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HOMOGENIZATION OF THE COMPRESSIBLE NAVIER-STOKES EQUATIONS
IN A POROUS MEDIUM

NADER MASMOUDI!

Abstract. We study the homogenization of the compressible Navier-Stokes system in a periodic
porous medium (of period €) with Dirichlet boundary conditions. At the limit, we recover different
systems depending on the scaling we take. In particular, we rigorously derive the so-called “porous
medium equation”.
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1. INTRODUCTION

The homogenization of the Stokes and of the incompressible Navier-Stokes equations in a porous medium
(open set perforated with tiny holes) has been studied in many works from the formal point of view as well as
the rigorous one. We refer the interested reader to [4,12,20] for some formal developments and to [1,17,21]
for some rigorous mathematical results. In this paper, we try to extend some of the methods developed in the
incompressible case to study the case we start from different compressible models built on the compressible
Navier—Stokes system. One of the major difficulties we will encounter here is the passage to the limit in the
non linear terms. It is worth noticing that in the incompressible case there are many open problems related to
the passage to the limit in the non linear terms due to the presence of boundary layers.

Before stating the system, let us recall the domain we consider. A porous medium is defined as the periodic
repetition of an elementary cell of size ¢ in a bounded domain Q of R where N = 2, or 3 (all the results given
below also hold for N > 2). The solid part of the porous medium is also taken of size e. The domain €. is
then defined as the intersection of €2 with the fluid part. We consider a compressible fluid governed by the
compressible Navier—Stokes equation. So, we have the following system of equations written in (0, 00) x 2.

Ope +div(peue) = 0, p>0

(1)
Ot(peue) + div(petie ® ue) — pAue — EVdAivue + Vpe = pof + g.

Here, u. and p. are respectively the velocity and the density of the fluid and the pressure p. is given by a
barotropic law p. = p2. The exterior force is given by p.f + ¢ and the viscosities p and £ are such that p© > 0
and p+ & > 0. For simplicity, we will assume that £ > 0. The system should be complemented with initial and
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boundary conditions

pé(t = 0) = Pe0, pgug(t = 0) = Meo
(2)
u. =0 on 0f..

We will study the limit when e goes to zero of the above system as well as some related ones with different
scalings. The results will be stated and then proved for each model in the next sections.

1.1. The domain

Let Q be a smooth bounded domain of RN and define =]0, 1[N to be the unit open cube of RN, Let Y,
(the solid part) be a closed smooth subset of Y with a strictly positive measure. The fluid part is then given
by Yy = Y — )V, and we define 0 = |yf| the Lebesgue measure of Yy and we assume that 0 < 6 < 1. The
constant 6 is called the porosity of the porous medium. Repeating the domain V¢ by )Y-periodicity we get the
fluid domain E¢ which can also be defined as

Ef={ycRY |3k eZ", suchthat y—ke Vs }- 3)
In the same way, we can define F =RN — Ey
Es={y€RN|3kEZN,suchthat y—keYs}- (4)

It is easy to see that Ey is a connected domain, while E; is formed by separate smooth subsets. In the sequel,
we denote for all k € ZN, Y* = Y + k the translate of the cell Y by the vector k, we also denote yj =YV +k
and y}f = Vs + k. Hence, for all €, we can define the domain (2. as the intersection of {2 with the fluid domain
rescaled by €, namely Q. = Q NeEy. However, for some technical reasons and to get a smooth connected
domain, we will not remove the solid parts of the cells which intersect the boundary of 2. We define

Q. =Q-U{eY*, where, k€ ZV, eY* c Q}-

We also denote K. = {k | k € Z¥ and e}* C Q}.

Remark 1.1. We can also consider more general domains, specially the more physical case where E; is a
connected set of RY which can be achieved by allowing ), to be a closed subset of ) (this is not possible in
N = 2 since we also want that ). is connected). We refer the interested reader to the paper of Allaire [1] where
the so-called “energy method” of Tartar is extended to the case of a connected Es. In the sequel and for the
clarity of the presentation, we will only study the case where F; is not connected.

1.2. Some notations and preliminaries

In all the paper, we denote the space-time Lebesgue spaces by L"(0,T; L4(X)) where X is either Q or ..
Some times we will also denote it by L%5.(L(X)), LT.(L9) or L™(LY) if no ambiguity can occur. If r = g,
we will also use the notation L%.(X). W#P(X) will denote the classical Sobolev space built over LP and
H*(X) =W?#2%(X). Besides, we will use the notation H*(X)" (or H*(X) if no ambiguity can occur) for vector
valued functions of N components. We will also use Sobolev spaces with negative regularity and we recall that

||u||W*1'P(X) = sup <u’v>W—1,p,W01vP/

’
’UEW[)l’p (X), ||’UHW[},p/(X)=1

where p’ is the conjugate exponent of p.
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Due to the presence of the holes e)*, the domain (2. depends on ¢ and hence to study the convergence of
the sequence (ue, pe,pe), we have to extend the functions defined in €. to the whole domain 2. This can be
done in two different possible ways.

Definition 1.2. For any function ¢ € L*(€).), we define

~ [¢ in Q
¢= { 0 in Q- (5)
the extension by 0 of ¢ and
~ ¢ in Q. .
O\ Tl o dy i eV VkEK. (6)

We have the following relation between the weak limits of both types of extensions.

Lemma 1.3. For all sequence g. € L*(Q.), the following two assertions are equivalent
1) g = g in LI(Q)Q
2) g- — 0g in LY(Q).

Proof. For all ¢ € D(Q), we use the fact that ¢ is uniformly continuous to deduce that

w(e)= sup |Y(x)—¢(y)| — 0 whene — 0.
lz—y|<e

Hence, we have for £ small enough

[va= 3 [ vo= 3 ven [ g+

k
kek. VeVs keK. eyy

S (ek) 0 /

keEK. ey

@+m@:94w@+W@

where |r(e)| + |/ ()] < Cw(e). Sending ¢ to 0, we conclude easily. O

We will also need the restriction operator constructed by Tartar [21] for the case of a solid part ) strictly
included in Y and by Allaire [1] for more general conditions on the solid part.

