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ENTIRE SOLUTIONS IN R
2 FOR A CLASS OF ALLEN-CAHN EQUATIONS ∗

Francesca Alessio1 and Piero Montecchiari1

Abstract. We consider a class of semilinear elliptic equations of the form

−ε2∆u(x, y) + a(x)W ′(u(x, y)) = 0, (x, y) ∈ R
2 (0.1)

where ε > 0, a : R → R is a periodic, positive function and W : R → R is modeled on the classical
two well Ginzburg-Landau potential W (s) = (s2 − 1)2. We look for solutions to (0.1) which verify
the asymptotic conditions u(x, y) → ±1 as x → ±∞ uniformly with respect to y ∈ R. We show via
variational methods that if ε is sufficiently small and a is not constant, then (0.1) admits infinitely
many of such solutions, distinct up to translations, which do not exhibit one dimensional symmetries.
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1. Introduction

In paper we deal with a class of semilinear elliptic equations of the form

−ε2∆v(x, y) + a(x)W ′(v(x, y)) = 0, (1.1)

((x, y) ∈ R
2) or equivalently (setting u(x, y) = v(εx, εy))

−∆u(x, y) + a(εx)W ′(u(x, y)) = 0, (1.2)

where we assume ε > 0 and
(H1) a : R → R is not constant, 1-periodic, positive and Hölder continuous,
(H2) W ∈ C2(R) satisfiesW (s) ≥ 0 for any s ∈ R, W (s) > 0 for any s ∈ (−1, 1), W (±1) = 0 andW ′′(±1) > 0.

This kind of equation arises in various fields of Mathematical Physics. As an example, when W is the classical
two well Ginzburg-Landau potential, W (s) = (s2−1)2, (1.2) can be viewed as a generalization of the stationary
Allen-Cahn equation introduced as a model for phase transitions in binary metallic alloys. Another kind of
equation of the Mathematical Physics that fits in our assumption is the stationary version of the so called
Sine-Gordon equation, corresponding to taking W (s) = 1+cos(πs), potential which has been applied to several
problems in condensed state Physics like for instance the propagation of dislocations in crystals. The function v,
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in these models, is considered as an order parameter describing pointwise the state of the material. The global
minima of W represent energetically favorite pure phases and different values of v depict mixed configurations.

We look for existence and multiplicity of two phases solutions of (1.2), i.e., solutions of the boundary value
problem {−∆u(x, y) + a(εx)W ′(u(x, y)) = 0, (x, y) ∈ R

2

lim
x→±∞u(x, y) = ±1, uniformly w.r.t. y ∈ R.

(1.3)

That kind of problem has been extensively studied under various points of view. In [11], N. Ghoussoub and
C. Gui partially proved a De Giorgi’s conjecture (see [9]) regarding (1.3). The following result is a particular
consequence of their study.

Theorem 1.1. If a(x) = a0 > 0 for any x ∈ R and if u ∈ C2(R2) is a solution of (1.3), then u(x, y) = q(x) for
all (x, y) ∈ R

2, where q ∈ C2(R) is a solution of the problem

{−q̈(x) + a0W
′(q(x)) = 0, x ∈ R

lim
x→±∞q(x) = ±1.

By Theorem 1.1, when equation (1.2) is autonomous, any solution of (1.3) depends only on the x variable being
in fact a solution of the corresponding ordinary differential equation. We have to remark that the result in [11],
as the De Giorgi conjecture, deals with an asymptotic condition weaker than the one in (1.3), asking that the
limits ±1 are realized only pointwise with respect to y ∈ R and that u is increasing in the variable x. In such
a case in [11] it is proved that the conclusion in Theorem 1.1 is still true modulo a space roto-translation. We
mention that in this form the De Giorgi conjecture is still open in R

n for n ≥ 4 while it was recently proved in
[5] for n = 3 (see also [2]). The assumption, as in the problem (1.3), that the limits are uniform with respect
to y ∈ R

n−1, simplifies in fact the matter and the question of De Giorgi, known in this setting as Gibbons
conjecture, is nowadays completely solved for any n ≥ 2, see [7, 8, 10].

All these results show that, in the autonomous case, the problem (1.3) is in fact one dimensional and the set
of its solutions can be considered in this sense trivial. This is not the case, in general, for systems of autonomous
Allen Cahn equations as shown in [1] and this is not the case for non autonomous x-dependent Allen Cahn
type equation as shown in [3]. In fact, in [3] it is proved that introducing in the potential a non trivial periodic
dependence on the single variable x, as in (1.2), the one dimensional symmetry of the problem disappears. The
existence of at least two solutions of problem (1.3), distinct up to translations, depending on both the planar
variables x and y is displayed when ε is sufficiently small. This reveals that for the x-dependent Allen Cahn
type equations (1.2) even the weaker Gibbons conjecture decades.

Pursuing the study started in [3], aim of the present paper is to show that the introduction of a space
x-dependence leads to a complicated structure of the set of solutions of problem (1.3). In particular we show
that, if ε is sufficiently small, it always admits infinitely many solutions depending on both the planar variables
and distinct up to space translations.

To state precisely our result it is better to recall some of the properties of the one dimensional problem
associated to (1.3), {−q̈(x) + a(εx)W ′(q(x)) = 0, x ∈ R,

lim
x→±∞q(x) = ±1. (1.4)

As it is nowadays well known, when a is not constant and ε is sufficiently small, the problem (1.4) admits the
so called multibump dynamics. To be precise, let z0 ∈ C∞(R) be an increasing function such that z0(x) → ±1
as x→ ±∞ and |z0(x)| = 1 for any |x| ≥ 1, and define the action functional

F (q) =
∫

R

1
2
|q̇(x)|2 + a(εx)W (q(x)) dx
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on the class
Γ = {q ∈ H1

loc(R) / ‖q‖L∞(R) = 1 and q − z0 ∈ H1(R)}.
Then (see Sect. 2) there exists δ0 ∈ (0, 1/4) and ε0 > 0 such that for any ε ≤ ε0 there is a family of open
intervals {(t−j , t+j ) / j ∈ Z} verifying

t+j = t−j+1 and t+j − t−j =
1
ε
, for any j ∈ Z,

for which, for any odd integer number k, for any p = (p1, . . . , pk) with p1 < p2 < · · · < pk ∈ Z, setting

ck,p = inf{F (q) / q ∈ Γ, |q(t−pi
) − (−1)i| ≤ δ0 and |q(t+pi

) − (−1)i+1| ≤ δ0 for i = 1, . . . , k }

and
Kk,p = {q ∈ Γ / F (q) = ck,p, |q(t−pi

) − (−1)i| ≤ δ0 and |q(t+pi
) − (−1)i+1| ≤ δ0 for i = 1, . . . , k }

we have that Kk,p is not empty, and constituted by k-bump solutions of (1.4).
In particular the 1-bump solutions are global minima of F on Γ at the level c = c1,p = minΓ F (q). Moreover

it can be proved that, since a is not constant, when ε is sufficiently small the following non-degeneracy condition
holds:

K = {q ∈ Γ / F (q) = c} = ∪p∈ZK1,p,

where the sets K1,p ⊂ Γ are compact and uniformly separated in Γ (with respect to the H1(R) metric).
In [3] the existence of solutions depending on both the planar variables is proved looking for solutions to

problem (1.3) which are asymptotic as y → ±∞ to different minimal sets K1,p− , K1,p+ . More precisely, letting

H = {u ∈ H1
loc(R

2) / ‖u‖L∞(R2) ≤ 1 and u− z0 ∈ ∩(ζ1,ζ2)⊂RH
1(R × (ζ1, ζ2))},

in [3] it is shown that fixed p− = 0 there exists at least two different values of p+ ∈ Z \ {0} for which there
exists a solution u ∈ H of (1.3) such that

d(u(·, y),K1,p±) → 0, as y → ±∞,

where, if q ∈ Γ and A ⊂ Γ, we denote d(q(·), A) = inf{‖q − q̄‖L2(R) / q̄ ∈ A} (in fact, as shown in [13], there
results p+ = ±1),

In the present paper we strengthen that result showing that (1.3) admits infinitely many solutions u ∈
H∩C2(R2) with ∂yu 
= 0, which emanate as y → −∞ from different 3-bump solutions of (1.4). In fact we prove

Theorem 1.2. There exists ε0 > 0 for which for any ε ∈ (0, ε0) there exists p0 ∈ N such that if p = (p1, p2, p3) ∈
Z

3 verifies min{p2 − p1, p3 − p2} ≥ p0 then there exists a solution u ∈ H ∩ C2(R2) of (1.3) such that ∂yu 
= 0
and limy→−∞ d(u(·, y),K3,p) = 0.

