij

∫
Y

∫
V

∫
V

f(0, y, v′, v)ψ(0, y, v′)ψ∗(0, y, v) dydvdv′,

Bij =
∫

Y

∫
V

vj∂xi(ψψ
∗)(0, y, v) dydv,

Dij = −
∫

Y

∫
V

viψ
∗(0, y, v)χj(y, v) dydv,

(34)

where the functions χj(y, v) are defined as the solutions of the cell problems (22), i.e.,


v · ∇yχ
j + Σ(0, y, v)χj =

∫
V

σ(0, y, v′, v)χj(y, v′) dv′

+λ∞(0)
∫

V

f(0, y, v′, v)χj(y, v′) dv′ − vjψ(0, y, v)

y 7→ χj(y, v) Y -periodic.

(35)

According to the Fredholm alternative, since J(0) = 0, equation (35) has a solution χj , which is unique up to
the addition of a multiple of ψ(x = 0). Because J(0) = 0, one can easily check that adding such a multiple of ψ
does not change the homogenized coefficients Dij .

Remark 3.1. Equation (33) is well known in quantum mechanics where it is called the harmonic oscillator
equation. The first eigenvector of (33) is explicitly given by (see e.g. [13])

u1(z) = exp
(
−Mz · z

2

)
,

where, after some algebra, M is the solution of the same Riccati equation (26) as in the previous section.
Moreover, the corresponding first eigenvalue is

λ1 =
Tr

(
MD

)
+ γ

σ
,

and corresponds to the first order eigenvalue corrector given by our asymptotic expansion.
Recall that Remark 2.2 states that B = ∇xJ(0) where J(x) is defined by (9). Therefore, if we assume that

∇xJ(0) = 0, the convection term in (33) disappear and M is given by the explicit formula (30).

It is well known that the spectral problem (33) is compact in L2(RN ) because of the positive quadratic
potential. Remark however that (33) is usually not self-adjoint. Therefore its spectrum is made of at most a
countable number of finite multiplicity eigenvalues (possibly complex-valued). We label the eigenvalues of (33)
by increasing order of their real parts (with repeated multiplicity). Since (33) satisfies a maximum principle,
by the Krein–Rutman theorem it admits a first eigenvalue which is real, positive, simple, and such that its
eigenvector can be chosen positive in RN . In particular, this implies that the spectrum of (33) is never empty.
Of course, if (33) is self-adjoint (in the case where B = ∇J(0) = 0), then it admits a countable infinite number
of real eigenvalues.

3.2. Main result

The main result of this paper, which justifies many of the homogenization and concentration features pre-
sented in the previous section, is as follows:
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Theorem 3.2. We assume that (H1-H4) hold. Let (λ∞(x), ψ(x, y, v)) be the first positive eigenpair of (7).
Let (λm)1≤m≤m∞ and (λε

m)m be the eigenvalues (with repeated multiplicity and in increasing order) of the
homogenized problem (33) and the original problem (1), respectively. Then, for any m ∈ {1, ...,m∞} and for
sufficiently small ε, there exists an mth eigenvalue λε

m of (1) such that

λε
m = λ∞(0) + ελm + o(ε),

and, if φε
m is a corresponding normalized eigenvector of (1), then it satisfies

φε
m(x, v) = ψ

(
x,
x

ε
, v

)
uε

m

(
x√
ε
, v

)
, (36)

where, up to a subsequence, εN/4uε
m(z, v) (properly extended to RN × V ) converges to um(z) strongly in L2(RN

×V ), and um is an eigenvector associated to λm of the homogenized convection-diffusion eigenvalue problem
(33). Moreover, in the original domain we have the following convergence

lim
ε→0

∥∥∥φε
m(x, v) − ε−N/4ψ

(
0,
x

ε
, v

)
um

(
x√
ε

) ∥∥∥
L2(Ω×V )

= 0. (37)

Remark 3.3. The coefficient εN/4 comes from the scaling ‖φε
m‖L2(Ω×V ) = 1 which implies that ‖εN/4uε

m‖
L2(RN×V ) is of order one.

The convergence of the eigenvectors is obtained up to a subsequence because of the possible multiplicity of
the limit eigenvalue. Since the first eigenvalue λ1 is simple, the whole sequence (λε

1, u
ε
1) converges (and not

merely a subsequence).

In the sequel, we shall use the following convenient notation: for a function g(x, y, v), Y -periodic with respect
to the fast variable y, we define

gε(x, v) = g
(
x,
x

ε
, v

)
.

To prove Theorem 3.2, we first establish that the spectral problem (1) is equivalent to another problem obtained
by factorization.

Proposition 3.4. Let ψ(x, y, v) be the positive eigenvector of (7). Then, the linear operator



L2(Ω × V ) −→ L2(Ω × V )

φ(x, v) 7−→ u(x, v) =
φ(x, v)
ψε(x, v)

,
(38)

is continuous and has a continuous inverse. With this change of unknowns, the problem (1) is equivalent to the
following spectral problem


 v · ∇uε + αεuε +

1
ε
Qε(uε) +

λ∞(x) − λ∞(0)
ε

F ε(uε) = µεF ε(uε) in Ω × V

uε = 0 on Γ−,
(39)
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where we have defined 


µε =
λε − λ∞(0)

ε

Qε(u)(x, v) =
u(x, v)
ψε(x, v)

∫
V

σε
∞(x, v′, v) ψε(x, v′) dv′

− 1
ψε(x, v)

∫
V

σε
∞(x, v′, v)ψε(x, v′)u(x, v′) dv′

F ε(u)(x, v) =
1

ψε(x, v)

∫
V

fε(x, v′, v)ψε(x, v′)u(x, v′) dv′

αε(x, v) =
v · (∇xψ)ε(x, v)

ψε(x, v)
,

(40)

with the notation

σ∞(x, y, v′, v) = σ(x, y, v′, v) + λ∞(x)f(x, y, v′, v),

σ∗
∞(x, y, v′, v) = σ∗(x, y, v′, v) + λ∞(x)f∗(x, y, v′, v).

(41)

Proof. The result is obtained by straightforward algebra. Notice that the positivity and boundedness of ψ that
we stated in Proposition 1.7 are required to justify the change of unknown function (38).

We next introduce another change of variables, which will be of crucial importance to display the concentra-
tion effects, 


Ω −→ Ωε = ε−1/2Ω

x 7−→ z =
x√
ε
· (42)

For each function g(x, y, v), Y -periodic with respect to the fast variable y, we introduce the notation

g̃ε(z, v) = g

(√
εz,

z√
ε
, v

)
, with z =

x√
ε
∈ Ωε.

