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SOME REMARKS ON EXISTENCE RESULTS FOR OPTIMAL BOUNDARY
CONTROL PROBLEMS

Pablo Pedregal
1

Abstract. An optimal control problem when controls act on the boundary can also be understood
as a variational principle under differential constraints and no restrictions on boundary and/or initial
values. From this perspective, some existence theorems can be proved when cost functionals depend
on the gradient of the state. We treat the case of elliptic and non-elliptic second order state laws only
in the two-dimensional situation. Our results are based on deep facts about gradient Young measures.
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1. Introduction

Some papers have recently examined optimal design problems from a variational perspective [9,10] leading to
some specific issues and problems in the Calculus of Variations. We would like to explore here the possibilities
of this approach for optimal control problems, and in particular, for optimal boundary control problems where
controls act on (a part of) the boundary of the domain. Specifically we would like to

Minimize I(y) =
∫

Ω

W (x, u(x),∇u(x)) dx

where the state u is determined from the control y through the differential law

div (H(x, u(x),∇u(x))) = 0 in Ω, (1.1)

and appropriate boundary conditions (BC) on ∂Ω

BC[y] for u on ∂Ω, (1.2)

where the control y is defined on (a part of) ∂Ω. We have written BC[y] to stress that controls y enter into the
boundary conditions, in an unspecified way, to determine u. For future reference, we will identify this problem
as (P ). The class of admissible controls consists of all y’s that can be obtained, by restriction on ∂Ω, from
all (weak) solutions of (1.1) in some appropriate Sobolev space W 1,p(Ω). Our approach does not require to
be more specific about the class of competing controls. In fact we will say that a pair (y, u) is admissible for
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(P ) if u ∈ W 1,p(Ω) is the solution of (1.1) and (1.2). Notice that certain types of parabolic and hyperbolic
equations are also included in the form of our problem, so that controls y can also incorporate initial conditions.
Our analysis here is restricted to the two-dimensional situation where Ω ⊂ R2 is a simply-connected domain,
possibly unbounded. Our main results refer to some situations, under various sets of structural hypotheses,
where existence of optimal solutions for (P ) can be shown to exist.

It is interesting to realize that it is not inexcusable to fully specify how controls act on boundary and/or
initial conditions. In fact, our perspective focuses on the problem

Minimize J(u) =
∫

Ω

W (x, u(x),∇u(x)) dx

subject to

div (H(x, u(x),∇u(x))) = 0 in Ω.

Optimal solutions of this variational problem will determine, by restriction, optimal boundary controls regardless
of the particular form in which controls act. From this point of view, we will analyze these variational problems
under differential restrictions but no boundary condition is enforced. We will identify this variational problem
as (P̃ ) and would take for granted all necessary ingredients on (P ) so that both (P ) and (P̃ ) are equivalent.
Thus optimal solutions for (P ) will be sought by looking for optimal solutions for (P̃ ). We will keep however
the formulation of results in the form of optimal boundary control problems as in our model problem (P ).

As pointed out above, Ω is assumed to be a regular, simply-connected, possibly unbounded domain in R2, and

H : Ω×R×R2 → R2, W : Ω×R×R2 → R

are Carathéodory maps for which some solutions for (1.1) exist.
Optimal control problems governed by partial differential equations is a fundamental field in applied math-

ematics with an astonishing number of applications in science and engineering. During the last decades, this
kind of problems have received a lot of attention, mainly emphasizing the importance of optimality conditions
in situations where existence of optimal solutions was not really an issue. For many of these examples, cost
functionals would not depend explicitly on derivatives of states. The literature on optimal control of distributed
parameter systems is overwhelming. We simply cite here a recent collection of papers where one can find many
issues and directions of current research in this area [2].

Our main point in this note is to stress that in order to achieve the existence of optimal solutions, there is
an important and interesting interplay between the structure of the underlying state differential law and the
convexity properties of the integrand with respect to the derivative variable. The necessity of this interaction has
been known, even in much more general circumstances, for many years, and can be roughly stated by saying that
W should be convex along the characteristic cone defined by the state equation. In particular, the techniques
of compensated compactness [4–6, 14, 15] focus on deriving profound weak continuity results under differential
constraints (see also [7]). Here we would like to show the sufficiency of this “characteristic convexity” in some
specific situations, that in turn translate into existence theorems for optimal boundary control problems.