We find these solutions using a variational argument which generalizes the one introduced in [3].
In [3], following a renormalization procedure inspired by the one introduced by P.H. Rabinowitz in [15, 16],

the solutions are found as minima of the renormalized action functional

ϕ(u) =
∫

R

1
2
‖∂yu(·, y)‖2

L2(R) + (F (u(·, y)) − c) dy

on the set
Mp−,p+ = {u ∈ H | lim

y→±∞ d(u(·, y),K1,p±) = 0}.
The fact that c is the minimal level of F on Γ implies that for any u ∈ Mp−,p+ , the function y → F (u(·, y))− c
is non negative and so the functional ϕ is well defined with values in [0,+∞]. Moreover, the discreteness of
the minimal set K allows us to show that if u ∈ Mp−,p+ and ϕ(u) < +∞ then supy∈R d(u(·, y),K1,p−) < +∞.
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This excludes “sliding” phenomena for the minimizing sequences (see [1]) possibly due to the non compactness
of the domain in the x-direction. The lack of compactness in the y-direction is then overcame via concentration
compactness techniques.

Following that argument, to find solutions to (1.3) asymptotic to 3-bump solutions, fixed p ∈ P =
{(p1, p2, p3) ∈ Z

3 / p1 < p2 < p3}, we may consider the set

M∗
p = {u ∈ H / lim

y→−∞ d(u(·, y),K3,p) = 0, lim inf
y→+∞ d(u(·, y),K3,p) > 0}.

A difficulty arises when we try to define on M∗
p a suitable renormalized functional. Indeed, differently from

the 1-bump case, the set K3,p is not minimal for F on Γ and if u ∈ M∗
p, the function y → F (u(·, y)) − c3,p is

indefinite in sign. In other word the natural renormalized functional

ϕp(u) =
∫

R

1
2
‖∂yu(·, y)‖2

L2(R) + (F (u(·, y)) − c3,p) dy

is not well defined on M∗
p. To overcome that difficulty we make use of a natural constraint of the prob-

lem. Indeed, we observe that any solution u ∈ H of (1.2) on the half plane R × (−∞, y0), which satisfies
d(u(·, y),K3,p) → 0 as y → −∞, and

∫
R×(−∞,y0)

|∂yu(x, y)|2 dxdy < +∞, verifies the property

F (u(·, y)) = c3,p +
1
2
‖∂yu(·, y)‖2

L2(R), ∀y ∈ (−∞, y0), (1.5)

a sort of conservation of Energy. In particular (1.5) implies that F (u(·, y)) ≥ c3,p for any y ∈ (−∞, y0) and that
suggests us to define, given p ∈ P , the set

Mp =
{
u ∈ M∗

p/ inf
y∈R

F (u(·, y)) ≥ c3,p

}

on which we look for minima of the natural renormalized functional ϕp which is well-defined there.
As in the one bump case, to avoid sliding phenomena, we have to show that if u ∈ Mp and ϕp(u) < +∞

then supy∈R
d(u(·, y),K3,p) < +∞. This is done studying the discreteness properties of the level set {F = c3,p}

showing that we have sufficient compactness in the problem whenever min{p2− p1, p3 − p2} is sufficiently large,
but not in general for any p ∈ P .

That allows us to prove that for such kind of p, the minimizing sequences of ϕp on Mp converges up to
subsequences, weakly in H1

loc(R
2). Unfortunately we can not say that the limit functions up are minima of ϕp

on Mp since the constraint infy∈R F (up(·, y)) ≥ c3,p is not necessarily satisfied. However we recover that up ∈ H
and that limy→−∞ d(u(·, y),K3,p) = 0. Moreover, setting

y0,u = inf{y ∈ R / d(up(·, y),K3,p) > 0 and F (up(·, y)) ≤ c3,p}

we prove that lim infy→y−0,u
d(up(·, y),K3,p) ≥ d0 > 0, that lim infy→y−0,u

F (up(·, y)) = c3,p and that up is a
classical solution of (1.2) on the set R× (−∞, y0,u).

If y0,u = +∞, we conclude that up ∈ Mp ∩ C2(R2) is a solution to (1.2). Differently from the one bump
case we are not able to precisely characterize the asymptotic behaviour of this kind of solutions as y → +∞.
Anyway we can say that in this case there exists a p′ 
= p ∈ P such that up(·, y) remains for large values of y
nearby the set K3,p′ .

If otherwise y0,u ∈ R, we have that up solves (1.2) only on the half plane R× (−∞, y0,u). Using the conserva-
tion of Energy (1.5), we show that in such case up satisfies the Neumann boundary condition ∂yup(·, y0,u) ≡ 0.
This will allow us to recover, by reflection, an entire solution to (1.2) even in this case.
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More precisely, setting

vp ≡ up, if y0,u = +∞, and vp(x, y) =

{
up(x, y), if y ≤ y0,u,

up(x, 2y0,u − y), if y > y0,u,
if y0,u ∈ R,

we get that vp ∈ H ∩ C2(R) is a classical solution (of homoclinic type if y0,u ∈ R and of heteroclinic type if
y0,u = +∞) of (1.2) verifying ∂yvp 
= 0. The fact that vp is actually a solution of (1.3) follows now in a standard
way since supy∈R d(vp(·, y),K3,p) < +∞ and ϕp(vp) < +∞.

We finally want to point out some comments on our result.
First, we note that the proof described above can be adapted to find solutions asymptotic as y → −∞ to

k-bump solutions for any k ∈ N. Moreover that Energy constraint can be used even in other contests and to find
other kind of solutions. We think in particular to the possibility of finding periodic solutions of the brake orbits
type (in the y-variable), and to study the case in which the function a has more general recurrence properties
(e.g. a almost periodic).

Another remark regards the connection of our result with the ones obtained for the “fully” non autonomous
case, i.e., {−ε2∆u + a(x, y)W ′(u(x, y)) = 0, (x, y) ∈ R

2

lim
x→±∞u(x, y) = ±1, uniformly w.r.t. y ∈ R,

(1.6)

where a is periodic in both variables. That kind of problem, and even in a more general setting, has been
already considered for example in the papers [4, 6, 12–14]. In these papers the existence of a wide variety of
solutions has been shown. However, in this setting, the existence of solutions asymptotic to periodic solutions
in the variable y and of the k-bump type in the variable x is still an open problem and the present work gives
a partial positive answer in that direction.

Some constants and notation. Before starting in our study we fix here some constants and notation which
will be used in the rest of the paper.

By (H1) there exist x, x ∈ [0, 1) such that

a(x) = a ≡ min
t∈R

a(t), a(x) = a ≡ max
t∈R

a(t). (1.7)

Considering if necessary a translation of the function a, we can assume that x < x.
By (H2) there exists δ ∈ (0, 1

4 ) and w > w > 0 such that

w ≥W ′′(s) ≥ w for any |s| ∈ [1 − 2δ, 1 + 2δ]. (1.8)

In particular, setting χ(s) = min{|1 − s|, |1 + s|}, we have that

if |s| ∈ [1 − 2δ, 1], then
w

2
χ(s)2 ≤W (s) ≤ w

2
χ(s)2 and |W ′(s)| ≤ wχ(s). (1.9)

Therefore there exist b, b > 0 such that

b χ(s)2 ≤W (s) and |W ′(s)| ≤ b χ(s), ∀|s| ≤ 1. (1.10)

For any δ ∈ (0, 1) we denote

ωδ = min
|s|≤1−δ

W (s) (1.11)
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and we note that ωδ > 0 for any δ ∈ (0, 1). Moreover we define the constants

m =
√

2aωδ δ and m0 = min
{

1
2
,

√
a√
a
− 1
}
m. (1.12)

Note that, since a is not constant, a > a and so m0 > 0.
Finally, for a given q ∈ L2(R) we denote ‖q‖ ≡ ‖q‖L2(R).

2. The one dimensional problem

In this section, letting aε(x) = a(εx), we focalize our study to the ODE problem associated to (1.3), namely,
{
−q̈(t) + aε(t)W ′(q(t)) = 0, t ∈ R,

limt→±∞ q(t) = ±1.
(2.1)

In particular we are interested in some variational aspects of the problem.
Let z0 ∈ C∞(R) be an increasing function such that z0(t) → ±1 as t → ±∞ and |z0(t)| = 1 for any |t| ≥ 1.

We define the class
Γ =

{
q ∈ H1

loc(R) / ‖q‖L∞(R) = 1 and q − z0 ∈ H1(R)
}
,

on which we consider the action functional

Faε(q) =
∫

R

1
2
|q̇(t)|2 + aε(t)W (q(t)) dt.

Note that the functional Faε is a continuous and in fact a Lipschitz continuous positive functional on Γ endowed
with the H1(R) metric (see Lem. 2.13 in the appendix). Note also that in fact Faε(q) is well defined with value
in [0,+∞] whenever q ∈ H1

loc(R).
For future references we introduce also the set

Γ = {q ∈ L∞(R) / ‖q‖L∞(R) = 1 and q − z0 ∈ L2(R)}

which is in fact the completion of Γ with respect to the metric

d(q1, q2) = ‖q1 − q2‖L2(R).