We similarly define the operators Q̃ε and F̃ ε from Qε and F ε. For instance, with this notation we have

∇(ψε)(x, v) =
(
∇xψ +

1
ε
∇yψ

) (
x,
x

ε
, v

)
=

(
(∇xψ)ε +

1
ε
(∇yψ)ε

)
(x, v),

and

∇(ψ̃ε)(z, v) =
(√

ε∇xψ +
1√
ε
∇yψ

) (√
εz,

z√
ε
, v

)
=

(√
ε ˜(∇xψ)ε +

1√
ε

˜(∇yψ)ε

)
(z, v).

Accordingly we obtain the following result:

Proposition 3.5. With the change of variables (42), the spectral equation (39) becomes




1√
ε
v · ∇ũε + α̃εũε +

1
ε
Q̃ε(ũε) +

λ∞(
√
εz) − λ∞(0)
ε

F̃ ε(ũε) = µεF̃ ε(ũε) in Ωε × V,

ũε = 0 on Γε
−.

(43)

The spectral equation (43) is recast as

Sεũε =
1

µε + η
ũε. (44)
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Here, the compact (see [2, 6]) operator Sε is defined by

Sε :

{
L2(Ωε × V ) −→ L2(Ωε × V )

q̃(z, v) 7−→ ũε(z, v),
(45)

where ũε denotes from now on the solution of the following source problem associated to (39)




1√
ε
v · ∇ũε + α̃εũε +

1
ε
Q̃ε(ũε) +

(
λ∞(

√
εz) − λ∞(0)
ε

+ η

)
F̃ ε(ũε) = F̃ ε(q̃) in Ωε × V

ũε = 0 on Γε
−.

(46)

Notice the presence of a positive coefficient η > 0 in equations (44) and (46). This coefficient will be useful in our
energy estimates and is harmless because it simply shifts the eigenvalues of (43) to the right. The sequence ũε

is defined on domains Ωε × V that depend on ε. To establish a convergence proof, we need to extend ũε to
RN × V as follows. We assume that ũε solves

v · ∇ũε + e
1
ε ũε = 0 on (RN\Ωε) × V, (47)

and impose the continuity of ũε(x, v) across the interface ∂Ωε × V . We also assume that no particles arrive
from infinity, i.e., ũε(x, v) → 0 as |x| → ∞.

Theorem 3.6. Under the hypotheses of Theorem 3.2, the sequence ũε(z, v) of solutions of (46) converges
strongly in L2(RN × V ) to u(z), the solution of the following homogenized problem

−div
(
D∇u) +

(
Az.z + ησ + γ

)
u+ z ·

(
B

∗∇u
)

= F (q̃),

u ∈ H1(RN ) ∩ L2
z(RN ),

(48)

where D, A, B, σ, and γ are given in (34) and

F (q̃) =
∫

Y

∫
V

∫
V

f(0, y, v′, v)ψ(0, y, v′) q(z, v′)ψ∗(0, y, v) dydvdv′. (49)

This theorem will be proved in Sections 4 and 5.

3.3. Proof of Theorem 3.2

We are now in a position to prove our main result. Let us define the homogenized operator S by

S :

{
L2(RN × V ) −→ L2(RN × V )

q̃(z, v) 7−→ u(z),

where u is the solution of the homogenized equation (48). Then S is a compact operator because H1(RN )
∩L2

z(R
N ) is compactly embedded in L2(RN ). We deduce from Theorem 3.6 that Sε converges to S pointwise

in L2(RN × V ), in the sense that for all q ∈ L2(RN × V ), then Sε(q) → S(q) in L2(RN × V ) strongly.
Furthermore, as a consequence of Corollary 4.3, Sε converges compactly to S, in the sense that, for every

bounded sequence q̃ε in L2(RN × V ), Sε(q̃ε) is relatively compact in L2(RN × V ). The following classical
result in operator theory, recalled here for completeness (see [5, 10]), allows us to conclude that the spectrum
of Sε converges to that of S. Eventually, estimate (37) is due to the special form of the eigenfunctions of the
homogenized problem (33), which are exponentially decaying away from the concentration point 0, thus allowing
to replace ψ(x, x/ε, v) by ψ(0, x/ε, v) in the factorization (36).
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Theorem 3.7. Let X be a Banach space, and (Tn)n∈N a sequence of bounded operators in L(X) converging
compactly to T . Let σ(T ) and σ(Tn) be the spectra of T and Tn respectively. Let λ be an isolated eigenvalue
of T of finite (algebraic) multiplicity m and let Γ be a closed Jordan curve in the complex plane enclosing λ
and leaving outside the rest of the spectrum of T . Then, for sufficiently large values of n, Γ encloses exactly m
eigenvalues of Tn (with repeated algebraic multiplicity).

Moreover, if λn is a sequence of eigenvalues of Tn converging to λ, and un is a sequence of normalized
associated eigenvectors, then, up to a subsequence, un converges to a limit u in X which is an eigenvector of T
associated with λ.

4. A priori estimates

The first step in the proof of Theorem 3.6 is to derive a priori energy estimates for the source problem (46).
These estimates are as follows:

Lemma 4.1. Let ũε be the unique solution of (46). Then there exists a positive constant C independent of ε
and q̃, such that

‖ ũε ‖L2(Ωε×V ) + ‖ v · ∇ũε ‖L2(Ωε×V ) +
∥∥∥|z| ∫

V

ũε
∥∥∥

L2(Ωε×V )

+
1√
ε

∥∥∥ũε −
∫

V

ũε
∥∥∥

L2(Ωε×V )
+

1
ε

1
4
‖ ũε ‖L2(Γε

+,|v·n|) ≤ C ‖ q̃ ‖L2(Ωε×V )

(50)

where L2(Γε
+, |v · n|) is the trace space of functions u satisfying

∫
Γε

+
(v · n) |u|2dΓ < ∞ with Γε

+ = {(x, v) ∈
∂Ωε × V | v · n(x) > 0} and dΓ = dvdσ (dσ being the surface measure on ∂Ωε).