Lemma 1.4. There exists a linear operator R. from H}(Q)N to HY(Q)N (called restriction operator) such
that

(i) Vo € HL(Q)N, we have R.¢p = ¢;
(i) V -u =0 in Q implies that V - Reu = 0 in Q;
(iii) there exists a constant C' such that for all uw € HE(Q)N, we have

[|Reul| 20,y + el V(R 2200,y < Cllullz20) + €l VullL2 ) |- (7)

The operator R, defined above also acts from W, " (Q) into W, " (Q.) for all 1 < < oo and we have an estimate
similar to (7) where the L? norms are replaced by L" norms.
Due to the presence of the holes in the domain ()., the Poincaré’s inequality reads:

Lemma 1.5. There exists a constant C' which depends only on Vs such that for all u € Wol’p(QE), we have

[ul|r .y < CellVullLrq.)- (8)
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We refer to [21] for a proof of this lemma. By a simple duality argument we also have the following relation for
all 1 <p< oo

[ullw-1p(0.) < CellullLr(.)- 9)

To get some space-time a priori estimate, we will use the following operator:

Lemma 1.6. For all € > 0, there exists a linear operator B = B,
B o) ={rer@l [ r=of~ Wi (10)
Qe
such that v = B(f) solves the equation

div(v) = f in Q., v=0 on N, (11)

and the following estimate

1Bl wiray < =N flloe) (12)

o |Q

holds for all 1 < p < co. Moreover, if f € LP(Q.) can be written as f = div(g) where g € L"(Q) and gn =0
on 0). for some r > 1 then

BNz = Cllgllzr@.)- (13)

Sketch of the Proof. The fact that B maps L2(Q.) into W, ® is well known (see for instance [5,10]). Here we
have to explain the presence of the constant % in the estimate (12). To this end, we will use the construction of
Bogovskii. We have to split our domain in small domains and make the construction on each smaller domain.
Take an open set 5} such that )7f C 5/ C Ey where )7f = [0, 1]N — YVs. We define as above, jk = 5) + k. Then,
there exists ¢ € C§° (57 U Ys) such that

e ¢ =1 on a neighborhood of );

> ean Plr+k)=1 vz € RV,

Moreover, for all k and k" such that |k — k| = 1, we can find a function ¢ € C5°(Y* N Y*') such that

/ o frp = 1.
YENYE

Now, for all f € LE(£2.), we want to construct the solution v = B(f) by solving an auxiliary problem in each
one of the domains Y*. For simplicity, we will assume that f has its support in Ugex. y}“ to avoid dealing
with the part of f close to the boundary of €. If we do not make this assumption, we have just to modify the
cut-off functions of the cells close to the boundary. Next, we use the partition of the unity to decompose f as
f = kex, fO(£ — k). We note that f(x)p(Z — k) is supported in eYV* but is not necessary of integra{ equal
to 0. Using the functions ¢y i, we can construct a decomposition f = ZkeKa fr such that suppfi € e)* and
Jogre fo = 0 and 37, e [ fellze < E|fllze- Now, for each k € K., there exists vy € Wy (eV¥) such that
divvg = fi and ||vk|W1,p(63~,k) < ||vk|Lp(63~,k). Adding up these estimates, we recover (12). Finally, we point out
that in (13) there is no factor % since we can decompose g as g = ) ;i gk Where gp = g¢(£ — k) and hence
we can take fr = div gg. O
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For all ¢ > 0, we consider the Stokes problem written in ). and define the operator S = S; by Sf = p
where (u,p) solves

—Au+Vp=f in Q.
u=0 on 0f) (14)
div(u) =0 in Q. and [, pdz=0.

Lemma 1.7. For all ¢ and 1 < r < oo, the operator Se is bounded from L"(Q.) onto Wh () and from
WL (Q,) onto L™(Q.) (see for instance [6,10,11,22]). Moreover, there exists a C independent of € such that

lull gy + IVSeflla—1@o) +ellSefllzy < Clliflla-1.) (15)

lullzrznmy o) + 1V Sefllia.) < CllifllLa@.)- (16)

Besides, for all r, 1 < r < co there exists a constant C

c
lullwpr oy +IVSefllw-rr@y +ellSefllir@) < Z 1 fllw-rr @) (17)
0 ( ) £
C
lullyzrqwer ) + IVSefllr@ny < ZI1fller@.) (18)
0 9

where o = |§ — &},
Notice here that the factors e associated to r and to the conjugate exponent of r are the same. It is likely
that the presence of the factor 1/ is not really necessary in (17) and (18) but we do not need this refinement

here.

Sketch of the Proof. Let us start with (15). By the energy estimate, we get

[ 196 < sl o
From which we deduce that |[ullg1o.) < C|/fllr-1(.) and that [[Vp|z-1.) < C||flz-1(0.). Next, using
Lemma 1.6, we have

C
1Pl1Z200.) = (V2. BO) -1y < ZF 1@ llpllzca.)-

Hence (15) is proved. To prove (16), we have to argue as in [6,10] by using interior and boundary regularities
and then try to prove that the constants are independent of . We start by proving an H{ estimate

/ Vul* < Cllf 2o llullzac.) < Cellfllzao lullmye.)-

€

From which we deduce that [[ul g1,y < Ce| fll2.) and [Julr2@.) < Ce?(|f|lr2(q.)- Now, we will explain
the idea behind the uniform bounds, namely the fact that the constant appearing in (16) is independent of .
Indeed, one can use interior regularity results for each one of the extended cells Y*. We assume that 0 € Q
and we define U(z) = u(ex), P(z) = p(ex), F(x) = f(sx). Hence —AU + eV P = £2F. Take a cut-off function
¢ € C°(Y UY,) such that ¢ = 1 on a neighborhood of Y, hence

—A(@U) + eV(pP) = e2¢F + VU - Vo + AgU 4 e PV in
oU =0 on
div(pU) =U - V¢ in

4

(19)

< O
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where P = P — ﬁ f)} P. Using classical regularity results for the Stokes system in a bounded domain, we get
that

16U1z2() + eV(@P) 23y < CIIU - Volla () + CllE*SF | 25
+C||VU -Vé+ A¢ U + PVl 125 (20)
< C[IE%Fll gy + 19Ul x ) + U1l 2z) + el Pl o)
Besides, we have
||€p||L2(5;) < C”EVPHH*l()}) = C||E2F||H*1()~2) JrC||U||H1(5;)- (21)

Hence, the last term in (20) can be estimated by the other terms appearing in the right hand side. Rewriting (20)
in the original coordinate system, we get

C C
[ull 2y, + 1IVPlL2(eyy) < Cllfll 2y + g||V“||L2(ejz) + 6—2||U||L2(537)- (22)

This estimate also hold for any cell €); such that 55) C Q.. Near the boundary the above argument should be
slightly changed. Adding up the above estimates, we infer

c C
lullzrzo) +11VPllL2(e.) < Cllfllzz@) + ZIVullez) + Sllulliz @) (23)

From which we deduce (16).