Our two main theorems are the following. The first one deals with elliptic or monotone operators. The
second one treats the case of linear, non-monotone operators. We also provide some insight on why the linearity
must be, in a sense, an essential part of the second theorem (Sect. 4).

Theorem 1.1. Let Ω ⊂ R2 be a regular, bounded, simply-connected domain and

W : Ω×R×R2 → R,

H : Ω×R×R2 → R2,



OPTIMAL BOUNDARY CONTROL PROBLEMS 439

be Carathéodory mappings such that

c (|A|p + |u|p − 1) ≤W (x, u,A),

|H(x, u,A)| ≤ c (|A|q + 1) ,

for every pair (x, u), p > q ≥ 1 and c > 0. Suppose further that

(A−B) · (H(x, u,A)−H(x, u,B)) = 0 implies A = B,

for every pair (x, u). Then problem (P ) admits optimal solutions, i.e. there are optimal pairs (y, u) where
u ∈W 1,p(Ω).

Notice that there is no convexity whatsoever assumed on W .
Suppose now that

H(x, u,A) = f(x, u) +G(x, u)A

and
f : Ω×R → R2, G : Ω×R → M2×2,

are Carathéodory mappings. Suppose that

‖G(x, u)‖ ≤M < +∞,

|f(x, u)| ≤ c (|u|p + f0(x)) ,

for positive constants M and c, and f0 ∈ L1(Ω). Moreover

W : Ω×R×R2 → R

is also a Carathéodory function for which the lower bound

c (|A|p + |u|p − 1) ≤W (x, u,A),

for all pairs (x, u) is valid where p > 1, c > 0.

Theorem 1.2. Under the previous hypotheses on H and W , if for every fixed (x, u), W (x, u, ·) is convex along
the directions given by the vectors n such that

n ·G(x, u)n = 0,

then the associated problem (P ) admits optimal pairs (y, u) where u ∈ W 1,p(Ω).

Clearly, the interesting situations occur when such set of vectors n is not negligible. Notice that the situation
where the state differential law changes type is included.

Section 2 is dedicated to several preliminary facts about gradient Young measures [8] as well as to how one
can understand the original optimal control problem as a vector variational situation. Sections 3 and 4 treat
the monotone and the non-monotone cases, respectively. The fundamental results that will enable us to prove
the theorems above are contained in [3] and [11].

2. Some preliminaries

The dependence of W and H on the variables (x, u) is somehow irrelevant if they both depend explicitly on
the gradient variable. This remark is clear when examining variational principles by means of gradient Young
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measures (see [8]). For this reason, and for the sake of simplicity, we will drop the dependence of H and W on
the variables (x, u) in our initial discussion. Thus we take

H : R2 → R2, W : R2 → R

to be continuous maps.
By introducing a new independent field v, we can transform our problem into a vector variational situation

as follows. Write
H(∇u(x)) + T∇v(x) = 0 in Ω (2.1)

where T is the π/2, counterclockwise rotation in the plane, and collect u and v into a single vector field
U = (u, v). This U will be the variable of our new, equivalent variational problem. The equality

H(∇U (1)(x)) + T∇U (2)(x) = 0

must be enforced always in Ω. Define a new density

ϕ : M2×2 → R∗ = R ∪ {+∞}

by setting

ϕ(A) =

{
W (A(1)), A ∈ Γ,
+∞, else,

(2.2)

where Γ is the manifold associated with equation (2.1)

Γ =
{
A ∈ M2×2 : A(2) = TH

(
A(1)

)}
·

A(i) is the i-th row of A. It is elementary to check that the initial problem (P̃ ) is equivalent to the vector
variational problem

Minimize J(U) =
∫

Ω

ϕ(∇U(x)) dx (2.3)

subject to no further restrictions.
As we know, and overlooking for the moment the fact that ϕ is not a Carathéodory density, the main issue

concerning existence of optimal solutions for vector variational problems is the quasiconvexity of the integrand
ϕ [1]; or rather, the weak lower semicontinuity of the functional as we are lacking the Carathéodory requirement
as well as the typical upper bound on ϕ. This weak lower semicontinuity depends on the properties of gradient
Young measures [8] whose support is contained in Γ. The important point here is the structure of Γ itself which
in turn depends on H , as Γ is essentially the “graph” of H , and how this structure translates into properties
of gradient Young measures supported on it. This is a profound issue whose significance has been stressed in
several occasions [12, 13].