Proof. We multiply equation (46) by ũεψ̃εψ̃∗ε, taking into account the notation (40), and integrate over Ωε ×V
to obtain ∫

Ωε

∫
V

1√
ε
v · ∇ũεũεψ̃εψ̃∗ε + v · (∇̃xψ)ε(ũε)2ψ̃∗ε +

1
ε
Q̃ε(ũε)ũεψ̃εψ̃∗ε

+
(
λ∞(

√
εz) − λ∞(0)
ε

+ η

)
F̃ ε(ũε)ũεψ̃εψ̃∗ε dzdv =

∫
Ωε

∫
V

F̃ ε(q̃)ũεψ̃εψ̃∗ε dzdv.
(51)

Let I1 =
1√
ε

∫
Ωε

∫
V

v · ∇ũεũεψ̃εψ̃∗ε dzdv. Then we have

I1 =
1√
ε

∫
Γε

+

(v · n)(ũε)2ψ̃εψ̃∗ε dzdv − 1√
ε

∫
Ωε

∫
V

v · ∇(ũεψ̃εψ̃∗ε)ũε dzdv

=
1√
ε

∫
Γε

+

(v · n)(ũε)2ψ̃εψ̃∗ε dzdv − 1√
ε

∫
Ωε

∫
V

v · ∇ũεũεψ̃εψ̃∗ε dzdv

− 1√
ε

∫
Ωε

∫
V

v · ∇(ψ̃εψ̃∗ε)(ũε)2 dzdv

=
1

2
√
ε

∫
Γε

+

(v · n)(ũε)2ψ̃εψ̃∗ε dzdv − 1
2
√
ε

∫
Ωε

∫
V

v · ∇(ψ̃εψ̃∗ε)(ũε)2 dzdv

=
1

2
√
ε

∫
Γε

+

(v · n)(ũε)2ψ̃εψ̃∗ε dzdv − 1
2

∫
Ωε

∫
V

v · (∇̃xψψ∗)ε(ũε)2 dzdv

− 1
2ε

∫
Ωε

∫
V

v · (∇̃yψψ∗)ε(ũε)2 dzdv.
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Upon multiplying the infinite medium equation (7) by ψ∗ and subtracting the adjoint equation (8) multiplied
by ψ, we get

v · ∇y(ψψ∗) = ψ∗
∫

V

σ∞ψdv′ − ψ

∫
V

σ∗
∞ψ

∗dv′,

where σ∞ and σ∗∞ are defined in (41). Thus, it yields the following expression for I1

I1 =
1

2
√
ε

∫
Γε

+

(v · n)(ũε)2ψ̃εψ̃∗ε dzdv − 1
2

∫
Ωε

∫
V

v · ∇̃xψψ∗ε

(ũε)2 dzdv

− 1
2ε

∫
Ωε

∫
V

(ũε)2
(
ψ̃∗ε

∫
V

σ̃ε
∞ψ̃

εdv′ − ψ̃ε

∫
V

σ̃∗ε
∞ψ̃

∗εdv′
)

dzdv.

Let I2 =
1
ε

∫
Ωε

∫
V

Q̃ε(ũε)ũεψ̃εψ̃∗ε dzdv. Then,

I2 =
1
ε

∫
Ωε

∫
V

(
(ũε)2ψ̃∗ε

∫
V

σ̃ε
∞ψ̃

εdv′ − ũεψ̃∗ε

∫
V

σ̃ε
∞ψ̃

εũεdv′
)

dzdv.

We deduce that

I1 + I2 =
1

2
√
ε

∫
Γε

+

(v · n)(ũε)2ψ̃εψ̃∗ε dzdv − 1
2

∫
Ωε

∫
V

v · ∇̃xψψ∗ε

(ũε)2 dzdv

+
1
2ε

∫
Ωε

∫
V

(
(ũε)2ψ̃∗ε

∫
V

σ̃ε
∞ψ̃

εdv′

−2ũεψ̃∗ε

∫
V

σ̃ε
∞ψ̃

εũεdv′ + (ũε)2ψ̃ε

∫
V

σ̃∗ε
∞ψ̃

∗εdv′
)

dzdv,

and the third term in I1 + I2 is equal to

1
2ε

∫
Ωε

∫
V

∫
V

ũε(z, v)2ψ̃∗ε(z, v)σ̃ε
∞(z, v′, v)ψ̃ε(z, v′) − 2ũε(z, v)ψ̃∗ε(z, v)σ̃ε

∞(z, v′, v)ψ̃ε(z, v′)ũε(z, v′)

+ũε(z, v′)2ψ̃ε(z, v′)σ̃∗ε
∞(z, v, v′)ψ̃∗ε(z, v) dzdvdv′

=
1
2ε

∫
Ωε

∫
V

∫
V

ψ̃∗ε(z, v)ψ̃ε(z, v′)σ̃ε∞(z, v′, v) |ũε(z, v) − ũε(z, v′)|2 dzdvdv′.

At last, we find

I1 + I2 =
1

2
√
ε

∫
Γε

+

(v · n)(ũε)2ψ̃εψ̃∗ε dzdv − 1
2

∫
Ωε

∫
V

v · ∇̃xψψ∗ε

(ũε)2 dzdv

+
1
2ε

∫
Ωε

∫
V

∫
V

ψ̃∗ε(z, v)ψ̃ε(z, v′)σ̃ε
∞(z, v′, v) |ũε(z, v) − ũε(z, v′)|2 dzdvdv′,

(52)

and it is straightforward to check that

I1 + I2 ≥ −C
∫

Ωε

∫
V

(ũε)2 dzdv +
C

2ε

∫
Ωε

∫
V

|ũε −
∫

V

ũε|2 dzdv +
C√
ε

∫
Γ+

ε

(v · n)(ũε)2. (53)

Let I3 =
∫

Ωε

∫
V

v·∇̃xψ
ε
(ũε)2ψ̃∗ε+ηF̃ ε(ũε)ũεψ̃εψ̃∗ε dzdv. Adding and subtracting the contribution η

∫
Ωε

∫
V (ũε)2

ψ̃∗ε
∫

V f̃
εψ̃ε yields

I3 =
∫

Ωε

∫
V

(
v · ∇̃xψ

ε
+ η

∫
V

f̃εψ̃εdv′
)
ψ̃∗ε(ũε)2 + ηũεψ̃∗ε

(∫
V

f̃εψ̃εũεdv′ − ũε

∫
V

f̃εψ̃εdv′
)

dzdv. (54)
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Since f̃ε, ψ̃ε and ψ̃∗ε are bounded from below by positive constants, choosing a sufficiently large value of η
(which is independent of ε and q), we can estimate the first term in I3 from below by

C(η)
∫

Ωε

∫
V

(ũε)2dzdv. (55)

The second term in I3 is given by

η

∫
Ωε

∫
V

ũεψ̃εψ̃∗ε
(
F̃ ε(ũε) − ũεF̃ ε(1)

)
dzdv = η

∫
Ωε

∫
V

ũεψ̃εψ̃∗ε

(
F̃ ε(ũε −

∫
V

ũε) − F̃ ε(1)(ũε −
∫

V

ũε)
)

dzdv.

Its sign is not known a priori, but this term is bounded in absolute value by

C ‖ ũε‖L2(Ωε×V )

∥∥∥ũε −
∫

V

ũε
∥∥∥

L2(Ωε×V )
. (56)

Let us define I4 =
∫
Ωε

∫
V ε

−1(λ∞(
√
εz) − λ∞(0))F̃ ε(ũε)ũεψ̃εψ̃∗ε dzdv. According to the hypotheses on the

function x 7→ λ∞(x), it is clear that λ∞(x)−λ∞(0) is bounded from below on Ω by a quadratic positive definite
form, i.e.,

∃C > 0, ∀x ∈ Ω, λ∞(x) − λ∞(0) ≥ Cx · x.