To prove (17), we restrict ourselves to the case r > 2 since the case r < 2 can be deduce from the case
r > 2 by duality. Using that W~1" C H~! since r > 2, we deduce that lull 71 0.y < Cllfllw-1.r(q.) and that
IVplla-10.) < Cllfllw-1.r(q.). Moreover, arguing as above, we have

16Ul ) + 11EVOP) sy -1r 5y < CIU - Vol 5 ClIE* O F [ [yyr-1.0 3
+C||VU -V + A¢ U + PVl 1r(3)
< ClIEFllw-1r + IVT s+ [Ullw—sr + €| Pl
Besides, we have

||€p||W—1,r(j}) S C||€Vp||w—2,1(5;) S C||€2F||W—2,r(j}) + C||U|

and |[VU|[w-1- + ||Ul|lw-1.» < C||U||p+ (3 Adding up all the estimates over the different cells and going back
to the initial coordinate system, we get

C
lallwer .y + 1IVPllw-1r @ < Cllfllw-1r + Zllullr@.)- (25)
Next, we use that
lull ey < Cllullfegan VU5,
where 2 = £ 4 (1 — k)(% — +). Hence, we get that
9 K 1-kK
lullwy .y < Cllfllw-1r + Zlullfz@n [ Vull o,
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which can be rewritten as

C

1_
gr—t

[ llwr—v.-

c
lullwy 0.y < Cllfllw=rr + vl <

1
n

And (17) is proved, since + — 1 = a. m|
Finally, we define the permeability matrix A. For all i, 1 <i < N, let (v;,q;) € H*(Vy) x L2(V¢)/R be the

unique solution of the following system

—A’Ui + ti = €; in yf
v; =0 on Y, and w;, g; are ) — periodic.

Using regularity results of the Stokes problem, we infer that v; and ¢; are smooth. We extend v; to the whole
domain Y by setting v;(y) = 0 if y € Vs. Then, for all y € Yy, A(y) is taken to be the matrix composed
of the column vectors v;(y) and A = fyf A(y)dy. Tt is easy to see that A is a symmetric positive definite
matrix. Indeed, multiplying the first equation in (S;) by v; and the first equation in (S;) by v;, we get that
fyf Vu; - Vu; = fyf vj; = Aj; and fyf Vu; - Vo, = f‘yf v;; = Ai; where we wrote v;(y) = Zjvzl vji(y)e;. Then
to prove that A is positive definite, we just notice that for all vector X = Z;VZI z;e;, we have Zij xiﬁijxj =
[V Zjvzl acjvj||i2(yf) and that {v;, 1 <7 < N} is an independent family.

In the next three sections we will study three different types of models. For each model, we will start by
a presentation then state the result and finally give the proof of the main result. In Section 2, we study a
semi-stationary model and derive in particular the so-called “porous medium” equation. In Section 3, we start
from the full compressible system but with a scaling which gives formally the same limit system as in Section 2.
Finally, in Section 4, we deal with an equation describing the acoustics in a porous medium.

2. A SEMI-STATIONARY MODEL

2.1. The model

We start with the following semi-stationary model

e20ipe + div(peue) = 0,
(27)
—pAue — EVdivue +Vp)l = pf+ g

complemented with the boundary condition u. = 0 on 9. and the initial condition p.(t = 0) = peo. The force
term is such that f € L>((0,T) x Q.) and g € L*((0,T) x ©Q.). We also assume that v > 1 and that ||f]|pe is
small enough if v = 1.

2.2. Statement of the result

We assume that the initial data is such that p.o € L' N L7(Q.) if v > 1, that an peollogpeo| < Cif vy =1
and that p.o converges weakly to po in L7(Q).

We consider a sequence of weak solutions (pe, ue) of the semi-stationary model (27) such that for all 7' > 0,
pe € C([0,T); LY(Q:))NL>®(0, T; LY (Q))NL2Y((0, T) x ) and pe|logpe| € L>(0,T; L1 (€2)) if y = 1. Moreover,
ue is such that “= € L?(0,T; H}(Q:)) and % € L*((0,7T) x €2.). Finally, we also require that p. is bounded in
L2(HY(Q)) + eL2(L*(Q)). We assume that the bounds given above are uniform in e. We point out that the
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fact that we can consider a sequence of solutions satisfying the above uniform estimates is a consequence of the
a priori bounds which will be recalled in Section 2.3.

Before studying the limit of the sequence (uc, pe,p:), we have to prolong it to . Let ., p. and p. be the
extensions of u., p. and p. to the whole domain 2 defined as in Section 1.2.

Theorem 2.1. Under the above assumptions,
pe — 0p weakly in LL(L7(Q))NL*>((0,T) x Q),
pe  — p stronglyin LL(L7(Q) N L7((0,T) x Q),

U :
= U weakly in  L2(L*(2))
for all r < 0o where p € L?7((0,T) x ), p? € L2(H' () and p is the solution of the following system

1 _
00p + ;div [pAlpf +9—Vp")] =0

pA(pf +9—Vp)m=0 on 0O (28)
p(t =0) = po

and u is given by
u=A(pf+g—Vp") on {p>0}- (29)

We point out here that even though each one of the terms f, g and Vp? does not have necessary a trace on the
boundary 02, the combination of them appearing in (28) has a sense. A formal derivation of the system (28)
can be found in [8]. The relation (29) giving u as a function of the pressure is a Darcy law [7].

Remark 2.2. if A = ol (which is the case if for instance Y is a ball) and f = g = 0 then we get the following
system

Oep — BAPTTL =0

§prtl
on

p(t =0) = po

=0 on 0N (30)

where 3 = %. This system is the so-called “porous medium” equation.