We would like to recall here several basic facts about gradient Young measures which are important when
one wants to understand variational principles from this perspective (see [8]). The first one refers to the
existence issue: for every bounded sequence in Lp(Ω), p > 0, {wj}, there exists a family of probability measures
ν = {νx}x∈Ω such that for every Carathéodory function

ψ : Ω×Rd → R

for which {ψ(x,wj(x))} is weakly convergent in L1(Ω), we have

ψ(x,wj(x)) ⇀ ψ(x) =
∫
Rd

ψ(x, λ) dνx(λ).
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In particular, we can apply this representation of weak limits when {wj} is a bounded sequence of gradients.
In this case we refer to ν as a gradient Young measure.

The second fact is related to the most basic, non-trivial example of a gradient Young measure supported in
matrices. These are called first-order laminates and correspond to the probability measure

νx = ν0 = tδA + (1− t)δB, t ∈ (0, 1), a.e. x ∈ Ω,

where A and B are matrices such that the difference A − B must be a rank-one matrix. As a matter of fact,
there is a whole class of gradient Young measures, identified in general as laminates, which are recursively built
by “composing” first-order laminates. This class of gradient Young measures are characterized by Jensen’s
inequality for all rank-one convex functions.

The third one relates to the behavior of Young measure with respect to concentration effects and can be
stated as follows. If ν = {νx}x∈Ω is the Young measure associated with {wj} then

lim inf
j→∞

∫
Ω

ψ(x,wj(x)) dx ≥
∫

Ω

∫
Rd

ψ(x, λ) dνx(λ) dx,

for every Carathéodory function ψ bounded from below. If {ψ(x,wj(x))} converges weakly in L1(Ω) then
we actually have equality. This is indeed the defining property of the Young measure. But if the sequence
{ψ(x,wj(x))} develops concentrations then we still have the above inequality which is the right one for weak
lower semicontinuity.

The following is a localization result stating that a gradient Young measure ν = {νx}x∈Ω is made up of
homogeneous gradient Young measures at a.e. point x ∈ Ω. If ν = {νx}x∈Ω is a Young measure generated
by a bounded sequence of gradients in W 1,p(Ω) then for a.e. a ∈ Ω and for any domain Q, there exists a
bounded sequence in W 1,p(Q), {va,j}, such that the Young measure associated to {∇va,j} is νa, homogeneous.
Moreover each function va,j can be chosen in such a way that va,j − uF (a) ∈W 1,p

0 (Q) where uF (x) is the linear
function Fx, and

F (a) =
∫
M

Adνa(A).

Finally, we would like to indicate that strong convergence in Sobolev spaces is equivalent to triviality (a delta
measure on the gradient of the limit) of the underlying gradient Young measure. This triviality is shown in the
components where we have strong convergence. In particular, this is an interesting remark when dealing with
sequences of functions of Sobolev spaces jointly with their gradients.

3. Monotone operators

The proofs of our main results in the Introduction rely on appropriate weak lower semicontinuity results. As
indicated in the previous section, we treat first the case where W and H do not depend explicitly on (x, u) and

c (|A|p − 1) ≤W (A),
|H(A)| ≤ c (|A|q + 1) ,

for c > 0 and p > q ≥ 1. Take 1 < r < p/q.

Theorem 3.1. Assume H is such that

(A−B) · (H(A)−H(B)) = 0 implies A = B, (3.1)

then regardless of the convexity properties of W , J in (2.3) is weak lower semicontinuous in W 1,r(Ω).