Since f̃ε, ψ̃ε and ψ̃∗ε are also bounded from below by positive constants, and V is bounded according to (H1),
we deduce that

I4 ≥ C

∫
Ωε

∫
V

|z|2ũεψ̃∗ε

(∫
V

ũεf̃εψ̃εdv′
)

dzdv ≥ C

∫
Ωε

(
|z|

∫
V

ũεdv′
)2

dz. (57)

Finally, the right-hand side in (51) is equal to
∫
Ωε

∫
V
ũεψ̃∗ε

(∫
V
f̃εψ̃εq̃

)
dzdvdv′, hence is bounded by

C ‖ ũε ‖L2(Ωε×V )‖ q̃ ‖L2(Ωε×V ) . (58)

Summing up the estimates in (53, 55–57), and (58), we deduce that

C ‖ ũε ‖2
L2(Ωε×V ) +

C

ε

∥∥∥ũε −
∫

V

ũε
∥∥∥2

L2(Ωε×V )
+

C√
ε
‖ ũε ‖2

L2(Γ+
ε ,|v·n|)

−C ‖ ũε ‖L2(Ωε×V )

∥∥∥ũε −
∫

V

ũε
∥∥∥

L2(Ωε×V )
+ C

∥∥∥|z| ∫
V

ũε
∥∥∥2

L2(Ωε×V )

≤C ‖ ũε ‖2
L2(Ωε×V )‖ q̃ ‖L2(Ωε×V ) .

(59)

Consequently, we have

C

ε

(∥∥∥ũε −
∫

V

ũε
∥∥∥ − ε ‖ ũε ‖

)2

+ (C − Cε) ‖ ũε ‖2 +C
∥∥∥|z| ∫

V

ũε
∥∥∥2

≤ C ‖ ũε ‖ ‖ q̃ ‖ .

This implies first that ‖ ũε ‖L2(Ωε×V ) ≤ C ‖ q̃ ‖L2(Ωε×V ), and then,

∥∥∥|z| ∫
V

ũε
∥∥∥

L2(Ωε×V )
≤ C ‖ q̃ ‖L2(Ωε×V ) .
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Next we observe that

C

(
‖ ũε ‖ −

∥∥∥ũε −
∫

V

ũε
∥∥∥)2

+
(
C

ε
− C

) ∥∥∥ũε −
∫

V

ũε
∥∥∥2

≤ C ‖ ũε ‖ ‖ q̃ ‖,

which gives us

1√
ε

∥∥∥ũε −
∫

V

ũε
∥∥∥

L2(Ωε×V )
≤ C ‖ q̃ ‖L2(Ωε×V ) .

Finally, the bound for ‖ v · ∇ũε ‖L2(Ωε×V ) is deduced from equation (46) since

v · ∇ũε = −√
ε
v · ∇̃xψ

ε

ψ̃ε
ũε − 1√

ε
Q̃ε(ũε) −

(
λ∞(

√
εz) − λ∞(0)√

ε
+
√
εη

)
F̃ ε(ũε) +

√
εF̃ ε(q̃).

The first and fourth term on the right-hand side are easily bounded by
√
εC ‖ ũε ‖ and

√
εC ‖ q̃ ‖ and hence

by
√
εC. Since Q̃ε(ũε) = Q̃ε(ũε − ∫

V
ũε), the second term is bounded by 1√

ε
C ‖ ũε − ∫

V
ũε ‖ and hence by C.

Since λ∞(x) − λ∞(0) is bounded on Ω by C|x|, the third term is bounded by C ‖ |z| ∫V ũ
ε ‖ +

√
εC ‖ ũε ‖ and

hence by C. This concludes the proof of the lemma.

We now extend ũε to RN as in the preceding section by imposing that it solve (47), that it be continuous
across the interface ∂Ωε × V , and that ũε(x, v) → 0 as |x| → ∞. The very strong absorption in RN\Ωε allows
us to prove by integration along characteristics that the above a priori estimates also hold for the extended
function ũε (remark that we need the estimates on Γ+

ε to establish the following corollary). Thus we obtained

Corollary 4.2. Let ũε be defined on RN × V as above. Then we have

‖ ũε ‖L2(RN×V ) + ‖ v · ∇ũε ‖L2(RN×V ) +
∥∥∥|z| ∫

V

ũε
∥∥∥

L2(RN×V )

+
1√
ε

∥∥∥ũε −
∫

V

ũε
∥∥∥

L2(RN×V )
≤ C ‖ q̃ ‖L2(Ωε×V ) . (60)

We conclude this section by stating an important result, which derives from the above a priori estimates,

Corollary 4.3. Let q̃ε be a bounded sequence of L2(RN ×V ). Let ũε be the solution of (46), where q̃ is replaced
by q̃ε, and then extended to RN × V as above. Then, the sequence ũε is relatively compact in L2(RN × V ).

Proof. The previous a priori estimates still hold when q̃ is replaced by q̃ε. Therefore, there exists C > 0 such
that

‖ ũε ‖L2(RN×V ) + ‖ v · ∇ũε ‖L2(RN×V ) +
∥∥∥|z| ∫

V

ũε
∥∥∥

L2(RN×V )
≤ C.

Using Lemma 1.8, we deduce that the sequence
∫

V
ũε is relatively compact. But we also know that

‖ ũε − ∫
V ũ

ε ‖L2(RN×V )≤ C
√
ε. This proves the relative compactness of the sequence ũε.

5. Convergence proof

The aim of this section is to prove Theorem 3.6. It is based on the use of the two-scale convergence tech-
nique [1, 2].

We first introduce some notation and denote by C∞
# (Y ) the space of infinitely differentiable functions in RN

that are Y -periodic, and L2
#(Y ) (respectively H1

#(Y )) the completion of C∞
# (Y ) for the norm of L2

#(Y ) (respec-
tively of H1

#(Y )). Since our functions oscillate with period
√
ε on RN , our definition of two-scale convergence

is here:



20 G. ALLAIRE, G. BAL AND V. SIESS

Definition 5.1. A sequence of functions gε in L2(RN × V ) is said to two-scale converge to a limit g in L2(RN

×Y × V ) if, for any function ψ in D(RN × V ; C∞
# (Y )), we have

lim
ε→0

∫
RN

∫
V

gε(x, v)ψ
(
x,

x√
ε
, v

)
dxdv =

∫
RN

∫
Y

∫
V

g(x, y, v)ψ(x, y, v) dxdydv.

We also recall here an important result of two-scale convergence:

Theorem 5.2. Let gε be a bounded sequence in L2(RN × V ). Then there exists a limit g in L2(RN × Y × V )
such that, up to a subsequence, gε two-scale converges to g.