2.3. A priori estimates

Before proving Theorem 2.1, let us recall how we can get the existence of weak solutions for (27) satisfying the
requirement of the last subsection. We will only explain how we can get uniform estimates in € and refer to [14]
(p. 226) for the approximation part. First, integrating the first equation of (27) over the whole domain 2., we
deduce the conservation of mass, namely an Pe = an peo- The fact that we can make this integration over the

whole domain €, rigorously comes from the L? bounds we have for p. and Vu.. Then, multiplying the second
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equation of (27) by w. and using the first one, we get (at least formly and in the case v > 1) the following
equality for all ¢ > 0

= // pIVucf? + €(divun)? =< /gls%+/0t[26(pef+g)~ue (31)

while if v = 1, we get

t t
52/ Pe Inga(t) + / / M|VUE|2 + €(div ua)2 = 52/ peolog peo + / / (Pef +9) - Ue. (32)
Q. 0 JQ. Qe 0 JQ.

We start with the case v > 2, then we can estimate the right hand side

/ (e f +9) - el < 2 (IF12 ol 2,y + 191 22cq) + 5z luelZagey

€

< 28 (|| F12 ol B2,y + 19122, ) + 211Vl Zaiq s (33)

where C' is the constant appearing in (8). Hence, we deduce that for all T

ol Ce?
o [ 2D v < [ L e oy + o) 5

Then using Gronwall lemma and the fact that ||p5||L2(Q y SO+ ||p€||L7(QE)), we deduce that for all T' there

exists a constant Cr such that
sup / / / |V 1?2 < COp. (35)
0<t<T

Then, from the second equation of (27), we want to deduce a uniform bound for p. = p? in L?((0,T) x Q).
This can be done using Lemma 1.6, however to get some compactness in space, we will use another method
based on the extension of Vp. to the whole domain 2. This is done using an extension operator which is the
dual of the restriction operator R. defined in Lemma 1.4. Let F. € L2.(H ~1(Q)) be defined by

T T
/0 <F€7U>H*1,H(}(Q) = /0 <vP€aR€(U)>H*1,Hé(QE) Vv € LQT(Hol(Q))- (36)
Using that
T T
/ <vp€7 Ra(U»H*l,Hé(QE) = / <:UAU6 +&V div ue + po f + g, Re'U)H*l,Hé(QE)

0 0

T

= / / —uVue - VR (v) — & div u. div v + (pof + g)Rev,
0o Ja.

we obtain

T
/0 (Fe,v) -1, 13 ()

1
<c {EHWEHLQ(Q )+ 11l lel g o) + gl g o)

x [I1vll g ) + £l V0l @ |- (37)
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Hence, we deduce that F. is bounded in L2.(L2(Q)) + eL2(H1(2)). Moreover property (ii) of Lemma 1.4
implies that there exists a P. € L2(L?(2)) such that F. = VP. and from the bound on F., we get that P. is
bounded in LZ(H'(Q)) +eL2(L*(2)). A result of Lipton and Avellaneda [15] (see also Allaire [1]) shows that
up to a constant, we have P. = p..

Now, let us concentrate on the case 1 < < 2. If f =0 then we can argue exactly as above. if f # 0, then
we have to combine (34) with the estimate based on the space-time integrability of the pressure p.. Arguing as
above, we deduce from (37) that

~ 1
[1Pell Lz (a1 (@))rerz 2y < C [EHV%HL;(QE) + [ fllzellpll 2.0 + ||9||L%(Qs)} . (38)

Combining (38) with (34), we infer that

1Bl 20y < € [1+ Il ol @) + gz, | (39)
which can be rewritten
_2
Pellzz.z2()) < Or + ClIPell 1z 120y (40)

Hence, we deduce a bound for p?7 if v > 1. In the case v = 1, we use the smallness condition on f in the L>
norm to make the constant C' appearing in (40) smaller than 1 and then deduce a bound for p. in LZ(L?(12)).
In all cases, namely v > 1, we deduce that for all T', there exists a constant C'r such that

T T
1
sup / pl(t)Jr/ / p§”+—2/ / Vu|* < Cr (41)
0<t<T JQ. 0o Ja. e Jo Ja.

as well as the fact that p. is bounded in L2.(H(Q)) + eL2.(L*(Q)).

2.4. Convergence proof

Using that p. and p. are bounded in L°°(0,7; LY(£2)) N L?7((0,T) x ), we can extract subsequences (still
denoted p. and p.) such that p. converges weakly to some p where p € L>(0,T; L7(22)) N L?Y((0,T) x §2) and
pe converges weakly to 6p. Besides, using that ||g—§||L2T(L2(Q)) < ||“€—5||L2T(H5(QE)), we deduce the existence of
some u € LZ(L?(2)) and of a subsequence g—; which converges weakly to w.

Finally, from the bound we have on p., we can deduce the existence of some p € LZ(H'(2)) such that p.
converges weakly to p in L2.(L?(f2)). However, we can not deduce strong convergence since we do not have
compactness in time. To recover some compactness in time, we will use the conservation of mass equation which
provides some compactness in time for p.. We start by prolonging p. in a suitable way.

Lemma 2.3. the extension p. satisfies the following equation

e20ipe + div(petic) = 0 in Q. (42)
Proof. In this proof, € is supposed to be fixed. For any ¢ small enough, we consider ¢5 € D(€2.) such that

0<¢s <1, inQ, ¢5=1ifd(x)>0 (@3)
s =0ifd(z) <2, |Vgs|<E inQ.
where d = d(x,09.) and C' is a constant independent of § (but depending on £). We also recall Hardy inequality

which implies that for all e, % € L?((0,T) x €) since u. € L*(0,T; H}(Q:)). Now, for all ¢ € D((0,T) x ),
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we have

/OT/QﬁaaE,vw — /OT /Q paua'vw:%i—%/:/gg petie.V (1gs)
}%/OT/QE”E@W“/OT/Q’;EW

where we have used that

T T
/ / petel(1— 5 + [Vés)) / / Ipetiel(1— g5 + [Ves])
o Ja. 0 JQ.n{d<s}

T 2
< Pl <1 + —> — 0
/o /Qaﬁ{d<6}| et d) °=°

to pass from the first line to the second one. O

Using that p is bounded in L?((0,T) x ) and that % is also bounded in L2((0,T') x §2), we deduce that ;.
is bounded in L(0,T; W~11(Q)). We can now use Lemma 5.1 of [14] to pass to the limit in the product p.pe

and deduce that p.p. = (p.)" ! = pgﬂ converges weakly to 8pp. Then, using Lemma 1.3, we deduce that pgﬂ

converges weakly to pp. Now, by Jensen inequality, we have

+1
= v+l

P (1) T =) (44)