The main objective of this section will be to study some discreteness properties of a particular sublevel of Faε

in Γ for ε small enough.
First we remark that, due to the unboundedness of R, the sublevels of Faε in Γ are not precompact in any

sense. In fact, it is sufficient to note that given a function q ∈ Γ we have that the sequence qn(·) = q(· − n
ε ) is

such that Faε(qn) = Faε(q) for any n ∈ N and qn(t) → −1 /∈ Γ for any t ∈ R as n → ∞. Anyway, it is simple
to recognize that the sublevels of Faε are (sequentially) weakly precompact in H1

loc(R). In fact, denoting by
{Faε ≤ c} the set {q ∈ Γ |Faε(q) ≤ c} for every c > 0, the following result holds

Lemma 2.1. Let (qn) ⊂ {Faε ≤ c} for some c > 0. Then, there exists q ∈ H1
loc(R) with ‖q‖L∞(R) ≤ 1 such that,

along a subsequence, qn → q in L∞
loc(R), q̇n → q̇ weakly in L2(R) and moreover Faε(q) ≤ lim infn→∞ Faε(qn)

Proof. Let 	 = lim infn→∞ Faε(qn). Up to a subsequence, we can assume that Faε(qn) → 	 as n → ∞. Since
‖qn‖L∞(R) ≤ 1 and ‖q̇n‖ ≤ 2c, there exists q ∈ H1

loc(R) and a subsequence of (qn), denoted again (qn), such
that qn → q weakly in H1

loc(R) (and so strongly in L∞
loc(R)) and such that q̇n → q̇ weakly in L2(R). Then,

‖q‖L∞(R) ≤ 1. By weak semicontinuity of the norm, we obtain ‖q̇‖ ≤ lim infn→∞ ‖q̇n‖ and by the pointwise
convergence and the Fatou Lemma, we get

∫
R
aεW (q) dt ≤ lim infn→∞

∫
R
aεW (q) dt. �
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The autonomous problem

Given a positive continuous function β, we denote Fβ(q) =
∫

R

1
2 |q̇|2 + β(t)W (q) dt. Moreover, if I is an

interval in R we set Fβ,I(q) =
∫
I

1
2 |q̇|2 + β(t)W (q) dt.

It will be useful to recall some properties of the functional Fβ when β is a given positive constant. First,
setting

cb = inf
Γ
Fb,

using standard argument (see e.g. [3]), it can be proved that if Q ∈ Γ is such that Fb(Q) = cb, then it is a
classical solution to the autonomous problem

{
−q̈(t) + bW ′(q(t)) = 0, t ∈ R

limt→±∞ q(t) = ±1.
(Pb)

Moreover we have

Lemma 2.2. For every b > 0 the problem (Pb) admits a unique solution in Γ, modulo time translation. Such
solution is increasing, is a minimum of Fb on Γ and cb =

√
bc1.

Proof. It is standard to show that (Pb) admits a solutionQ ∈ Γ which is a minimum on Γ of the functional Fb. To
show that Q is increasing we argue by contradiction assuming that there exist σ < τ ∈ R such that Q(σ) = Q(τ).
Then the function

q̂(t) =

{
Q(t) if t ≤ σ,

Q(t+ τ − σ) if t > σ,

belongs to Γ and moreover cb ≤ Fb(q̂) = Fb(Q) − ∫ τ
σ

1
2 |Q̇|2 + bW (Q) dt. Then

∫ τ
σ

1
2 |Q̇|2 + bW (Q) dt = 0 and

we deduce that Q is constantly equal to 1 or −1 on the interval (σ, τ), a contradiction since Q solves (Pb).
Note now that since the problem (Pb) is invariant by time translations, all the functions Q(· − τ), τ ∈ R, are
classical solutions to (Pb) and in fact, it is a simple consequence of the maximum principle that all the solutions
to (Pb) which are in Γ belong to this family. Indeed, let q̄ ∈ Γ be a solution of (Pb) and t0 ∈ R be such that
q̄(t) < −1 + 2δ for any t < t0 and q̄(t0) = −1 + 2δ. Let moreover τ0 ∈ R be such that Q(t0 − τ0) + 1 = 2δ and
set h(t) = (q̄(t) −Q(t− τ0))2. We have

ḧ(t) = 2(¨̄q(t) − Q̈(t− τ0))(q̄(t) −Q(t− τ0)) + 2|ḣ(t)|2 ≥ 2b(W ′(q̄(t)) −W ′(Q(t− τ0)))(q̄(t) −Q(t− τ0)),

and since, by (1.8), there results (W ′(s1) −W ′(s2))(s1 − s2) ≥ w(s1 − s2)2 for any s1, s2 ∈ [−1 − 2δ,−1 + 2δ],
we conclude that

ḧ(t) ≥ 2bw h(t) ∀t ≤ τ.

Since h(t0) = 0 and limt→−∞ h(t) = 0, by the maximum principle we conclude that h(t) = 0 for any t ≤ t0 and
so, by uniqueness of the solution of the Cauchy problem, that q̄(t) ≡ Q(t− τ0) for any t ∈ R.

Let now b 
= d > 0. Setting q(t) = Q(
√

d
b t) we have

q̈(t) =
d

b
Q̈

(√
d

b
t

)
= dW ′

(
Q

(√
d

b
t

))
= dW ′(q(t)),
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i.e., q is a solution of problem (Pd). Since, as we have proved, all the solutions of (Pd) in Γ are minima of Fd
on Γ, we have Fd(q) = cd. Therefore

cd =
∫

R

1
2
|q̇(t)|2 + dW (q(t)) dt

=
1
2
d

b

∫
R

∣∣∣∣∣Q̇
(√

d

b
t

)∣∣∣∣∣
2

dt+ d

∫
R

W

(
Q

(√
d

b
t

))
dt =

1
2

√
d

b

∫
R

|Q̇(s)|2 ds+
√
bd

∫
R

W (Q(s)) ds

=

√
d

b

(
1
2

∫
R

|Q̇(s)|2 ds+ b

∫
R

W (Q(s)) ds
)

=

√
d

b
Fb(Q) =

√
d

b
cb.

In particular we obtain cb =
√
b c1 for any b > 0. �

In the following, we will denote by qb the unique solution to (Pb) in Γ which verifies qb(0) = 0.

Remark 2.1. Since the equation −q̈(t) + bW ′(q(t)) = 0 is reversible, the results concerning (Pb) reflect on the
symmetric problem {

−q̈(t) + bW ′(q(t)) = 0, x ∈ R

limt→±∞ q(t) = ∓1.
(P̃b)

In fact, the problem (P̃b) has only one solution in Γ̃ = {q ∈ H1
loc(R) | q(−t) ∈ Γ}, modulo time translations, and

if we denote by q̃b the solution which verifies q̃b(0) = 0, we have q̃b(t) = qb(−t) for all t ∈ R. Moreover we have
Fb(q̃b) = inf Γ̃ Fb = cb.

The constants ρ0, δ0, ε0 and c∗

Here below we display some estimates concerning the functionals Fb with b ∈ [a, a], the range of the func-
tion aε, and fix some constants which will remain unchanged along the paper. In particular, note that the
functionals Fa and Fa bound respectively from below and above the functional Faε for any ε > 0.

The basic remark is that for any δ ∈ (0, 1), if q ∈ Γ is such that |q(t)| ≤ 1 − δ for any t ∈ (σ, τ) ⊂ R, then
by (1.11)

Fa,(σ,τ)(q) ≥ 1
2(τ − σ)

|q(τ) − q(σ)|2 + aωδ(τ − σ) ≥
√

2aωδ |q(τ) − q(σ)|. (2.2)

As direct consequence, recalling the definition of δ in (1.8) and the ones of m and m0 given in (1.12), we
recover that if q ∈ Γ is such that |q(t)| ≤ 1 − δ for any t ∈ (σ, τ) and |q(τ) − q(σ)| = δ then, by (2.2),
Fa,(σ,τ)(q) ≥ m ≥ 2m0. Hence, since δ ≤ 1

4 , we recognize that Fa(q) ≥ 6m for any q ∈ Γ. Then ca > 6m, and,
by Lemma 2.2 and the definition of m0 in (1.12), we obtain

ca − ca =
(√

a√
a
− 1
)
ca ≥ 6

(√
a√
a
− 1
)
m ≥ 6m0.

By the previous estimate, since by Lemma 2.2 the function b→ cb is continuous on [a, a], we can fix α < α ∈ (a, a)
and ρ0 > 0 such that

cα − ca ≤ m0

6
and cα − ca ≥ 3m0, (2.3)

a(x+ t) ≤ α and a(x+ t) ≥ α , ∀ |t| ≤ 2ρ0. (2.4)

Given δ ∈ [0, 1), assume that a function q ∈ H1
loc(R) verifies q(σ) = (−1)l(1 − δ) and q(τ) = (−1)l+1(1 − δ)

for certain σ < τ ∈ R, l ∈ N. If δ > 0, one easily guess that Fb,(σ,τ)(q) ≥ cb − oδ with oδ → 0 as δ → 0. The
following lemma fix a δ0 > 0 in such a way the oδ0 is comparable with the constant m0 fixed in (1.12) for any
b ∈ [a, a].
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Lemma 2.3. There exists δ0 ∈ (0, δ) such that if q ∈ Γ verifies q(σ) = (−1)l(1− δ0) and q(τ) = (−1)l+1(1− δ0)
for some σ < τ ∈ R, l ∈ N, then

Fb,(σ,τ)(q) ≥ cb − m0

8
, ∀b ∈ [a, a].