The a priori estimates obtained for ũε will allow us to prove a result of two-scale convergence for ũε, and to
guess what form its limit should have. This is the goal of the next proposition:

Proposition 5.3. Let ũε be a sequence in L2(RN × V ) such that there exists a constant C independent of ε
satisfying the following energy estimate

‖ ũε ‖L2(RN×V ) + ‖ v · ∇ũε ‖L2(RN×V ) +
1√
ε

∥∥∥ũε −
∫

V

ũε
∥∥∥

L2(RN×V )
+

∥∥∥|z| ∫
V

ũε
∥∥∥

L2(RN×V )
≤ C.

Then, there exists u0(z) in H1(RN )∩L2
z(RN ) and u1(z, y) in L2(RN ×V ;H1

#(Y )) such that, up to a subsequence,
ũε(z, v) strongly converges to u0(z) in L2(RN ), v · ∇ũε two-scale converges to v · ∇zu

0 + v · ∇yu
1, and 1√

ε
(ũε

− ∫
V
ũε) two-scale converges to u1 − ∫

V
u1.

The proof of this proposition follows from minor modifications of that of [2] (Prop. 5.3). We deduce the
following result from the above proposition.

Proposition 5.4. Assume that hypotheses (H1–H4) hold. Let ũε be the unique solution to (46) extended to RN

by imposing that it solve (47), that it be continuous across the interface ∂Ωε × V , and that ũε(x, v) → 0 as
|x| → ∞. With the notation of Proposition 5.3, u1 is given by

u1(z, y, v) =
N∑

j=1

∂u0

∂zj
(z) θj(y, v),

where θj(y, v) is the unique solution of
{
v · ∇yθ

j +Q(0, θj) = −vj in Y × V,

y 7→ θj(y, v) Y − periodic,
(61)

up to an additive constant. The operator Q(x, ·) is defined by

Q(x, u)(y, v) =
u(y, v)
ψ(x, y, v)

∫
V

σ∞(x, y, v′, v)ψ(x, y, v′) dv′

− 1
ψ(x, y, v)

∫
V

σ∞(x, y, v′, v)ψ(x, y, v′)u(y, v′) dv′,

and the adjoint operator Q∗(x, ·) by

Q∗(x, u)(y, v) =
u(y, v)
ψ(x, y, v)

∫
V

σ∞(x, y, v′, v)ψ(x, y, v′) dv′

−ψ(x, y, v)
∫

V

σ∗
∞(x, y, v′, v)

1
ψ(x, y, v)

u(y, v′) dv′.
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Proof. Let φ(x, y, v) be a smooth Y -periodic function with compact support in its first variable. Multiplying (46)
by

√
εφ(z, z√

ε
, v) and integrating over RN × V yields

∫
RN

∫
V

v · ∇ũεφdzdv +
∫

RN

∫
V

Q̃ε(w̃ε)φdzdv =
√
ε

∫
RN

∫
V

S̃εφ, dzdv, (62)

where w̃ε = ũε−R
V

ũε

√
ε

, and where the source term is

S̃ε = −α̃εũε −
(
λ∞(

√
εz) − λ∞(0)
ε

+ η

)
F̃ ε(ũε) + F̃ ε(q̃).

The difference λ∞(
√

εz)−λ∞(0)√
ε

is clearly bounded in Ωε by C
√
εz · z. Thus, since φ has compact support, the

right-hand side in (62) converges to 0 as ε goes to 0. The first term in (62) converges to
∫

RN

∫
Y

∫
V (v · ∇zu

0

+v · ∇yu
1)φdzdydv as ε goes to 0.

To study the convergence of the second term, we need to introduce some notation. We define

ψ̃ε
0(z, v) = ψ

(
0,

z√
ε
, v

)
,

and similarly ψ̃∗ε
0 , σ̃ε

∞0, f
ε
0 , and the operators Q̃ε

0 and F̃ ε
0 . By Lipschitz regularity of all physical parameters,

we deduce that ∣∣∣ ∫
RN

∫
V

(Q̃ε − Q̃ε
0)(w̃

ε)φdzdv
∣∣∣ ≤ C(φ)

√
ε ‖ w̃ε ‖L2(RN×V ) .

Introducing the adjoint scattering kernel Q̃∗ε
0 , we obtain∫

RN

∫
V

Q̃ε(w̃ε) φdzdv =
∫

RN

∫
V

w̃εQ̃∗ε
0 (φ) dzdv +O(

√
ε).

Next we check that Q̃∗ε
0 (φ(z, z√

ε
, v)) two-scale converges to Q∗(0, φ)(z, y, v) and that

lim
ε→0

‖ Q̃∗ε
0 (φ(z,

z√
ε
, v)) ‖L2(RN×V )=‖ Q∗(0, φ)(z, y, v) ‖L2(RN×V ) .

This last property allows us to pass to the limit in a product of two weakly converging sequences [1]. Since wε

two-scale converges to uε −
∫

V
uε, we get in the limit that

∫
RN

∫
Y

∫
V

(v · ∇zu
0 + v · ∇yu

1)φdzdydv +
∫

RN

∫
Y

∫
V

Q(0, u1 −
∫

V

u1)φdzdydv = 0.

Thus u1 is a solution of the following equation{
v · ∇yu

1 +Q(0, u1) = −v · ∇zu
o

y 7→ u1(z, y, v)Y − periodic.

Since u0 depends only on z, we deduce that u1(z, y, v) =
∑N

j=1
∂u0

∂zj
(z)θj(y, v), where θj is a solution of the

following equation {
v · ∇yθ

j +Q(0, θj) = −vj

y 7→ θj(y, v)Y − periodic.
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It is easy to see that χj = θjψ0, and therefore, thanks to hypothesis (H4), this last equation is solvable, and
has a unique solution, up to an additive constant. This concludes the proof of our proposition.

Proposition 5.5. With the same hypotheses as in the previous proposition, the sequence ũε(z, v) converges
strongly in L2(RN × V ) to u0(z) ∈ H1(RN ), solution of the following problem

−div
(
D∇u0

)
+

(
Az.z + γ + ησ

)
u0 +

(
div

(
B

∗
z u0

)
− div(J)(0)u0

)
= F (q̃)

u0 ∈ H1(RN ) ∩ L2
z(R

N ),
(63)

where the coefficients are defined in (34) and (49).

Proof. Let us first define, for 1 ≤ i ≤ n, the adjoint cell problem at x = 0

{
−v · ∇y(ψψ∗θ∗i) +Q∗(0, ψψ∗θ∗i) = viψψ

∗

y 7→ θ∗i(y, v)Y − periodic,
(64)

which admits a unique solution, up to an additive constant, since
∫

Y

∫
V viψψ

∗dy dv = 0 at x = 0. Let φ(z) be
a smooth function with compact support in RN . We define

φε(z, v) = φ(z) +
√
ε

N∑
j=1

∂φ

∂zj
(z) θ∗j

(
z√
ε
, v

)
.