Passing to the weak limit, we get

a+1 a+1

pp > w-lim (pz)™ >p™>
from which we deduce that
p>p. (46)

Next, we define y. = (pg)% and extracting a subsequence, if necessary, x. converges weakly to some y. Using
that v > 1, we deduce that x7 < p. Then, by Jensen inequality, we have

5o < ()" = e (47)

Passing to the weak limit, we get that p < x. Putting all the above inequalities together, we get

and hence p = x = p%. Next, we use that x2*! converges weakly to x?*! to deduce the strong convergence
of xe towards y in L7((0,7) x §2). Using the L?” bound for x., we deduce that p. converges strongly to p in
all the L"((0,T) x ) where r < 2. On the other hand, we know that p. converges weakly to p = x and that

—

P’ < welim (p2) T < w-lim pgﬂ =ptt (48)

from which we deduce the equality in (48) and the fact that p. converges strongly to p in L2((0,T) x ().
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Now, we want to compute the weak limit of @.. Using that P, = 1/7;7 € L2(H'Y) + eL*(L?), we will make
spatial regularization of P.: take x € C§°(RY) such that x > 0, f]RN x = 1 and denote for all n € (0,1) by

Xn(z) = ﬁx(%) We then define for all 1 > 7 >0, P, = P. * x5+ n where we have prolonged P by 0 outside
the domain €. Then, using that P. € L?(H') + eL?(L?) we deduce that

||]D6 _Pa,nHL?(L?) < C(€+77). (49)
We also denote p , = (Pw,)%. It is easy to see that for all 1 > >0, p.,,, € L*(H') and that

pemllL2cay < Cnv '

Using the system (26), we define the functions (v, q5) € H*(Q) x L?(2.) by

i (2) .

()
L qk(s

extended in 2 and in Q). by eY-periodicity. Hence, we have the following estimates

lallz~@.) < C; leVaillr=@.) < C, (51)
vl < C,  leVugllpe) < C. (52)

For all ¢ € D((0,T) x ), we take p.,vi¢ as a test function in (27). For e small enough, we know that
Supp(¢) C Urek.eV* and

/OT /Q pVue - V(pe nvpd) = /OT/gz(ps,nvZ¢)(p€f+g)+/oT/Q div (pevid)(pl — € div ue).

In the right hand side, we have replaced the integrations over €. by integration over € since ¢v; and ¢ div (v)
vanish on Q — Q..
Now for all n > 0, we have

T - T T
/ / div (penvi) (pd — Pey) = / / Vpen 0Pz — Pey) + / / peqvi - VO(Pr — Pey)
0 Jo 0 Jo 0 Jo

and hence

‘ /OT/Q div (Qﬁp&ﬂ?vi)(Pa - Pe,n)‘ < 0(77%71 + 1)(6 + 77) = a(n’g) (53)

where here and below, (7, €) denotes any function such that

lim liH(l) aln,e) =0

’r]~>0 E—

and «(n) any function such that lim, .o «(n) = 0. With these notations, we have

T T
V. - V(penvi :/ /’UE (§ + pe —LV ;Y'H)—i—oz ,€). 54
/O/Qu (PenVi®) ; qub Pzt + Peng VP (n,¢€) (54)



HOMOGENIZATION OF THE COMPRESSIBLE NAVIER-STOKES EQUATIONS IN A POROUS MEDIUM 897

On the other hand using that fsQAv,i +¢eVqj, = ek in Qe and taking p. , 25 ¢ as a test function, we get

//Wk (pemued) + //pe,n ue - Vi ¢ = // te ek- (55)

The second term on the left hand side can be estimated as follows

1 [T T U
_/ / Pe,m Ue * qu ¢ = / / Pen _25in ¢
€Jo Ja. o Ja. €
T U
:/ / pe — eV, o+ a(n.e)
0o Ja. €

div (pe u—;) eqr, ¢
Q. €

[
/OT/Q Pe gsq}i Vo +a(n,e)
(ne)

where we have used that

T T
/ / div (pe u_;) eqrn @ :/ / pe €qr. Orp — 0 as e goes to 0.
0o Ja. € 0 Ja.

Comparing (53) and (55), we get

Vii,
/ / vue : (ps nvk¢) Vvk (pe,nu6¢ = 5/ / va n¢ =+ e, nv¢] ( Evvk - U}i)

€

which goes to 0 when € goes to 0 for all n > 0. For all > 0, we denote p,, the strong limit in L? of p. ,, when ¢
goes to 0. Multiplying (55) by u, taking the difference with (54) and passing to the limit in ¢, we get

/ /Aek (panrpng —Vp”“) ¢ = M/OT/Qpn uerp +a(n) (56)

where we have used that v{ converges weakly in L?(f2) to the constant vector fy vi(y) dy = Aey, that

(P2, f + pemg — VpI ') converges strongly in L*((0,T) x Q) to (p; f + pyg — Vp)*') and that p., converges
strongly in L2((0,T) x Q) to pn- Then, passing to the limit in 7, we deduce that

/ /Aek <pf+pg— p”“)u/OT/quem. (57)

Hence, we infer that

pu = <p f+pg— —Vp”“> (58)

+1

*;I'—‘

from which we also deduce that

A(pf+9g—Vp?) ontheset {p>0}- (59)

tIH
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Finally, we have to pass to the limit in the conservation of mass to recover the equation satisfied by p. First,
we notice that (42) can be rewritten as

Orp- + div <ﬁ5§> =0 in Q (60)

The advantage of replacing p. by p. lays in the fact that the latter converges strongly while the former converges
weakly. Passing to the limit in (60), we deduce the first equation in the limiting system (28). To recover the
boundary condition as well as the initial data, we have to use some weak formulation. If we also denote p., uc
the extensions by 0 of u. and p. to RV, then an adaptation of Lemma 2.3 also implies that (42) holds in R¥.
As above, we can then write

Ope + div <ﬁ€§> =0 in RV

For all ¢ € D((—1,T) x RY), we have

—ATANﬁaat¢—ATANﬁa§w:/RNﬁqu(t:o» (61)

The three integration over RY appearing in the above identity can be be replaced by integration over . Passing
to the limit we deduce

/:/ﬂepatgb/OT/Q%A <p2f+pgﬁw”“) Vo= [ oot =0 (62)

for all ¢ € C>([0,T) x Q). Hence, we recover the boundary condition and the initial data in (28).