Proof. Let δ0 ∈ (0, δ) such that λδ0 ≡ (1 + aw
3 ) δ0

2

2 < m0
16 . We define

q̂(t) =




(−1)l if t ≤ σ − 1,
q(σ)(t − σ + 1) + (−1)l(t− σ) if σ − 1 ≤ t ≤ σ,

q(t) if σ < t < τ ,
q(τ)(τ + 1 − t) + (−1)l+1(t− τ) if τ ≤ t ≤ τ + 1,
(−1)l+1 if t ≥ τ + 1,

observing that q̂ ∈ Γ ∪ Γ̃ and so that

cb ≤ Fb(q̂) = Fb,(σ−1,σ)(q̂) + Fb,(σ,τ)(q) + Fb,(τ,τ+1)(q̂). (2.5)

Now, let us note that since q(τ) = (−1)l+1(1 − δ0), then |(−1)l+1 − q̂(t)| = δ0(1 − (t − τ)) ≤ δ0 ≤ δ for any
t ∈ (τ, τ + 1) and by (1.8) we obtain

Fb,(τ,τ+1)(q̂) =
δ0

2

2
+
∫ τ+1

τ

bW (q̂) dt ≤ δ0
2

2
+
b wδ0

2

2

∫ τ+1

τ

(1 − (t− τ))2 dt

=
δ0

2

2
+
b wδ0

2

6
≤ λδ0 . (2.6)

Similar estimates allow us to conclude that also Fb,(σ−1,σ)(q̂) ≤ λδ0 and by (2.5) the lemma follows. �

In relation with ρ0 and δ0 we set

ε0 =
1
2
ρ0 min

{
1,

a

2ca
ωδ0

}
. (2.7)

Remark 2.2. Note that, by (2.2) and (2.7), if q ∈ Γ is such that |q(t)| < 1 − δ0 for every t ∈ I, where I is an
interval with length |I| ≥ ρ0

ε0
, then

Fa,I(q) =
∫
I

1
2
|q̇|2 + aW (q) dt ≥ aωδ0 |I| ≥ 4ca.

The properties and the constants fixed above exhaust the preliminaries we need to tackle the principal object
of the study of this section. In the sequel we will denote

c∗ = 3ca +m0. (2.8)

The set {Faε ≤ c∗}: concentration and local compactness properties

Our goal now is to characterize some discreteness properties of the sublevel {Faε ≤ c∗} which will be basic
in the proof of the existence of two dimensional solutions of (1.3) in the next section.

As useful tool to study this problem we first introduce the function nt : Γ → N, which counts the number of
transitions of a function q ∈ Γ between the values −1 + δ0 and 1 − δ0.
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Given q ∈ Γ, let us consider the set

Dδ0,q = {t ∈ R | |q(t)| < 1 − δ0},

the set of times in which q(t) has distance from the equilibria ±1 greater than δ0. The set Dδ0,q is an open
subset of R and so it is the disjoint union of open intervals which we denote by (si,q, ti,q), i ∈ I. We note that,
by (2.2), Fa(q) ≥

∑
i∈I
∫ ti,q

si,q

1
2 |q̇|2 + aW (q) dx ≥∑i∈I aωδ0(ti,q − si,q) = aωδ0 |Dδ0,q|, and so

|Dδ0,q| ≤
1

aωδ0
Fa(q) ∀q ∈ Γ. (2.9)

Now, for any i ∈ I, we have |q(si,q)| = |q(ti,q)| = 1 − δ0 and then we define

nt(q, (si,q, ti,q)) =

{
1 if q(si,q) 
= q(ti,q),
0 otherwise.

Moreover, given any interval A ⊂ R we set

nt(q, A) =
∑

i∈I | (si,q,ti,q)⊂A
nt(q, (si,q, ti,q)).

and finally nt(q) = nt(q,R).
The function nt counts the number of transitions of the function q between the values −1 + δ0 and 1− δ0. If

q ∈ Γ we always have that nt(q) is an odd number and the space Γ splits in the countable union of the disjoint
classes:

Γk = {q ∈ Γ | nt(q) = k}, k = 2n+ 1, n ∈ N.

If q ∈ Γk, by definition, there exist {i1, . . . , ik} ⊂ I such that

nt(q, (si,q , ti,q)) =

{
1 if i ∈ {i1, . . . , ik},
0 otherwise.

We can assume that for any l ∈ {1, . . . , k−1} the interval (sil,q, til,q) is on the left of the interval (sil+1,q, til+1,q)
and we set

(σl,q, τl,q) = (sil,q, til,q), l = 1, . . . , k.

With this position we have that for any l ∈ {1, . . . , k},

q(σl,q) = (−1)l(1 − δ0) and q(τl,q) = (−1)l+1(1 − δ0).

Fixed any ε ∈ (0, ε0) and given j ∈ Z, we define the intervals

Aj =
(
j + x

ε
,
j + 1 + x

ε

)
, Oj =

(
j + x− ρ0

ε
,
j + x+ ρ0

ε

)
(2.10)

where x is a maximum for a as defined in (1.7) and ρ0 is defined by (2.4). Note that, if i 
= j then Ai ∩Aj = ∅
and R = ∪i∈ZĀj , where Āj denotes the closure of Aj . Moreover for any j ∈ Z, the intervals Oj and Oj+1 are
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centered respectively on the left and on the right extreme of Aj and, by (2.4), we have

if sup
s∈Oj

|t− s| ≤ ρ0

ε
then aε(t) ≥ α. (2.11)

Note finally that |Aj | = 1
ε and |Oj | = 2ρ0

ε for any j ∈ Z.
We can now describe simple concentration properties of the functions in {Faε ≤ c∗}. Firstly we show that

if q ∈ {Faε ≤ c∗} then nt(q) ≤ 3, in other words q makes at most three transitions between the values −1 + δ0
and 1 − δ0.

Lemma 2.4. If q ∈ Γ and Faε(q) ≤ c∗ then nt(q) ≤ 3.

Proof. We simply observe that if nt(q) = k > 3 then by Lemma 2.3 we have

Faε(q) >
4∑
l=1

Fa, (σl,q ,τl,q)(q) ≥ 4ca − m0

2
,

which contradicts the assumption Faε(q) ≤ c∗ since by definition c∗ = 3ca +m0 and, as we know, ca > 6m ≥
12m0. �

Now, given q ∈ {Faε ≤ c∗} with nt(q) = 3, we show that the intervals of transition (σl,q , τl,q) can not intersect
the set ∪j∈ZOj and outside of these intervals q is nearby ±1 for less than 2δ.

Lemma 2.5. If q ∈ Γ is such that Faε(q) ≤ c∗ and nt(q) = 3 then

(i) |q(t)| > 1 − 2δ for all t ∈ R \ (∪3
l=1(σl,q, τl,q)).

(ii) (σl,q, τl,q) ∩ (∪j∈ZOj) = ∅, for all l ∈ {1, 2, 3}.
Proof. To prove (i), let q ∈ Γ be such that nt(q) = 3 and assume by contradiction that there exists t0 ∈
R \ (∪3

l=1(σl,q , τl,q)) for which |q(t0)| ≤ 1 − 2δ. Since δ0 < δ we have |q(σl,q)| > 1 − δ and |q(τl,q)| > 1 − δ
for l = 1, 2, 3. Then, by the intermediate values Theorem, there exists (σ, τ) ⊂ R \ (∪3

l=1(σl,q , τl,q)) such that
|q(t)| ≤ 1 − δ for any t ∈ (σ, τ) and |q(τ) − q(σ)| = δ. Then by (2.2) we have Fa,(σ,τ)(q) ≥ 2m0 and so using
Lemma 2.3 and (2.8) we obtain

Faε(q) ≥
3∑
l=1

Fa,(σl,q,τl,q)(q) + Fa,(σ,τ)(q) ≥ 3ca − 3m0

8
+ 2m0 > c∗,

a contradiction which proves (i).
To prove (ii), first we note that

τl,q − σl,q ≤ ρ0

ε0
, ∀l ∈ {1, 2, 3}. (2.12)

Otherwise, by Remark 2.2 there exists l ∈ {1, 2, 3} such that Faε(q) ≥ Fa,(σl,q,τl,q)(q) ≥ 4ca > c∗. By (2.12)
and (2.11), if there exists l ∈ {1, 2, 3} such that (σl,q, τl,q) ∩ (∪j∈ZOj) 
= ∅, we then have that aε(t) ≥ α for any
t ∈ (σl,q, τl,q). Therefore, by Lemma 2.3

Faε,(σl,q,τl,q)(q) ≥ Fα,(σl,q,τl,q)(q) ≥ cα − m0

8
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and so, again by Lemma 2.3,

Faε(q) ≥ Fα,(σl,q,τl,q)(q) +
∑
l �=l

Fa,(σl,q,τl,q)(q) ≥ cα − m0

8
+
(
2ca − m0

4

)
·

By (2.8), since by (2.3) we have cα − ca ≥ 3m0, this contradicts the assumption Faε(q) ≤ c∗. �
These concentration properties allow us to start in discretizing the set {Faε ≤ c∗} ∩ {nt = 3}. We let

P = {p = (p1, p2, p3) ∈ Z
3 | p1 < p2 < p3} and for p ∈ P we define

Γ3,p = {q ∈ {Faε ≤ c∗} | nt(q) = 3, (σl,q , τl,q) ⊂ Apl
, l = 1, 2, 3}.