Upon multiplying (46) by φεψ̃εψ̃∗ε and integrating over RN × V , we obtain∫
RN

∫
V

1√
ε
v · ∇ũεφεψ̃εψ̃∗ε +

∫
RN

∫
V

α̃εũεφεψ̃εψ̃∗ε +
∫

RN

∫
V

1
ε
Q̃ε(ũε)φεψ̃εψ̃∗ε

+
∫

RN

∫
V

(
λ∞(

√
εz) − λ∞(0)
ε

+ η

)
F̃ ε(ũε)φεψ̃εψ̃∗ε =

∫
RN

∫
V

F̃ ε(q̃)φεψ̃εψ̃∗ε.
(65)

Denoting these integrals by Jε
i in the same order, (65) reads

Jε
1 + Jε

2 + Jε
3 + Jε

4 = Jε
5 .

We now pass to the limit in each term Jε
i . The right-hand side is given by

Jε
5 =

∫
RN

∫
V

∫
V

f
(√

εz,
z√
ε
, v′, v

)
ψ

(√
εz,

z√
ε
, v′

)
q̃(z, v′)ψ∗

(√
εz,

z√
ε
, v

)
·

·
[
φ(z) +

√
ε

N∑
j=1

∂φ

∂zj
θ∗j

( z√
ε
, v

)]
dzdvdv′.

By Lipschitz regularity of the functions f , ψ, and ψ∗, we have

Jε
5 =

∫
RN

∫
V

∫
V

f
(
0,

z√
ε
, v′, v

)
ψ

(
0,

z√
ε
, v′

)
q̃(z, v′)ψ∗

(
0,

z√
ε
, v

)
φ(z) dzdvdv′ + C(φ)

√
ε.

Thus, it converges to

J5 =
∫

RN

∫
Y

∫
V

∫
V

f (0, y, v′, v) ψ (0, y, v′) q̃(z, v′)ψ∗ (0, y, v) φ(z) dzdvdv′.
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The fourth term is

Jε
4 =

∫
RN

∫
V

∫
V

(
λ∞(

√
εz) − λ∞(0)
ε

+ η

)
f

(√
εz,

z√
ε
, v′, v

)
ψ

(√
εz,

z√
ε
, v′

)

×ũε(z, v′)φ(z)ψ∗
(√

εz,
z√
ε
, v

)
dzdvdv′

+
√
ε

∫
RN

∫
V

∫
V

(
λ∞(

√
εz) − λ∞(0)
ε

+ η

)
f

(√
εz,

z√
ε
, v′, v

)

×ψ
(√

εz,
z√
ε
, v′

)
ũε(z, v′)

N∑
j=1

∂φ

∂zj
θ∗jψ∗

(√
εz,

z√
ε
, v

)
dzdvdv′,

or, by Lipschitz regularity,

Jε
4 =

∫
RN

∫
V

∫
V

(
λ∞(

√
εz) − λ∞(0)
ε

+ η

)
ũε(z, v′)φ(z)f

×
(

0,
z√
ε
, v′, v

)
ψ

(
0,

z√
ε
, v′

)
ψ∗

(
0,

z√
ε
, v

)
dzdvdv′ +O(

√
ε),

and, thus, converges to

J4 =
∫

RN

∫
Y

∫
V

∫
V

(λ2
ijzizj + η)f(0, y, v′, v)ψ(0, y, v′)ψ∗(0, y, v)u0(z)φ(z) dzdydvdv′.

The second term is

Jε
2 =

∫
RN

∫
V

v · ∇xψ

ψ

(√
εz,

z√
ε
, v

)
ũε(z, v)φ(z)(ψψ∗)

(√
εz,

z√
ε
, v

)
dzdvdv′

+
√
ε

∫
RN

∫
V

v · ∇xψ

ψ

(√
εz,

z√
ε
, v

)
ũε(z, v)

N∑
j=1

∂φ

∂zj
θ∗j

(
z√
ε
, v

)
(ψψ∗)

(√
εz,

z√
ε
, v

)
dzdvdv′,

or, by Lipschitz regularity,

Jε
2 =

∫
RN

∫
V

v · ∇xψ

ψ

(
0,

z√
ε
, v

)
ũε(z, v)φ(z)(ψψ∗)

(
0,

z√
ε
, v

)
dzdvdv′ +O(

√
ε),

and thus converges to

J2 =
∫

RN

∫
Y

∫
V

v · ∇xψ(0, y, v)ψ∗(0, y, v)u0(z)φ(z) dzdydv.
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Let us next deal with the sum Jε
1 + Jε

3 . After integrating by parts, Jε
1 can be written as the sum of seven

integrals 


Kε
1 = − 1√

ε

∫
RN

∫
V

ũεv · ∇zφψ̃
εψ̃∗ε

Kε
2 = −

∫
RN

∫
V

ũεv ·
N∑

j=1

∇z
∂φ

∂zj
θ∗jψ̃εψ̃∗ε

Kε
3 = − 1√

ε

∫
RN

∫
V

ũεv ·
N∑

j=1

∂φ

∂zj
∇yθ

∗j ψ̃εψ̃∗ε

Kε
4 = −

∫
RN

∫
V

ũεv · φ(∇̃xψψ∗)ε

Kε
5 = −1

ε

∫
RN

∫
V

ũεv · φ(∇̃yψψ∗)ε

Kε
6 = −√

ε

∫
RN

∫
V

ũεv ·
N∑

j=1

∂φ

∂zj
θ∗j(∇̃xψψ∗)ε

Kε
7 = − 1√

ε

∫
RN

∫
V

ũεv ·
N∑

j=1

∂φ

∂zj
θ∗j(∇̃yψψ∗)ε

and Jε
3 is the sum of two integrals



Kε

8 =
1
ε

∫
RN

∫
V

Q̃ε(ũε)φψ̃εψ̃∗ε

Kε
9 =

1√
ε

∫
RN

∫
V

Q̃ε(ũε)
N∑

j=1

∂φ

∂zj
θ∗jψ̃εψ̃∗ε.

We first observe that Kε
6 converges to 0. Now, recalling that

−v · ∇y(ψψ∗) +Q∗(ψψ∗) = 0,

for each x ∈ Ω, we have
Kε

5 +Kε
8 = 0.