Notice that hypothesis (3.1) amounts to the monotonicity of the corresponding differential operator.
The proof of this result makes use of the following fundamental fact [11].
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Theorem 3.2. Let
∇Uj : Ω → M2×2

be a uniformly bounded sequence of gradients in W 1,p(Ω), p > 1. Let K be a closed, connected subset of M2×2

such that det(X − Y ) 6= 0 for any two distinct X,Y ∈ K and suppose

dist(∇Uj(x),K) → 0, j →∞,

for a.e. x ∈ Ω. Then the sequence {∇Uj} is compact in Lq(Ω) for every 1 ≤ q <∞.

For the proof of Theorem 3.1, take K = Γ and consider

∇Uj =
(∇uj

∇vj

)
,

∇vj(x) = TH(∇uj(x)), a.e. x ∈ Ω.

The fact that Ω is bounded, r < p/q ≤ p, the bounds assumed on W and H , and this last equation, enable
us to ensure that {Uj} is uniformly bounded in W 1,r(Ω) (in fact {∇Uj} is equiintegrable in Lr(Ω)), and hence
a (sub)sequence converges weakly in this Sobolev space to some U . Obviously, if ∇Uj does not satisfy the
equation (or for a full subsequence of it) then the weak lower semicontinuity is trivial since J(Uj) = +∞. We
would like to show that, regardless of the convexity of W , we have

J(U) ≤ lim inf
j→∞

J(Uj),

the weak lower semicontinuity property for J . Because of the form of ∇Uj , we have

dist(∇Uj(x),Γ) = 0,

for all j and a.e. x ∈ Ω. Furthermore, it is elementary to check that the difference of two distinct matrices in
Γ can never be a rank-one matrix since

det
((

A(1)

TH
(
A(1)

) )
−

(
B(1)

TH
(
B(1)

) ))
=

(
A(1) −B(1)

)
·
(
H

(
A(1)

)
−H

(
B(1)

))
,

and by our hypothesis this can never be zero if A(1) is different from B(1). From Theorem 3.2 we conclude that
{∇Uj} converges strongly in any Lebesgue space and this, in turn, implies, by Fatou’s lemma, that

J(U) ≤ lim
j→∞

J(Uj)

possibly for a suitable subsequence. Notice that this compactness property amounts to saying that the underlying
gradient Young measure is trivial.

The proof of Theorem 1.1 is now standard, and follows along the lines of the direct method of the Calculus
of Variations [1, 8]. We will show that the variational problem (P̃ ) admits optimal solutions.

Proof of Theorem 1.1. We again use the notation

J(U) =
∫

Ω

ϕ(x, U(x),∇U(x)) dx

for

ϕ(x, U,A) =

{
W (x, U (1), A(1)), if A ∈ Γx,U(1) ,

+∞, else,
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where this time
Γx,u =

{
A ∈ M2×2 : A(2) = TH

(
x, u,A(1)

)}
·

Due to the equivalence of (P̃ ) with this variational reformulation, we will show that the functional J admits
(global) minimizers by examining coercivity and weak lower semicontinuity. Let {Uj} be a minimizing sequence
for J . By the coercivity of W , this sequence is bounded in W 1,p(Ω). As before, the equation

H(x, U (1)
j (x),∇U (1)

j (x)) + T∇U (2)
j (x) = 0,

together with the boundedness of Ω and the bounds assumed on H , let us conclude that the full vector gradi-
ents {∇Uj} is equiintegrable in Lr(Ω). Let ν = {νx}x∈Ω be the associated gradient Young measure. It is clear
that for a.e. x ∈ Ω the support of νx is contained in the manifold Γx,u(x) where u is the weak limit of uj (weak
in W 1,p(Ω) and strong in Lp(Ω)). For this, it suffices to consider the Young measure, µ = {µx}x∈Ω, associated

with
{
(U (1)

j ,∇Uj)
}

. By the strong convergence of U (1)
j (recall the comments at the end of Sect. 2), we can

write
µx = δU(1)(x) ⊗ νx,

and by using the sequence of functions

∣∣∣H(x, U (1)
j (x),∇U (1)

j (x)) + T∇U (2)
j (x)

∣∣∣2
which vanishes identically, it is elementary to conclude the property on the support of νx.