We study here below the existence, for all p ∈ P , of solutions to the problem (2.1) belonging to the set Γ3,p. In
fact, setting c3,p = inf{Faε(q) | q ∈ Γ3,p}, we will prove that for any p ∈ P the set

K3,p = {q ∈ Γ3,p |Faε(q) = c3,p}

is not empty, compact, with respect to the H1(R) metric, and consists of solutions of (2.1). The following
preliminary result shows in particular that Γ3,p is not empty for any p ∈ P .

Lemma 2.6. c3,p ≤ c∗ − m0
8 for any p ∈ P.

Proof. Let us consider the above defined function qα, solution to the problems (Pα) with qα(0) = 0. Since qα is
increasing and qα(0) = 0 we have that there exist σ < 0 < τ such that Dδ0,qα = (σ, τ). Moreover, since by (2.3)
we have Fa(qα) ≤ Fα(qα) = cα < 2ca, by Remark 2.2 we obtain

τ − σ <
ρ0

ε0
· (2.13)

We define the function

Q(t) =




−1 if t ≤ σ − 1,
qα(σ)(t − σ + 1) + (t− σ) if σ − 1 < t ≤ σ,

qα(t) if σ < t < τ,

qα(τ)(τ + 1 − t) + (t− τ) if τ ≤ t < τ + 1,
1 if t ≥ τ + 1,

noting that, arguing as in the proof of Lemma 2.3,

Fα(Q) = Fα,(σ−1,σ)(Q) + Fα,(σ,τ)(qα) + Fα,(τ,τ+1)(Q) ≤ cα +
m0

8
·

Letting p = (p1, p2, p3) ∈ P we set

Qp1(t) = Q

(
t− p1 + x

ε

)
, Qp2(t) = Q

(
−t+

p2 + x

ε

)
and Qp3(t) = Q

(
t− p3 + x

ε

)
·

Since Fα is invariant by time translation and reflection, we have

Fα(Qpj ) = Fα(Q) ≤ cα +
m0

8
j = 1, 2, 3. (2.14)

We note also that, by (2.13) and (2.4), if |Qpj (t)| 
= 1 then t ∈ Apj and aε(t) ≤ α (j = 1, 2, 3). Therefore,
by (2.14), we obtain

Faε,Apj
(Qpj ) = Faε(Qpj ) ≤ Fα(Qpj ) ≤ cα +

m0

8
, j = 1, 2, 3. (2.15)
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We finally consider the function Q3,p ∈ Γ defined as follows: |Q3,p(t)| = 1 if t ∈ R \ (∪3
j=1Apj ) and

Q3,p(t) =



Qp1(t) if t ∈ Ap1 ,

Qp2(t) if t ∈ Ap2 ,

Qp3(t) if t ∈ Ap3 .

Then by (2.8), (2.15) and (2.3) we have

Faε(Q3,p) =
3∑
j=1

Faε,Apj
(Qpj ) ≤ 3cα +

3m0

8
= c∗ + (3(cα − ca) +

3m0

8
−m0) < c∗ − m0

8
,

and the lemma follows. �

We now show that the sets Γ3,p are sequentially compact with respect to the weak topology in H1
loc(R).

Lemma 2.7. If p ∈ P and (qn) ⊂ Γ3,p then there exists q ∈ Γ3,p such that, along a subsequence, qn → q
in L∞

loc(R) and q̇n → q̇ weakly in L2(R).

Proof. Let p = (p1, p2, p3) ∈ P and (qn) ⊂ Γ3,p. Since Faε(qn) ≤ c∗ for any n ∈ N, by Lemma 2.1 there exists
q ∈ H1

loc(R) with ‖q‖L∞ ≤ 1 and Faε(q) ≤ c∗ such that, along a subsequence, still denoted (qn), we have qn → q
in L∞

loc(R) and q̇n → q̇ weakly in L2(R).
Since Faε(q) < +∞, by (2.2), one plainly obtains that |q(t)| → 1 as t → ±∞. To show that q(t) → ±1 as

t → ±∞ and so that q ∈ Γ, note that by Lemma 2.5 we have that for any n ∈ N, if t ∈ R \ (∪3
l=1Apl

) then
|qn(t)| ≥ 1 − 2δ. Hence by pointwise convergence we obtain that

q(t) ≤ −1 + 2δ if t ≤ p1 − 1 + x

ε
and q(t) ≥ 1 − 2δ if t ≥ p3 + 1 + x

ε
,

and so that q(t) → ±1 as t→ ±∞.
To show that q ∈ Γ3,p note that, by Lemma 2.5 we have (σl,qn , τl,qn) ⊂ Apl

\ (Opl
∪Opl+1) for any l ∈ {1, 2, 3}

and n ∈ N. Then, for any l ∈ {1, 2, 3} there exists σl < τl ∈ Apl
\ (Opl

∪Opl+1) such that, up to a subsequence,
τl,qn → τl, σl,qn → σl as n→ +∞ and, by L∞

loc convergence,

q(σl) = (−1)l(1 − δ0) and q(τl) = (−1)l+1(1 − δ0).

Hence nt(q, Apl
) ≥ 1 for any l ∈ {1, 2, 3} and since Faε(q) ≤ c∗, by Lemma 2.4, we can conclude that nt(q) = 3.

Then, q ∈ Γ3,p and the lemma is proved. �

Thanks to Lemmas 2.1 and 2.7 it is now possible to apply the direct method of the Calculus of Variations to
show that the set K3,p is not empty for any p ∈ P .

Proposition 2.1. For every ε ∈ (0, ε0) and p ∈ P we have K3,p 
= ∅. Moreover, if q ∈ K3,p then q ∈ C2(R) and
it is a classical solution to (2.1).

Proof. Let p = (p1, p2, p3) ∈ P and (qn) ⊂ Γ3,p be such that Faε(qn) → c3,p as n → +∞. By Lemmas 2.1
and 2.7 we obtain that (qn) converges along a subsequence, in the specified way, to a function q ∈ Γ3,p with
Faε(q) ≤ c3,p. Then q ∈ Γ3,p and Faε(q) = c3,p, i.e., q ∈ K3,p.

To complete the proof we have to show that if q ∈ K3,p then q ∈ C2(R) and it is a classical solution to (2.1).
To this aim we firstly note that for any l ∈ {1, 2, 3}, there exist sl ∈ Apl

∩ Opl
and tl ∈ Apl

∩ Opl+1 such that
|q(sl)| > 1 − δ0 and |q(tl)| > 1 − δ0.
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Indeed, otherwise, there exists l ∈ {1, 2, 3} for which |q(t)| ≤ 1 − δ0 for any t ∈ Apl
∩ Opl

or for any
t ∈ Apl

∩ Opl+1. Then, since |Apl
∩ Opl

| = |Apl
∩ Opl+1| = ρ0

ε0
, by Remark 2.2 we have in both the cases that

Faε,Ap
l
(q) ≥ 2ca and so, by Lemma 2.3 and (2.8),

Faε(q) ≥ Faε,Ap
l
(q) +

∑
l �=l

Faε,Apl
(q) ≥ 2ca +

(
2ca − m0

4

)
> c∗.

Now, let δ̃ = maxl=1,2,3{1− |q(sl)|, 1− |q(tl)|} and note that δ0 > δ̃. Given ϕ ∈ C∞
0 (R) with ‖ϕ‖L∞(R) < δ0 − δ̃,

let ψ = q+ϕ and consider ψ̂(t) = min{max{ψ(t),−1}, 1} noting that Faε(ψ) ≥ Faε(ψ̂). If Faε(ψ̂) > c∗ we have

Faε(ψ) ≥ Faε(ψ̂) > c∗ ≥ c3,p = Faε(q). (2.16)

If otherwise Faε(ψ̂) ≤ c∗ we claim that ψ̂ ∈ Γ3,p and so that

Faε(ψ) ≥ Faε(ψ̂) ≥ c3,p = Faε(q). (2.17)

To show that ψ̂ ∈ Γ3,p, first note that since ψ̂ ∈ Γ and Faε(ψ̂) ≤ c∗, by Lemma 2.4 we have that nt(ψ̂) ≤ 3.
Moreover, note that

|q(sl) − (−1)l| < δ̃ and |q(tl) − (−1)l+1| < δ̃, ∀ l ∈ {1, 2, 3}

and since ‖q − ψ̂‖L∞(R) ≤ ‖ϕ‖L∞(R) < δ0 − δ̃, we obtain that

|ψ̂(sl) − (−1)l| < δ0 and |ψ̂(tl) − (−1)l+1| < δ0, ∀ l ∈ {1, 2, 3}

from which we deduce that nt(ψ̂, Apl
) ≥ 1 for any l ∈ {1, 2, 3}. Therefore ψ̂ ∈ Γ3,p as we claimed.