3. COMPRESSIBLE NAVIER—STOKES SYSTEM

Here, we restrict ourselves to the case N = 2 or N = 3 and we consider the full system

e20ipe + div(peue) = 0,
(63)
204 (peue) + div(petie @ ue) — pAue — EVAivue + Vol = p.f + ¢

complemented with the boundary condition u. = 0 on 9. and the initial conditions p.(t = 0) = peo and
peue(t = 0) = meo. We want to prove the same convergence result as in Theorem 2.1. We will require that
v > N (and for N = 2 that v > 2) even though the existence results of global weak solutions available in the
literature only requires y > % (see [14] and [9]). As in the previous section, we assume that the initial data is
such that p.o € L' N LY (), meo € L7t () and meo = 0 a.e on the set {p-o = 0}, peo|uco|> € L () where
we denote ugg = ’:;‘500 on {peo > 0} and uc,p = 0 on {p-o = 0}. Moreover, we assume that p.o converges weakly
to po in L7(£2).

We consider a sequence of weak solutions (pe, u.) of the compressible Navier—Stokes system (63) such that
pe € C([0,T); L*(Q2)) NL>(0,T;5 L7(Q)) N LYT((0, T) x ). Moreover, . is such that %= € L2(0,T; H}(Q:))
and % € L2((0,T) x Q).
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Theorem 3.1. Under the above assumptions,

pe — 0p weakly in LL(L7(Q))NLYH(0,T) x Q),

pe  — p stronglyin LL(L7(Q) N L7H((0,T) x Q),

Ug .
= - weakly in  L2(L*(2))

for all 7 < oo where p € L*V((0,T) x Q), p¥ € LA(H'(Q)) and p is the solution of the same limit system (28)
and u is given by the same formula (29).

3.1. A priori estimates

Here we want to explain the changes we have to make in the a priori estimates. As above, we can deduce the
conservation of the total mass from the continuity equations. The energy estimate (31) should be replaced by

(¢ ()| u(t ¢ . % olu? t

52/ pe()+p()| s( )|+// M|Vu€|2+§(d1vu€)2:52/ Peo +p0| 50|+/ / (p5f+g)~u5.
o 7—1 2 o Ja. o 7—1 2 o Ja.

(64

As in the previous section, we can deduce from (64) that for all T there exists a constant Cr such that

ROITHC g .
sup / pr(r) + 2Ol / / vrsor .
0<t<T Ja. 2 o Jo. €

We can also deduce some bound on p., however it will not be as good as for the semi-stationary system due to
the presence of a time derivative. Let us start by some space-time integrability of the pressure.
Let v = B(pe — \Q_ll Jo. pe) where B was defined in (10) then

)

[0llz2 .y < CellVollL2 (o) < CllpellL2 0. (66)

l0llz(00) < CellVollzra.) < CllpellLr .- (67)

Multiplying the second equation of (27) by v and integrating by parts, we get at least formally (we drop the ¢)

T T T
/ / tan :/ / pvx/ er/ / pVu - Vo + £(divu)(dive)
0 Ja. 0 JQ. Qe 0 JQ.
T T T
,/ /(pf+g)~vf/ / 52pu8tvf/ / pu@u: Vo
0 JQ. 0 JQ. 0 JQ.

+€2/Q meov(0) — pu - v(T) (68)

:ZL-.

i=1

We have to estimate each one of the six terms appearing in (68). First, we have

|L|<Cr T / pe0 < Cr.

=
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The second term is such that
[I2| < Crel|Vv||pz q.) < O

For the third term, we have

(T3] < (1 fllz=llpl 2.0y + 91z @o)ll0l Lz .y < Cr-

The fourth term is the most technical and requires some spatial regularization of v (see for instance [9]). Taking
the time derivative of v, we get 0;v = B(9¢p:) = —B(divp. 25 ). Hence, using (13), we get

C
0]l 2 (.) < ?HPEUE”LZT(QE)' (69)

This last inequality requires some explanations, since we do not know if divp.u. is in any L? space and it is not
clear whether p.uc..n = 0 on 0f).. These two difficulties can be overcome if we are willing to use spaces with
negative regularity in time. Another way is to regularize p. in space. We will give a sketch of this regularization
after we perform the estimate of the last three terms. From (69), we deduce (at least for N > 3) that

2 2 2 2
s < C||Psus||L2T(QE) < C||Pe||L;s(LN(QE))||”e||L,§F(LJ\i;fj2 @) < Cre”.

For N = 2, we use that v > 2 and hence

2 2 2 2
131 < Ollostelliy ) < Oloellip aoplliell?, sy < Cre?

For I5, we have

15| < C||P||L§S(m(ﬂs))||ue||i2 (L%)HVUHL%’(LV(QE)) < Cre.
T

Finally, Is is estimated in the following way

|“€|2

|I@| S Ce

Pe ||P€||z5-9(m(95))||5”|| 2 < Cre.

o (7 220
L (LY(Q2)) LE(Ea=t)

The a priori estimate is hence proved. Let us now explain how the difficulty related to Iy can be solved. We
take as above x € C5°(RY) such that x >0, [,x x =1 and denote for all 6 € (0,1) by xs(z) = sk x(%). Next,
we denote ps 5 = pe * Xs where here p- denotes the extension of p. to the whole of RY. Using (42) written
in RY, we deduce the following relation

€2atﬁe,5+div(ﬁe,5ﬂa) = Tes in R™ (70)

where for all fixed €, r. 5 goes to 0 in LQT(LZ’% (Q)) (see Lem. 2.3 of [13]). Next, instead of using v as a test
function, we will use v° = B(pe.s — \Q_lsl an pe,s)- The estimates (66) and (67) still hold with bounds independent
of 6. Moreover, (68) can now be rewritten as

T 6
[ ] res=% 10 (m)
0 Qe i=1
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We can estimate each one of the terms If as above and independently of §. Let us just explain it on IJ. We
have 0y = B(0ype.s — m—lﬁt an pe)) and hence