On the other hand, each individual member νx for fixed x ∈ Ω is a (homogeneous) gradient Young measure
generated by a bounded sequence in W 1,r(Ω) (see again the comments in Sect. 2). By our monotonicity
hypothesis, and applying Theorem 3.2 to this sequence of gradients for each fixed x ∈ Ω, we conclude that νx

is trivial
νx = δ∇U(x) a.e. x ∈ Ω,

where U is the weak limit in W 1,r(Ω) of the pairs of gradients. This implies that the convergence to U is in
fact strong in W 1,r(Ω) (recall that {∇Uj} is equiintegrable in Lr(Ω)), and in particular it is strong in W 1,p(Ω)

for the first component
{
∇U (1)

j

}
. This leads us to conclude that, again as in Theorem 3.1,

J(U) ≤ lim
j→∞

J(Uj)

and this proves the theorem since
∇U(x) ∈ Γx,U(1)(x)

for a.e. x ∈ Ω and so U (1) is a minimizer for (P̃ ) in W 1,p(Ω). �
Examples where Theorem 1.1 can be applied include all typical linear and non-linear elliptic operators.

4. The non-monotone case

When the monotonicity hypothesis does not hold, then weak lower semicontinuity of J amounts to “linearity”
(or flatness) of H and “convexity” of W in the following sense. We drop the dependence on (x, u).

Proposition 4.1. Assume that the functional J in (2.3) is weak lower semicontinuous in W 1,∞(Ω). If A, B
are different vectors in R2 such that

(A−B) · (H(A) −H(B)) = 0
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then

H(tA+ (1− t)B) = tH(A) + (1− t)H(B),
W (tA+ (1− t)B) ≤ tW (A) + (1− t)W (B),

for all t ∈ [0, 1].

Proof. By the same computations made earlier, the probability measure

µ = tδA + (1− t)δB ,

where

A =
(

A
TH(A),

)
B =

(
B

TH(B)

)
belong to Γ, is a laminate supported in Γ according to our discussion in Section 2. Therefore we must have, if
the functional J in (2.3) is weak lower semicontinuous, that

ϕ (〈id, µ〉) ≤ 〈ϕ, µ〉,

where ϕ is the integrand for J defined in (2.2). This is nothing but Jensen’s inequality for the homogeneous
gradient Young measure µ. Hence we obtain

ϕ

(
tA+ (1− t)B

T (tH(A) + (1− t)H(B))

)
≤ tW (A) + (1− t)W (B).

Since the right-hand side is finite, we conclude that the matrix in the left-hand side ought to belong to Γ because
this is the set where ϕ is finite, and thus the linearity claimed on H in the statement of the theorem holds. In
addition

ϕ

(
tA+ (1− t)B

TH (tA+ (1− t)B)

)
= W (tA+ (1− t)B),

and this yields the convexity of W . �
Because of the previous fact, we will restrict attention henceforth to the linear, non-elliptic case, so that H

will be identified with a non-positive definite 2 × 2-matrix. We do not mean however to cover, without loss
of generality, all cases. The previous proposition is simply a justification on why we restrict attention to this
simplified case. The differential restriction reads

div (H∇u) = 0 in Ω,

or equivalently
H∇u+ T∇v = 0.

It is elementary to check that rank-one directions contained in the manifold Γ are associated with vectors n
such that

n ·Hn = 0.
Moreover, the number of directions n such that n ·Hn = 0 is at most two and equal to the rank of H (under the
further hypotheses assumed on H). It is indeed well-known that if there are three vectors with this property,
then H is a multiple of a rotation of angle π/2 and in this case the differential law is identically satisfied for
any function u.

Theorem 4.2. Let H be a matrix as described above. The functional J in (2.3) is weak lower semicontinuous
in W 1,p(Ω), p > 1, if and only if the density W is (separately) convex along the directions given by the vectors
n such that n ·Hn = 0.
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Proof. The necessity of the convexity on W is very well-known and in fact has already been indicated in
Proposition 4.1. Let us examine the sufficiency of this convexity.