By (2.16) and (2.17) we conclude that

Faε(q) ≤ Faε(q + ϕ), ∀ϕ ∈ C∞
c (R) with ‖ϕ‖L∞(R) < δ0 − δ̃.

Then q is a weak solution to −q̈+aε(t)W ′(q) = 0 on R and, by standard bootstrap arguments, a classical C2(R)
solution to (2.1). �

The next lemma shows in particular that the sets K3,p, p ∈ P , are sequentially compact with respect to the
H1(R) metric.

Lemma 2.8. If (qn) ⊂ Γ3,p is such that Faε(qn) → c3,p then there exists q ∈ K3,p such that along a subsequence
‖qn − q‖H1(R) → 0 as n→ ∞.

Proof. As in the proof of Proposition 2.1 we obtain that there exists q ∈ K3,p and a subsequence of (qn), still
denoted (qn), such that qn → q in L∞

loc(R) and q̇n → q̇ weakly in L2(R). Note that since
∫

R
aεW (q) dt ≤

lim infn→∞
∫

R
aεW (qn) dt and since Faε(qn) → Faε(q), we have

lim sup
n→∞

‖q̇n‖2 = 2 lim
n→∞Faε(qn) − 2 lim inf

n→∞

∫
R

aεW (qn) dt

≤ 2Faε(q) − 2
∫

R

aεW (q) dt = ‖q̇‖2 ≤ lim inf
n→∞ ‖q̇n‖2.

Therefore ‖q̇n‖ → ‖q̇‖ as n→ ∞ and so ‖q̇n − q̇‖ → 0.
To show that ‖qn− q‖ → 0 as n→ ∞, note that since ‖q̇n‖ → ‖q̇‖ and Faε(qn) → Faε(q) as n→ ∞ we have∫

R
aεW (qn) dt→ ∫

R
aεW (q) dt as n→ ∞. Moreover, since by L∞

loc convergence we have that
∫ T
−T aεW (qn) dt →
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∫ T
−T aεW (q) dt for any T > 0 we obtain that

∫
|t|>T aεW (qn) dt → ∫

|t|>T aεW (q) dt for any T > 0. We deduce
that for any η > 0 there exists T > 0 and n̄ ∈ N such that

∫
|t|>T aεW (q) dt < η and

∫
|t|>T aεW (qn) dt < η for

any n ≥ n̄. Hence, since by Lemma 2.5, there exists T0 > 0 such that |q(t)| ≥ 1 − 2δ and |qn(t)| ≥ 1 − 2δ for
any |t| ≥ T0 and n ∈ N, using (1.9) we conclude that for any η > 0 there exists T ≥ T0 and n̄ ∈ N such that for
any n ≥ n̄ we have∫

|t|>T
|qn − q|2 ≤ 2

(∫
t<−T

(qn + 1)2 + (q + 1)2 dt+
∫
t>T

(qn − 1)2 + (q − 1)2 dt
)

= 2
(∫

t<−T
χ(qn)2 + χ(q)2 dt+

∫
t>T

χ(qn)2 + χ(q)2 dt
)

= 2
∫
|t|>T

χ(qn)2 + χ(q)2 dt ≤ 2
w a

∫
|t|>T

aεW (qn) + aεW (q) dt ≤ 4η
w a

·

Therefore ‖qn − q‖ → 0 as n → ∞ follows since, by L∞
loc convergence, we have

∫
|t|≤T |qn − q|2 dt → 0 as

n→ ∞. �
Note that by Lemma 2.8, using a direct contradiction argument, we obtain that for any r > 0 there exists

νr > 0 such that
if q ∈ Γ3,p and inf

q̄∈K3,p

‖q − q̄‖H1(R) ≥ r then F (q) ≥ c3,p + νr. (2.18)

The set {Faε ≤ c∗}: discreteness properties

We end the section characterizing some metric properties of the sets Γ3,p as subsets of the metric space Γ.
All these properties will be used in the next section to prove the existence of two dimensional solutions to (1.3).

Given two subsets U1 and U2 of Γ, with abuse of notation we set

d(U1,U2) = inf
q1∈U1, q2∈U2

‖q1 − q2‖ and diam(U1) = sup
q1,q2∈U1

‖q1 − q2‖.

For p ∈ P and i ∈ {1, ..., 4} we set

Bi(p) =
(
pi−1 + 1 + x

ε
,
pi + x

ε

)
with the agreement that p0 = −∞ and p4 = +∞. Note that R = (∪4

i=1Bi(p)) ∪ (∪3
l=1Āpl

) and that Bi(p) ∩
(∪3
l=1Āpl

) = ∅ for all i ∈ {1, ..., 4}. Moreover, it is a direct consequence of Lemma 2.5 that for any q ∈ Γ3,p we
have

|q(t) − (−1)i| ≤ 2δ for any t ∈ Bi(p), i ∈ {1, . . . , 4}. (2.19)
Next Lemma shows that diam(Γ3,p) is uniformly bounded with respect to p ∈ P .

Lemma 2.9. There exists D ∈ R such that diam(Γ3,p) ≤ D for all p ∈ P.

Proof. Let p ∈ P and q1, q2 ∈ Γ3,p. Then

‖q1 − q2‖2 =
3∑
i=1

∫
Api

|q1 − q2|2 dx+
4∑
ι=1

∫
Bι(p)

|q1 − q2|2 dx.

We clearly have
∫
Api

|q1 − q2|2 dx ≤ 4|A0|. Moreover, by (2.19) and (1.9) we have that for any t ∈ Bι(p) and
1 ≤ ι ≤ 4

|q1 − q2|2 ≤ 2(|q1 − (−1)ι|2 + |q2 − (−1)ι|2) = 2(χ(q1)2 + χ(q2)2) ≤ 4aε
w a

(W (q1) +W (q2)).
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Therefore
4∑
ι=1

∫
Bι(p)

|q1 − q2|2 dt ≤ 4
w a

4∑
ι=1

∫
Bι(p)

aε(W (q1) +W (q2)) dt ≤ 8c∗

w a

and the lemma follows. �

In the next lemma we show that the sets Γ3,p, p ∈ P , are well separated in Γ.

Lemma 2.10. If p, p̄ ∈ P and p 
= p̄ then d(Γ3,p,Γ3,p̄) ≥ (2ρ0
ε )1/2.

Proof. Let p 
= p̄ ∈ P , q ∈ Γ3,p and q̄ ∈ Γ3,p̄. We set

k = min{l ∈ {1, 2, 3} / pl 
= p̄l}.

Assume that pk < p̄k (the other case can be handled in the same way). Then, by Lemma 2.5, we have
|q(t) − (−1)k+1| ≤ 2δ and |q̄(t) − (−1)k| ≤ 2δ for any t ∈ Opk+1. Since δ < 1

4 , we have |q(t) − q̄(t)| ≥ 1 for
all t ∈ Opk+1. Then ‖q − q̄‖2

L2(Opk+1)
≥ |Opk+1| = 2ρ0

ε from which, since q and q̄ are arbitrary, the lemma
follows. �

We remark that for any p ∈ P we have

min{|B2(p)|, |B3(p)|} =
1
ε

max{([p] − 2), 0} (2.20)

where [p] ≡ min{p2 − p1, p3 − p2}. Next lemma shows that any bounded set in Γ can intersect at most a finite
number of Γ3,p, p ∈ P .

Lemma 2.11. For any p̄ ∈ P we have d(Γ3,p,Γ3,p̄) → +∞ whenever [p] → ∞ or p3 → −∞ or p1 → +∞.

Proof. Let p, p̄ ∈ P , q ∈ Γ3,p, q̄ ∈ Γ3,p̄ and, for 1 ≤ ι ≤ 4 denote Bι ≡ Bι(p), B̄ι ≡ Bι(p̄). Clearly

‖q − q̄‖2 ≥
∫
B2(p)

|q − q̄|2 dt+
∫
B3(p)

|q − q̄|2 dt.

Since δ ≤ 1
4 , by (2.19) we have |q(t) − q̄(t)| ≥ 1 whenever t ∈ B2 ∩ (B̄1 ∪ B̄3) or t ∈ B3 ∩ (B̄2 ∪ B̄4). Then

‖q − q̄‖2 ≥ |B2 ∩ B̄1| + |B2 ∩ B̄3| + |B3 ∩ B̄2| + |B2 ∩ B̄4|.