. U 1
o’ = —B (lepE75€—§> +B (7“575 - m/ 7“5,6) .
€ Qe

From which we deduce that

C C
s
001130y < Slipestelsgon + Elreall, 2o (72)
and then, we can send ¢ to 0.
Now, we need an other estimate for p.. Let F. € D'((0,T) x §2) be defined by
F.v) — (Vp., Re(v)) Vo € D((0,T) x (). 73
(Fort) iy = (VP Be0) W0 € D((0,T) x (2) (73)

Hence,

T T
Fe,v> :+52/ / U0 Re (V) + / e @ Uue 1 VR (v
(o) o [, pucaRe@+ [ ] (v)
T T
—/ / ,uVuE-VRE(v)—/ / & div u. div Re(v)
0 Ja. o Ja.
T
+/ / (pef“l‘g)Ra(U)
o Ja.
5
=Y I
i=1
Again, we want to estimate each one of these five terms. We have

11| < C2|lpeucl| 2o 10:R(v)| 2.0y < CE°| |0l 0.1y x )

L] < Cllpeucl |z o) lhuel] IV R ()l 2@y < Celloll e wi )

23
LE(L7=2(Q:))

I3 + L] < Cl|Vuell 300 VRl 2300 < C [llellz o)+ llVollzz o

15 < € [Iollzs @ + £l1Vellz @)

Finally, we deduce that F. € L?((0,T)xQ)+¢ [H_l((O, T)xQ)+LY(0,T; W_I’V/(Q))} . Extracting a subsequence
and passing to the limit, we deduce the existence of some F € L?((0,7T) x Q) such that F. converges weakly
to F. Moreover for all v € D((0,T) x (2)) such that divwv = 0, we have (FL,v)p po) = 0 and hence
(F,v)pr p(o) = 0. Using the result of [15], we know that F. = Vp.. Then, we deduce the existence of some
p € L2(HY(Q)) such that F = Vp and p. converges weakly to p. As in the previous section, we want to
prove that p. converges strongly in L%(€2) to some p. To this end, we will split F. = Vp. into three parts
F. = F. + Foo + Fo3 = Va1 + Vpea + VD3, where

~
e~
N

pe1 = Se(pef + g+ pAuc + EVdivu,) (
Pe2 = *Se(div(peue ® UE)) (
Pe3 = 756(528tp6u8)' (

-
ot
NN
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Hence, pe1 + pea +pe3 = pl — \Q_lal st pY. We also define w1, wea, wes such that divwe; = divwee = divw.3=0,

We1, Weo and wez vanish on the boundary 9. and

—Awe1 + Vpea = pef+g+ ,U'Aue + {Vdivu, (77>
—Aweg + Vpea = —div(petie ® ) (78)
7Aw83 + Vpsi = 7€2atp€u‘€' (79)

Using the regularity estimates recalled in Lemma 1.7 and an extension procedure as in (73), we deduce that

De1 € eL2(Q) + L2 (HY()), pea € El_aLQT(LNAll(Q)) and pe3 € eSH1(0,T; H(Q.)), where o = |% — % ,
namely a =0if N =2 and a = % if N = 3. We point out that the advantage of working with p.3 instead of p.3
is that we lose some regularity for p.3 since p.3 € e3H1(0,T; H (Qe)) +e*H~1(0,T; L?(2)).

Now, let us explain the rest of the proof. From the bounds we have for p.1, p.2 and p.3, we deduce that pgq
converges weakly to p — \ﬁll Jo p and that p.2 and p.3 converges weakly to 0. Using (as in the last section) that

O¢p- is bounded in L1(0,7; W~11(Q)), we can pass to the limit in the product p.p.1 and deduce that p.p-1
converges weakly to dpp (see Lem. 5.1 of [14] ).

Moreover, using that p.o € slfaLQT(L% (Q)) and that p. is bounded in L$°(LY(Q)), we deduce that p.pe.o
converges to 0. Finally, to prove that p.p.s converges weakly to 0, we will use the bound on p.3 which yields
the existence of some g. € e3L%(0,T; H'(€.)) such that p.3 = d;g.. Next, for all ¢ € D((0,T) x ), we have

T T
/ / PePe3p = / / —0¢pegc® — pegeOid
0 Q 0 Q.

T
Uu Uu
= / / —peg—g Vge — pes—j -Vge — pege0rd
0 Qe

which goes to 0 when ¢ goes to 0. Putting the above results together, we deduce that

ﬁe(ﬁa‘_ﬁ/gﬁe) HGp(p—ﬁ/ﬂp) (80)

weakly in L1((0,T) x ). Besides, using that fQ De is independent of the space variable and that p. has some
compactness in time, we know that p,. fQ De converges weakly to fp fQ p and hence

ﬁal/)\a - epp (81)

weakly. Now, using the same steps as in the last section, we can deduce that p. converges strongly to p in
y+1

L}H(Q) and that p. converges strongly to p = p” in L (2). We point out that the decomposition of p. into
Pe = Pe1 + Pea + Pes can also be used to deduce the LY! bound for p,.

The second part of the proof consists in the passing to the limit in % The argument will be a slightly
different from the one given in the last section as far as the regularization procedure is concerned. Using that p.
converges strongly in L}H(Q) to some p, we introduce some direct regularization of p. by taking p. , = p- * Xn

where we have prolonged p. by 0 outside the domain €2, we deduce that
1~ penllizto oy (82)

goes to 0 when 7 goes to 0 uniformly with respect to €.
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For all ¢ € D((0,T") x Q), we take p. ,v5¢ as a test function in (63)

/OT /Q pVUe -V (pe,nvid) = /OT/Q(pe,nu;@(paerg)

T —~
[ i (e ¢ div ) (33)
0 Q
T
+/ /9525555@(05,17@2(/5) + ﬁaae ® U : v(pa,nvi(b)'
0

In the right hand side, we have replaced the integrations over . by integration over ) since v§ and div (v)
vanish on 2 — Q. and p. and u. have been prolonged by p. and wu.. For all fixed n, we can pass to the limit
n (83) and recover

T T
lim / /Q (Ve - V(penvid) = /O /Q (p* xndAer)(pf +9) (84)

e—0 0
T —_ —
+/ /V(pt Xn) - Aexgp + (p % Xxn)Aek - Vp.
0 Q

On the other hand, using that —e2Av{ + eVq; = e in (2. and taking pen 5@ as a test function, we get as in
the last section that

/ / Vi - V(penued) + / / pem UV ¢ = / / Lk (85)

Arguing as in the last section (the definition of p; , is not the same by the estimates are the same), we get

T N T
/ / (p* xy)Aek - (pf +9—Vp)gp = u/ / (p* Xn) uerd +a(n) (86)
0 Q 0 Q

where we have performed an integration by parts in (84). Sending 7 to 0 and using that p = p7 € L4(H') and
that p € L7 (Q), we deduce that

/OT/QpAek-(pf+g—Vp”)¢=u/0T/qu exp. (87)

Hence, we deduce that

1

pu=- (p f+pg— —Vp”“) : (88)

v+1

The rest of the proof follows the same steps as in the last section.