Under our linearity assumption on H , we know that Γ is a two-dimensional, linear subspace containing
at most two independent rank-one directions. Let these matrices be ai ⊗ ni, i = 1, 2, where we can take
|ai| = |ni| = 1. Three situations may occur:

1. the two sets of vectors {a1, a2} and {n1, n2} are linearly independent;
2. the vectors ai are dependent;
3. the vectors ni are dependent.

The last situation is easy to deal with since in this case all matrices in Γ are of the form a⊗ n for a ∈ R2. Any
probability measure supported in Γ will be a laminate and hence a gradient Young measure. The integrand
defined in (2.2) will in fact be convex provided W is convex along the direction given by n.

The second case cannot happen since Γ would be the set of all vectors a ⊗ n for fixed a and n ∈ R2. This
would imply that n ·Hn = 0 for all n and this would take us back to H being a multiple of T .

For the case where the two vectors n1 and n2 are independent, as well as {a1, a2}, we can define a non-
singular, linear transformation H̃ by putting H̃(ai) = ni, i = 1, 2. In this way H̃(Γ) is the subspace of diagonal
matrices with respect to the basis ni ⊗nj , i, j = 1, 2. A suitable change of independent variables would take us
to the standard subspace of diagonal matrices. Let {Uj} be a bounded sequence in W 1,p(Ω) converging weakly
to U . If

lim inf
j→∞

J(Uj) = +∞

there is nothing to prove. Let us assume that the previous liminf is finite. Because of the definition of the
density ϕ for J , we must have that ∇Uj(x) belongs to Γ a.e. x ∈ Ω. Consider further the sequence of functions

Ũj = H̃Uj.

This is also a bounded sequence in W 1,p(Ω). Let ν = {νx}x∈Ω be the gradient Young measure associated with
a suitable subsequence which we do not bother to relabel. Because of our choice of H̃, the support of νx is
contained in the subspace of diagonal matrices for a.e. x ∈ Ω. But we know that all such gradient Young
measures are laminates [3], so that, since W̃ (A) = W (H̃−1A) is separately convex,

ϕ̃(A) =

{
W̃ (A(1)), A ∈ Γ,
+∞, else,

is rank-one convex. By our remarks in Section 2 about Jensen’s inequality for laminates and rank-one convex
functions, we have

ϕ̃ (〈id, νx〉) ≤ 〈ϕ̃, νx〉,
for a.e. x ∈ Ω. On the other hand 〈id, νx〉 is the weak limit of

{
Ũj

}
which is H̃U , and integrating the above

inequality over Ω, we obtain

∫
Ω

ϕ(∇U(x)) dx ≤
∫

Ω

∫
M2×2

ϕ(H̃−1A) dνx(A) dx.

By the third fact about Young measures mentioned at the end of Section 2, and bearing in mind the definition
of W̃ , ∫

Ω

∫
M2×2

ϕ(H̃−1A) dνx(A) dx ≤ lim
j→∞

∫
Ω

ϕ(∇Uj(x)) dx.
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Putting together these two inequalities we arrive at∫
Ω

ϕ(∇U(x)) dx ≤ lim
j→∞

∫
Ω

ϕ(∇Uj(x)) dx,

the weak lower semicontinuity result claimed in the statement. �
Based on this weak lower semicontinuity result, the proof of Theorem 1.2 is straightforward along the lines of

the direct method of the Calculus of Variations. As in the proof of Theorem 1.1, what matters is the dependence
on (∇u,∇v). In general, the differential constraint reads

div (f(x, u(x)) +G(x, u(x))∇u) = 0 in Ω,

or equivalently
f(x, u(x)) +G(x, u(x))∇u + T∇v = 0.