Since B2 = (∪3
i=1B2 ∩Ap̄i) ∪ (∪4

i=1B2 ∩ B̄i) we have |B2| ≤ 3
ε +

∑4
ι=1 |B2 ∩ B̄ι| and then

|B2 ∩ B̄1| + |B2 ∩ B̄3| ≥ |B2| − |B̄2| − |B2 ∩ B̄4| − 3
ε
·

Analogously

|B3 ∩ B̄2| + |B3 ∩ B̄4| ≥ |B3| − |B̄3| − |B3 ∩ B̄1| − 3
ε
·

Then, noting that min{|B2 ∩ B̄4|, |B3 ∩ B̄1|} = 0, we obtain

‖q − q̄‖2 ≥ max{|B2| − |B̄2| − |B2 ∩ B̄4|, |B3| − |B̄3| − |B3 ∩ B̄1|} − 3
ε

≥ min{|B2| − |B̄2|, |B3| − |B̄3|} − 3
ε

≥ min{|B2|, |B3|} − max{|B̄2|, |B̄3|} − 3
ε
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and by (2.20), we conclude

‖q − q̄‖2 ≥ 1
ε
([p] − 2) − max{|B̄2|, |B̄3|} − 3

ε
,

from which we obtain that lim[p]→∞ d(Γ3,p,Γ3,p̄) = +∞.
One analogously argues in the cases p3 → −∞ and p1 → +∞ and the lemma follows. �

Finally we let

Λ = {Faε ≤ c∗} \ (∪p∈PΓ3,p)

and we show that Λ has positive distance in Γ from the set ∪p∈PΓ3,p.

Lemma 2.12. We have d(Γ3,p,Λ) ≥ ( 5m
aωδ0

)1/2 for any p ∈ P and moreover

d(Γ3,p,Λ) → +∞ as [p] → +∞.

Proof. Let p ∈ P , q ∈ Γ3,p and q̄ ∈ Λ. For 1 ≤ ι ≤ 4, we denote Bι = Bι(p).
We note that the set Λ can be written as the disjoint union of the two subset

Λ1 = {q ∈ Γ / Faε(q) ≤ c∗ and nt(q) = 1},

Λ2 = {q ∈ Γ / Faε(q) ≤ c∗, nt(q) = 3 and ∃j ∈ Z such that nt(q, Aj) ≥ 2}
and in the following we will separately consider the two cases q̄ ∈ Λ1 and q̄ ∈ Λ2.

If q̄ ∈ Λ1 then there exists I− ≺ (σ, τ) ≺ I+ (E1 ≺ E2 if t ∈ E1 and s ∈ E2 implies t < s) such that
q̄(σ) = −1 + δ0, q̄(τ) = 1 − δ0 and Dδ0,q̄ = I− ∪ (σ, τ) ∪ I+. Note that, by (2.9) and since ca ≥ 6m, we have

|Dδ0,q̄| ≤
c∗

aωδ0
=

3ca +m0

aωδ0
≤ 4ca
aωδ0

− 5m
aωδ0

≤ ρ0

ε0
− 5m
aωδ0

· (2.21)

Setting B̄− = (−∞, σ) \ I−, B̄+ = (τ,+∞) \ I+ we have q̄(t) ≤ −1 + δ0 for any t ∈ B̄−, q̄(t) ≥ 1 − δ0 for any
t ∈ B̄+.

Since q ∈ Γ3,p by Lemma 2.5 we have that q(t) ≤ −1 + 2δ for any t ∈ Ap1 ∩ Op1 and q(t) ≥ 1 − 2δ for any
t ∈ Ap1 ∩Op1+1. Therefore |q(t)− q̄(t)| ≥ 1 for any t ∈ Ap1 ∩Op1 ∩ B̄+ and for any t ∈ Ap1 ∩Op1+1∩ B̄−. Hence

‖q − q̄‖2 ≥ |Ap1 ∩Op1 ∩ B̄+| + |Ap1 ∩Op1+1 ∩ B̄−|
= |(Ap1 ∩Op1) \ (I+ ∪ (−∞, τ))| + |(Ap1 ∩Op1+1) \ (I− ∪ (σ,+∞))|

and since

min{|(Ap1 ∩Op1) \ (I+ ∪ (−∞, τ))|, |(Ap1 ∩Op1+1) \ (I− ∪ (σ,+∞))|}
≥ min{|(Ap1 ∩Op1) \ I+|, |(Ap1 ∩Op1+1) \ I−|} − |(σ, τ)|
≥ min{|Ap1 ∩Op1 |, |Ap1 ∩Op1+1)|} − max{|I+|, |I−|} − |(σ, τ)| ≥ ρ0

ε
− |Dδ0,q̄|

by (2.21) we conclude that ‖q−q̄‖2 ≥ 5m
aωδ0

, from which, since q and q̄ are arbitrary, we deduce that d(Γ3,p,Λ1)2 ≥
5m
aωδ0

·
Let us show now that if [p] → ∞ then d(Γ3,p,Λ1) → +∞. Since q ∈ Γ3,p we have q(t) ≥ 1 − 2δ for any

t ∈ B2, q(t) ≤ −1 + 2δ for any t ∈ B3 and since δ0 ≤ δ ≤ 1
4 there results |q(t) − q̄(t)| ≥ 1 for any t ∈ B3 ∩ B̄+
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and for any t ∈ B2 ∩ B̄−. Hence

‖q − q̄‖2 ≥
∫
B2∩B̄−

|q − q̄|2 dx+
∫
B3∩B̄+

|q − q̄|2 dx ≥ |B2 ∩ B̄−| + |B3 ∩ B̄+|

= |B2 \ (I− ∪ (σ,+∞))| + |B3 \ (I+ ∪ (−∞, τ ))|
≥ |B2 \ (σ,+∞)| − |I−| + |B3 \ (−∞, τ)| − |I+|.

Then, since
max{|B2 \ (σ,+∞)|, |B3 \ (−∞, τ)|} ≥ min{|B2|, |B3|} − |(σ, τ)|

by (2.21), and (2.20) we conclude

‖q − q̄‖2 ≥ ([p] − 2)
1
ε
− |Dδ0,q̄| ≥ ([p] − 2)

1
ε
− c∗

aωδ0
,

from which we derive that d(Γ3,p,Λ1) → +∞ as [p] → +∞.
Let us now consider the case q̄ ∈ Λ2. Then there exist two (not necessarily different) indices l, m̄ ∈ Z, such

that nt(q̄, Al̄) ≥ 2, nt(q̄, Am̄) ≥ 1 and nt(q̄, Aj) = 0 for any j /∈ {l̄, m̄}.
If l ≤ m̄ we set

B̄− = (∪j<m̄Aj) \Al, B̄+ = (∪j>m̄Aj)
while if l > m̄ we set

B̄− = ∪j<m̄Aj , B̄+ = (∪j>m̄Aj) \Al.
In any case, by Lemma 2.5, we have that q̄(t) ≤ −1 + 2δ for any t ∈ B̄−, q̄(t) ≥ 1 − 2δ for any t ∈ B̄+.

Since q ∈ Γ3,p there exists k ∈ {1, 2, 3} such that pk /∈ {l, m̄} and so there results either Apk
⊂ B̄− or

Apk
⊂ B̄+. Since nt(q, Apk

) = 1 and since by Lemma 2.5 we have |q(t)| ≥ 1−2δ for any t ∈ Apk
∩(Opk

∪Opk+1),
it is simple to recognize that in both the cases we have either |q(t) − q̄(t)| ≥ 1 for any t ∈ Apk

∩ Opk
or

|q(t) − q̄(t)| ≥ 1 for any t ∈ Apk
∩Opk+1. Then

‖q(t) − q̄(t)‖2 ≥ min{|Apk
∩Opk

|, |Apk
∩Opk+1|} ≥ ρ0

ε0

from which we derive that d(Γ3,p,Λ3)2 ≥ ρ0
ε0

≥ 5m
aωδ0

and so the first part of the Lemma. To end the proof we
show now that if [p] → ∞ then d(Γ3,p,Λ3) → +∞.

Since q ∈ Γ3,p we have q(t) ≥ 1− 2δ for any t ∈ B2, q(t) ≤ −1 + 2δ for any t ∈ B3 and since δ ≤ 1
4 we obtain

|q(t) − q̄(t)| ≥ 1 for any t ∈ B2 ∩ B̄− and for any t ∈ B3 ∩ B̄+. Hence

‖q − q̄‖2 ≥
∫
B2∩B̄−

|q − q̄|2 dx+
∫
B3∩B̄+

|q − q̄|2 dx ≥ |B2 ∩ B̄−| + |B3 ∩ B̄+|.

We observe that if m̄ ≥ p2 then |B2 ∩B−| ≥ |B2| − |Al̄| while if m̄ < p2 then |B3 ∩B+| ≥ |B3| − |Al̄|. Then in
any case

max{|B2 ∩B−|, |B3 ∩B+|} ≥ min{|B2|, |B3|} − 1
ε

and by (2.20) we conclude that

‖q − q̄‖2 ≥ ([p] − 3)
1
ε

and the lemma follows. �
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Remark 2.3. Since 2ρ0
ε0

≥ 5m
aωδ0

, by Lemmas 2.10 and 2.12 we recover that setting

3d0 =
(

5m
aωδ0

)1/2

,

then d(Γ3,p,Γ3,p̄) ≥ 3d0 and d(Γ3,p,Λ) ≥ 3d0 for any p, p̄ ∈ P , p 
= p̄. In particular, if q ∈ Γ is such that
and 0 < d(q,Γ3,p) < 3d0 for a p ∈ P , then F (q) ≥ c∗ > c3,p, by Lemma 2.6. Moreover, if q ∈ Γ is such that
0 < d(q,K3,p) < 3d0 for a p ∈ P , then F (q) > c3,p.