4. ACOUSTICS IN POROUS MEDIUM
The last model we want to investigate is the following linearized model

Ope + divue = 0
Opte — £2uAu, — 26Vdivue + Vp, = g.
u: =0 on 0.
ue(t =0) = as(x) Pe(t =0) = b ().
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This system describes small perturbations of a compressible fluid at rest. The perturbations are assumed to be
small enough to be studied in a linearized framework. The Mach number is assumed to be of order one which
means that we can take p. = p..

4.1. Statement of the result

We consider a sequence of solutions (u, p:) of (89) such that a. € L*(Q.), b- € L*(Q:) and g € L3 (L?(£2)).
Hence, (u.,p.) satisfies the following energy estimate

2 2 t 2 2 t
/ pa(t) T |ua(t)| +/ / €2M|VUE|2 + 52§(divu5)2 — / b_5 + ae(t)| +/ / e - Ue. (90)
Qe 2 2 0 JQ. Qe 2 2 0 JQ.

The homogenized problem can be written in two different ways. One can either write a two-scale homogenized
equation or an integro-differential equation. In the following presentation, we will only discuss the two-scale
homogenized equation and we will come back to the relation with the integro-differential equation in a forth-
coming work [16]. To write the two-scale homogenized equation we need the notion of two-scale convergence.
We will not recall the definition here and refer to Nguetseng [18,19] and to Allaire [2]. In the sequel, we will only
study the oscillations in the space variable and so the two-scale convergence refers only to the space variable.
In [16], we will also deal with the time oscillations. We have the following result

Theorem 4.1. The extension (ue,pe) two-scale converges to the unique solution (u(t,z,y),p(t,x)) of the fol-
lowing two-scale problem

Ou+Vyp1 +Vep —Ayyu="Pg in Qx Vs

00:p + div, [/ u(x,y)dy] =0 in Q
y

divyu(z,y) =0 in Qx )Yy (91)
/ u(x,y)dy] n=0 on 00
y

u(t,z,y) =0 in QX Vs andy — u,p1 are Y — periodic
u(t =0) = Palz,y) and p(t=0)=>b(z)

where p; is the Lagrange multiplier associated with the constraint div,u(z,y) = 0, a(z,y) is the two-scale limit
of a., b(x) is the weak limit of b. and g is two-scale limit of g.. Here, P (which is an operator acting on the y
variable) denotes the projection on divergence-free function of y, namely for all v(y) € L?(Yy) and Y-periodic,
Pu is such that Pv = v — Vq(y), divPv = 0 Pv.n = 0 on 0Ys. The system (91) is very similar to the system
obtained by Allaire [3] where the unsteady incompressible Stokes equation was studied.

Proof. We will only sketch the proof which follows the same steps as the proof for the unsteady incompressible
Stokes equation given in [3].

Lemma 4.2. There exists u(t,z,y) € L>(0,T; L2(QxY))NL?(0,T)xQ; HY(Y)) and p(t,z) € L>=(0,T; L*(Q))
such that, up to a subsequence, the sequences ., eV and O¢u. two-scale converge to u, Vyu and Oyu. Moreover,
u s such that for all t,

divju=0 i QxY, and u=0 in QxYs. (92)

Proof of the lemma. By the two-scale convergence, there exist four functions u, V, w and p depending on t,
x and y such that up to the extraction of a subsequence, U, eV, 0;u. and p. two-scale converge to u, V, w
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and p, namely

giir(l)/OT/Qﬂecé(t) (x, = dtdx / // (t,x,y)p(t)(x, y)dtdady
;Lr%/OT/QEVﬂed)(t)\Il(m,g)dtdx - /OT/Q/yV(t,x,y)qs(t)\p(x,y)dtdxdy
iy | : [ aottypte. Dtar = | ' / /y w(t,,)B(t) (@, y)dtdedy
Elii% /OT/Qﬁeqﬁ(t) Y(x, — dtd:L' / // (t, z,y)o(t)Y(z,y)dtdxdy

for any ¢ € D(0,T), ¥(z,y), ¥ (x,y) € C(Q x V). Integrating by parts and passing to the limit in the second
and third equations of (93), we deduce that Vu = V and that d;u = w. To prove that u = 0in Q x )s, we
use test functions that vanish on Q x Y. To prove that divyu = 0, we take V i(z,y) +eVae(z,y) as a test
function and then integrate by parts and use the conservation of mass equation. Finally, to prove that p does
not depends on y, we use ep(t)y(z, £) as a test function in the momentum equation, where ¢(z,y) € D(Q x V)
is periodic in y. O

(93)

Now, we want to pass to the limit in the conservation of mass as well as in the momentum equation. For all
P(z) € C* () and all ¢ € C§°(]0,T)), we have

/0 : /Q Petb(@)O(t) + Te - Vi = — /Q beth(a). (94)

Passing to the weak limit, we deduce that

/OT/Qoplb(x)atgb(t) + {/yu(x,y)dy] Vpd = */99171,/1(93)- (95)

Hence, we get

00:p + div, {/ u(x,y)dy] =0 in Q
Y (96)

[/y u(x,y)dy] nm=0 on 9N and p(t=0)=>b(x).

To pass to the limit in the momentum equation, we take ¢(t)y)(z, £) as a test function, where ¢ (z,y) € D(Q2xVy)
is periodic in y and divyy = 0. Integrating by parts an passing to the limit, we get

_ /()T/Q/yu(t,x,y)-8t¢¢($,y)dtdxdy—/OT/Q/yp¢ diwa(I»y)+/OT/Q/3;Vyu-Vyw(x,y)
/OT/Q/yg(t,l’,y)¢(t)¢(ﬂf,y)dtdxdy[)/J;a(x,y)¢(0)¢(x7y),

From which we deduce the existence of p; periodic in y such that the first equation in (91) holds.
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