Proof of Theorem 1.2. As in the case of Theorem 1.1, we let

J(U) =
∫

Ω

ϕ(x, U(x),∇U(x)) dx

where

ϕ(x, U,A) =

{
W (x, U (1), A(1)), if A ∈ Γx,U(1) ,

+∞, else,

and
Γx,u =

{
A ∈ M2×2 : f(x, u) +G(x, u)A(1) + TA(2) = 0

}
·

Due to the equivalence of the initial problem with this variational reformulation, we will show that the func-
tional J admits (global) minimizers by examining coercivity and weak lower semicontinuity. Let {uj} be
minimizing for J . By the coercivity assumed on W , this sequence is uniformly bounded in W 1,p(Ω). The
pointwise constraint

f(x, uj(x)) +G(x, uj(x))∇uj(x) + T∇vj(x) = 0
together with the bounds we have on f andG and the uniform boundedness of∇uj in Lp(Ω), allow us to conclude
that (after substracting appropriate constants if necessary) {vj} is also uniformly bounded in W 1,p(Ω). Let
ν = {νx}x∈Ω be the gradient Young measure corresponding to the sequence of pairs of gradients {(∇uj ,∇vj)}.
As before, it is clear that the support of νx is contained in Γx,u(x) where u is the weak limit of uj (strong in
Lp(Ω)). By our remarks in the proof of Theorem 4.2, we have that each νx is a laminate and ϕ(x, U,A) is
rank-one convex with respect to A (because W (x, u,A) is convex along rank-one directions contained in Γx,u).
We finish the proof as in Theorem 4.2. If we put Uj = (uj , vj), U = (u, v) its weak limit in W 1,p(Ω), then

lim
j→∞

∫
Ω

ϕ(x, Uj(x),∇Uj(x)) dx ≥
∫

Ω

∫
M2×2

ϕ(x, U(x), A) dνx(A) dx ≥
∫

Ω

ϕ(x, U(x),∇U(x)) dx.

The last inequality is Jensen’s inequality for laminates and rank-one convex functions. We see that u = U (1) is
an optimal solution for our initial problem. �

Typical corollaries of this result for the linear heat and wave equations in dimension one are included here as
an illustration without entering into technicalities about the appropriate functional spaces for these evolution
equations.

Consider the one-dimensional, linear heat equation

ut(t, x) − uxx(t, x) = v(t, x), 0 < x < L, t > 0.
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We would like to

Minimize J(u) =
∫ ∞

0

∫ L

0

W (t, x, u(t, x), ut(t, x), ux(t, x)) dxdt

among all solutions of the preceding heat equation. In this situation Ω = (0,∞)× (0, L).

Corollary 4.3. If W (t, x, u, ut, ux) is a Carathéodory function, convex with respect to ut when all other variables
are fixed, and such that

c (|(ut, ux)|p − 1) ≤W (t, x, u, ut, ux)
for some p > 1 and c > 0, then there are optimal solutions (in W 1,p(Ω)) for the corresponding optimal boundary
control problem.

Observe that this situation fits in the framework of Theorem 1.2 for the choice

f(t, x, u) = (u,−V (t, x)), G(t, x, u) =
(

0 0
0 −1,

)

where v = ∂V
∂x

and V ∈ W 1,1(Ω).
For the wave equation

utt(t, x)− uxx(t, x) = v(t, x), 0 < x < L, 0 < t,

if we want to

Minimize J(u) =
∫ ∞

0

∫ L

0

W (t, x, u(t, x), ut(t, x), ux(t, x)) dxdt,

among all solutions of the wave equation, we can rely on the following result.

Corollary 4.4. If W (t, x, u, ut, ux) is a Carathéodory function, separately convex with respect to ut and ux

when all other variables are fixed, and such that

c (|(ut, ux)|p − 1) ≤W (t, x, u, ut, ux)

for some p > 1 and c > 0, then there are optimal solutions (in W 1,p(Ω)) for the corresponding optimal boundary
control problem.

This time we choose

f(t, x, u) = (0,−V (t, x)), G(t, x, u) =
(

1 0
0 −1,

)
,

where v = ∂V
∂x

and V ∈ W 1,1(Ω).
It is important to remark that this separate convexity is much weaker than the joint convexity with respect

to both variables.
A finer analysis would be required to clarify existence of optimal solutions on typical spaces of solutions for

the heat and wave equations as indicated before.
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