Again, we use Lipschitz regularity to show that Kε
2 and Kε

4 converge to

K2 = −
∫

RN

∫
Y

∫
V

vi θ
∗j(y, v)ψ(0, y, v)ψ∗(0, y, v)u0(z)

∂2φ

∂zizj
(z) dzdydv

and

K4 = −
∫

RN

∫
Y

∫
V

v · ∇x(ψψ∗)(0, y, v)u0(z)φ(z) dzdydv

= −
∫

RN

div(J)(0)u0(z)φ(z) dzdydv

respectively. Since we assume that our data are of class C2 with respect to the slow variable x, we have for
instance 


(̃ψψ∗)

ε

(z, v) = ψψ∗
(

0,
z√
ε
, v

)
+
√
εz · ∇x(ψψ∗)

(
0,

z√
ε
, v

)
+O(ε)

Q̃∗ε(h)(z, v) = Q∗(0, h)
(

0,
z√
ε
, v

)
+
√
εz · ∇xQ

∗(0, h)
(

0,
z√
ε
, v

)
+O(ε).
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Therefore, the sum Kε
1 +Kε

3 +Kε
7 +Kε

9 is equal to
Sε

1√
ε

+ Sε
2 +O(

√
ε), where

Sε
1 =

∫
RN

∫
V

−ũε(z, v)v · (∇zφ)(z)(ψψ∗)
(

0,
z√
ε
, v

)

−ũε(z, v)v ·
N∑

j=1

∂φ

∂z
(zj)∇y(θ∗jψψ∗)

(
0,

z√
ε
, v

)

+ũε(z, v)
N∑

j=1

∂φ

∂zj
Q∗(0, θ∗jψψ∗)

(
z√
ε
, v

)
,

and

Sε
2 =

∫
RN

∫
V

−ũε(z, v)v · (∇zφ)(z)z · ∇x(ψψ∗)
(

0,
z√
ε
, v

)

−ũε(z, v)
N∑

j=1

∂φ

∂zj
(z)v · ∇y(θ∗jz · ∇x(ψψ∗))

(
0,

z√
ε
, v

)

+ũε(z, v)
N∑

j=1

∂φ

∂zj
z · ∇x(Q∗)(0, θ∗jψψ∗)

(
z√
ε
, v

)

+ũε(z, v)
N∑

j=1

∂φ

∂zj
Q∗(0, θ∗jz · ∇x (ψψ∗)

(
z√
ε
, v

)
.

Recalling that θ∗j is the solution of the adjoint cell problem (64)

−v · ∇y(ψψ∗θ∗j) +Q∗(ψψ∗θ∗j) = vjψψ
∗,

we obtain that Sε
1 = 0. Next, Sε

2 converges to

S2 =
∫

RN

∫
Y

∫
V

−vi
∂(ψψ∗)
∂xj

(0, y, v)
∂φ

∂zi
zju

0(z)

−u0(z)
N∑

j=1

∂φ

∂zj
(z)v · ∇y(θ∗jz · ∇x(ψψ∗))(0, y, v)

+u0(z)
N∑

j=1

∂φ

∂zj
(z)z · ∇x(Q∗)(0, θ∗jψψ∗)(y, v)

+u0(z)
N∑

j=1

∂φ

∂zj
(z)Q∗(0, θ∗jz · ∇x(ψψ∗))(y, v)dzdydv.

It is straightforward to verify that the last three terms in S2 vanish. After integrating by parts, we have

S2 =
∫

RN

∫
Y

∫
V

∂zi(vi∂xj (ψψ
∗)zju

0)φ0 dzdydv =
∫

RN

div
(
B

∗
zu0

)
φ0 dz.

Eventually, passing to the limit yields

K2 + J2 + J4 + S2 +K4 = J5,
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or equivalently,

−
∫

RN

∫
Y

∫
V

u0(z)viθ
∗j(y, v)ψ(0, y, v)ψ∗(0, y, v)

∂2φ

∂zi∂zj
dzdydv

+
∫

RN

∫
Y

∫
V

u0(z)v · ∇xψ(0, y, v)ψ∗(0, y, v)φ(z) dzdydv

+
∫

RN

∫
Y

∫
V

∫
V

(λ2
ijzizj + η)f(0, y, v′, v)ψ(0, y, v′)ψ∗(0, y, v)u0(z)φ(z) dzdydv

+
∫

RN

∫
Y

∫
V

(
div

(
B

∗
z u0

)
− div(J)(0)u0

)
φ0 dzdydv

=
∫

RN

∫
Y

∫
V

∫
V

f(0, y, v′, v)ψ(0, y, v′)ψ∗(0, y, v)q̃(z, v′)φ(z) dzdydv.

(66)

To conclude the proof, we remark that∫
Y

∫
V

viθ
∗jψψ∗ = −

∫
Y

∫
V

vjψψ
∗θi = −

∫
Y

∫
V

vjψ
∗χi = Dji,

which we obtain by multiplying (64) by θj and integrating by parts. Thus, (66) is nothing but the homogenized
equation (63).

6. Cell problems with drift

This section is devoted to the so-called drift or θ-exponential cell problems, which allow us to prove that the
asymptotic expansions and the two-scale method yield the same results.

6.1. θ-exponential cell problems

Let θ be a constant vector in RN . We introduce the following θ-exponential cell problem
 v · ∇yψθ + Σψθ =

∫
V

σ ψθ dv′ + λ∞(x, θ)
∫

V

f ψθ dv′

y 7→ ψθ(x, y, v) exp(θ · y) Y − periodic,
(67)

and its adjoint problem 
−v · ∇yψ

∗
θ + Σψ∗

θ =
∫

V

σ∗ ψ∗
θ dv′ + λ∞(x, θ)

∫
V

f∗ ψ∗
θ dv′

y 7→ ψ∗
θ(x, y, v) exp(−θ · y) Y − periodic.

(68)

It is convenient to perform the following change of unknowns ϕθ(x, y, v) = ψθ(x, y, v) exp(θ · y) and ϕ∗
θ(x, y, v)

= ψ∗
θ(x, y, v) exp(−θ · y). They solve the following problems


 v · ∇yϕθ − v · θϕθ + Σϕθ =

∫
V
σ ϕθ dv′ + λ∞(x, θ)

∫
V

f ϕθ dv′

y 7→ ϕθ(x, y, v) Y − periodic,
(69)

and 
−v · ∇yϕ

∗
θ − v · θϕ∗

θ + Σϕ∗
θ =

∫
V
σ∗ ϕ∗

θ dv′ + λ∞(x, θ)
∫

V

f∗ ϕ∗
θ dv′

y 7→ ϕ∗
θ(x, y, v) Y − periodic.

(70)
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Such problems were studied in [7], where, among other properties, it is proved that, for any x ∈ Ω, the function
θ 7→ λ∞(x, θ) admits a unique critical point θ0 (depending on x) which is a maximum and that

∇θλ
∞(x, θ) = J(x, θ) =

∫
Y

∫
V

vψθψ
∗
θ . (71)

Therefore, θ0 is uniquely characterized by J(x, θ0) = 0. Our previous notation J(x), defined by (9), coincides
with J(x, 0) as defined in (71). Our assumption (H4) just means that for x = x0 = 0 we have θ0 = 0.

6.2. On a relation between the limit drift B and the cell drift J

We are now in position to prove a result announced in Remark 2.2, namely that

Bij =
∂Jj

∂xi
(x = 0).

Deriving (69) with respect to θj yields

v · ∇y∂θjϕθ − vjϕθ − v · θ∂θjϕθ + Σ∂θjϕθ =
∫

V

σ∂θjϕθ + λ∞(x, θ)
∫

V

f∂θjϕθ + ∂θjλ
∞

∫
V

fϕθ. (72)

Multiplying by ϕ∗
θ, and integrating on Y × V yields

−
∫

Y

∫
V

vjϕθϕ
∗
θ = ∂θjλ

∞
∫

Y

∫
V

(∫
V

fϕθ

)
ϕ∗

θ ,

or equivalently

−J(θ, x) = −
∫

Y

∫
V

vψθψ
∗
θ = ∇θλ

∞
∫

Y

∫
V

(∫
V

fψθ

)
ψ∗

θ . (73)

Deriving (72) with respect to xi, we obtain

v · ∇y∂
2
xiθj

ϕθ − vj∂xiϕθ − v · θ∂2
xiθj

ϕθ + Σ∂2
xiθj

ϕθ + ∂xiΣ∂θjϕθ =
∫

V

(σ∂2
xiθj

ϕθ + ∂xiσ∂θjϕθ)

+λ∞
∫

V

(f∂2
xiθj

ϕθ + ∂xif∂θjϕθ) + ∂xiλ
∞

∫
V

f∂θjϕθ + ∂θjλ
∞

∫
V

(f∂xiϕθ + ∂xif∂θjϕθ)

+∂2
xiθj

λ∞
∫

V

fϕθ.

We write this equation at (x, θ) = (x0, θ0) = (0, 0). Therefore, assumptions (H3) and (H4) imply that the terms
∂xiλ

∞ and ∂θjλ
∞ vanish. Multiplying by ϕ∗

θ and integrating on Y × V yields at x = 0

∫
Y

∫
V

−vj∂xiϕ0ϕ
∗
0 + Σ1

i ∂θjϕ0ϕ
∗
0 =

∫
Y

∫
V

(∫
V

σ1
i ∂θjϕ0

)
ϕ∗

0 + λ∞
(∫

V

f1
i ∂θjϕ0

)
ϕ∗

0

+∂2
xiθj

λ∞
∫

Y

∫
V

∫
V

fϕ0ϕ
∗
0. (74)

Remember our normalization for the eigenvectors
∫

Y

∫
V

(ψθ)2 dydv = 1 and
∫

Y

∫
V

(∫
V

fψθ

)
ψ∗

θ dydv = 1.
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With this convention, deriving (73) with respect to xi yields

−∂Jj

∂xi
=

∂2λ∞

∂xi∂θj
· (75)

At (x, θ) = (0, 0), we have obviously ∂xiϕθ = ψ1
i by comparing (19) and equations (69). Similarly, comparing (22)

and (72), we have ∂θjϕθ = −χj . And thus, equations (74) and (75) yield

Bij =
∫

Y

∫
V

(
vjψ

1
i + Σ1

iχ
j −

∫
V

σ1
i χ

j − λ∞
∫

V

f1
i χ

j

)
ψ0∗ = ∂xiJj ,

which is the desired result.

Remark 6.1. If we assumed, instead of (H4), the much stronger assumption that the drift flux J(x) vanishes
in a neighborhood of x = 0, it would be possible to prove in a much simpler way (avoiding θ-exponential cell
problems) that B = ∇xJ(0) = 0. Indeed, the following equation, similar to (22) is solvable in a neighborhood
of x = 0,

v · ∇χj + Σχj =
∫

V

σχj + λ∞(x)
∫

V

fχj − vjψ.

Thus, differentiating this equation with respect to xi at x = 0 yields

v · ∇∂xiχ
j + Σ∂xiχ

j =
∫

V

σ∂xiχ
j + λ∞

∫
V

f∂xiχ
j − Σ1

iχ
j +

∫
V

σ1
i χ

j + λ∞
∫

V

f1
i χ

j − vjψ
1
i ,

which is also solvable by definition. Therefore, the solvability condition of this last equation is satisfied, and
this precisely means that Bij = 0.

6.3. On a generalization of the convergence result

In view of the properties of λ∞(x, θ), it is natural to replace our hypotheses (H3) and (H4) by a new one,
(H5), which states that there exists a unique couple (x0, θ0) ∈ Ω × RN , such that

(H5)

θ 7−→ λ∞(x0, θ) reaches its maximum at θ = θ0

and

x 7−→ λ∞(x, θ0) reaches its minimum at x = x0

with ∇x∇xλ
∞(x0, θ0) positive definite.

Notice that (H3) and (H4) are indeed equivalent to (H5) when (x0, θ0) = (0, 0).
We now explain a new phenomenon occurring when hypothesis (H3) and (H4) are not satisfied, but are

replaced by (H5). Of course, we still need the hypotheses (H1, H2). Instead of writing the first eigenfunction
φε of (1) in the form

φε(x, v) = ψ
(
x,
x

ε
, v

)
uε(x, v),

we introduce a new factorization and write

φε(x, v) = ψθ0

(
x,
x

ε
, v

)
uε

θ0
(x, v),

where ψθ0 is the solution of (67). At (x0, θ0), by definition we have J(x0, θ0) = 0, and thus our whole study
is still valid with this new factorization principle. Remark that (H4) was of crucial importance in the previous
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section because it was a Fredholm solvability condition, but it is now replaced by J(x0, θ0) = 0 which is a
consequence of the first assumption in (H5). Therefore, we can prove that

uε
θ0

(x, v) ≈ exp
(
−M(θ0)

2ε
(x− x0) · (x− x0

)
. (76)

We skip the details for the sake of brevity. Formally, this indicates that, in the limit ε → 0, the asymptotic
behavior of φε is changed and we have

φε(x, v) ≈ ϕθ0

(
x0,

x

ε
, v

)
exp

(
−θ0 · x− x0

ε

)
exp

(
−M(θ0)

2ε
(x − x0) · (x− x0

)
, (77)

where ϕθ0 is periodic. Note that the approximation sign in (77) is purely formal and has no real justification
since we can not pass easily from (76) to (77) by multiplying by a function, exp (−θ0 · (x− x0)/ε), which is
widely unbounded as ε goes to zero. At least, (77) is an indication that there is a competition between the
concentration term and the drift term and it seems to induce a new concentration point for φε. Formally, (77)
suggests that this new concentration point x1 is given by

x1 = x0 +M(θ0)−1θ0,

but a more detailed analysis is required to find the precise value of x1. Remark also that it is not clear how to
check assumption (H5) on specific examples of coefficients.
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