The following technical result will be used in the next section

Lemma 2.13. For any q ∈ Γ there results
∫

R
aεW (q) dt < +∞. Moreover for any q1, q2 ∈ Γ we have

∫
R

aε|W (q1) −W (q2)| dt ≤ ba‖q1 − q2‖
((

1
b a

∫
R

aεW (q1) dt
) 1

2

+ ‖q1 − q2‖
)
.

Proof. For any q ∈ Γ we have
∫

R
|W (q) −W (z0)| dt =

∫
R
| ∫ 1

0 W
′(z0 + s(q − z0))(q − z0) ds| dt. Then, since

|z0(t) + s(q(t) − z0(t))| ≤ 1 for any (s, t) ∈ [0, 1]× R, by (1.10) we obtain

∫
R

|W (q) −W (z0)| dt ≤ b

∫
R

∫ 1

0

χ(z0 + s(q − z0)) ds |q − z0| dt.

Since χ(s1 + s2) ≤ χ(s1) + |s2| for any s1, s2 ∈ R, we conclude∫
R

|W (q) −W (z0)| dt ≤ b ‖q − z0‖(‖χ(z0)‖ + ‖q − z0‖),

and so ∫
R

aεW (q) dt ≤ a(
∫

R

W (z0) dt+ b ‖q − z0‖(‖χ(z0)‖ + ‖q − z0‖) < +∞.

Note now that by (1.10) we have ‖χ(q(·))‖ ≤ ( 1
b a

∫
R
aεW (q) dt)

1
2 < +∞ for any q ∈ Γ. Therefore, given

q1, q2 ∈ Γ, to complete the proof of the Lemma it is sufficient to exactly repeat the argument above with q1
and q2 which play respectively the role of z0 and q. �

3. Two dimensional solutions

In this section we will show that (1.3) admits infinitely many two dimensional solutions for any ε ∈ (0, ε0).
In fact, we will prove that for every p ∈ P , with [p] large enough, there exists a solution up ∈ C2(R2) of (1.3)
such that ∂yup 
≡ 0 and

d(up(·, y),K3,p) → 0 as y → −∞.

In the following, for (y1, y2) ⊂ R we set S(y1,y2) = R × (y1, y2). Let us consider the set

H = {u ∈ H1
loc(R

2) / ‖u‖L∞(R2) ≤ 1 and u− z0 ∈ ∩(y1,y2)⊂RH
1(S(y1,y2))}.

Note that, by Fubini Theorem, we have that if u ∈ H then u(·, y) ∈ Γ for a.e. y ∈ R.
Moreover we have also u(x, ·) ∈ H1

loc(R) for a.e. x ∈ R. Therefore, if (ζ1, ζ2) ⊂ R then u(x, ζ2) − u(x, ζ1) =∫ ζ2
ζ1
∂yu(x, y) dy holds for a.e. x ∈ R and so

∫
R

|u(x, ζ2) − u(x, ζ1)|2 dx =
∫

R

∣∣∣∣∣
∫ ζ2

ζ1

∂yu(x, y) dy

∣∣∣∣∣
2

dx ≤ |ζ2 − ζ1|
∫

R

∫ ζ2

ζ1

|∂yu(x, y)|2 dydx.
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According to that, if u ∈ H, then the function y ∈ R → u(·, y) ∈ Γ, defines a continuous trajectory in Γ verifying

‖u(·, ζ2) − u(·, ζ1)‖2 ≤ ‖∂yu‖2
L2(S(ζ1,ζ2))|ζ2 − ζ1|, ∀ (ζ1, ζ2) ⊂ R. (3.1)

In the sequel, we fix ε ∈ (0, ε0) and we denote

F (q) =

{
Faε(q), if q ∈ Γ,
+∞, if q ∈ Γ \ Γ.

As we will see below (see Lem. 3.10), any solution u ∈ H of (1.2) which satisfies the further conditions
d(u(·, y),K3,p) → 0 as y → −∞, for some p ∈ P , and

∫
R2 |∂yu(x, y)|2 dxdy < +∞, verifies the property

F (u(·, y)) = c3,p +
1
2
‖∂yu(·, y)‖2, ∀y ∈ R,

and so in particular that F (u(·, y)) ≥ c3,p for any y ∈ R. Such consideration suggest us to define, given p ∈ P ,
the set

Mp = {u ∈ H / lim
y→−∞d(u(·, y),K3,p) = 0, lim inf

y→+∞ d(u(·, y),Γ3,p) ≥ d0 and inf
y∈R

F (u(·, y)) ≥ c3,p}

on which we look for a minima of the functional

ϕp(u) =
∫

R

1
2
‖∂yu(·, y)‖2 + (F (u(·, y)) − c3,p) dy.

Remark 3.1. The problem of finding a minimum of ϕp on Mp is well posed. In fact, if u ∈ Mp then
F (u(·, y)) ≥ c3,p for every y ∈ R and so the functional ϕp is well defined and non negative on Mp. Moreover,
as we will prove in Lemma 4.2 in the appendix, for any p ∈ P there results Mp 
= ∅ and setting

mp ≡ inf
Mp

ϕp, p ∈ P ,

we have infp∈P mp > d0

√
m0

8 and supp∈P mp < +∞.

Remark 3.2. In general the functional ϕp is not well defined on H. Indeed, if u ∈ H, the function y →
F (u(·, y))− c3,p is indefinite in sign and we cannot say, in general, that it is Lebesgue integrable on R. However,
if u ∈ H then u(·, y) ∈ Γ for a.e. y ∈ R and so F (u(·, y)) − c3,p ≥ caε − c3,p > −∞ for any y ∈ R. Therefore,
given an interval I ⊂ R the functional

ϕp,I(u) =
∫
I

1
2
‖∂yu(·, y)‖2 + (F (u(·, y)) − c3,p) dy

is well defined for any u ∈ H such that the set {y ∈ I / F (u(·, y)) < c3,p} has bounded measure.
It is standard to show (see e.g. [3], Lem. 3.1, for a similar argument) that the following semicontinuity

property holds: letting I ⊂ R and u ∈ H, if ϕp,I(u) is well defined and (un) ⊂ Mp is such that un → u weakly
in H1

loc(R
2), then ϕp,I(u) ≤ lim inf

n→∞ ϕp,I(un).
Finally we point out an important inequality concerning the functional ϕp,I which constitutes the analogous

of (2.2) in the one dimensional problem and, as there, has many useful consequences. Given u ∈ H, if (y1, y2) ⊂ R
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is such that F (u(·, y)) ≥ c3,p + ν for any y ∈ (y1, y2), then

ϕp,(y1,y2)(u) ≥ 1
2

∫ y2

y1

‖∂yu(·, y)‖2 dy + ν(y2 − y1) ≥ 1
2(y2 − y1)

∫
R

(∫ y2

y1

|∂yu(x, y)| dy
)2

dx+ ν(y2 − y1)

≥ 1
2(y2 − y1)

‖u(·, y1) − u(·, y2)‖2 + ν(y2 − y1) ≥
√

2ν ‖u(·, y1) − u(·, y2)‖. (3.2)

Concentration and compactness properties of the minimizing sequences in Mp

As first step in studying the minimum problem of ϕp in Mp, we characterize here below some properties of
the minimizing sequences in Mp.

The following Lemma, obtained combining (3.2) with Lemmas 2.6, 2.9 and 2.10, tells us in particular that if
u ∈ Mp, ϕp(u) < +∞ and u(·, y) /∈ Λ for any y ∈ R, then the trajectory y ∈ R → u(·, y) ∈ Γ is bounded.

Lemma 3.1. There exists C > 0 such that given any p ∈ P, if u ∈ Mp satisfies d(u(·, y),Λ) > 0 for any
y ∈ (y1, y2) then

‖u(·, y1) − u(·, y2)‖ ≤ Cϕp(u).

Proof. Let ȳ1 = inf{y ∈ [y1, y2] | F (u(·, y)) ≤ c∗} and ȳ2 = sup{y ∈ [y1, y2] | F (u(·, y)) ≤ c∗}. We have

‖u(·, y1) − u(·, y2)‖ ≤ ‖u(·, y1) − u(·, ȳ1)‖ + ‖u(·, ȳ1) − u(·, ȳ2)‖ + ‖u(·, ȳ2) − u(·, y2)‖

and since F (u(·, y)) > c∗ for any y ∈ (y1, ȳ1)∪ (ȳ2, y2) and, by Lemma 2.6, c∗ ≥ c3,p+ m0
8 , using (3.2) we obtain

‖u(·, y1) − u(·, y2)‖ ≤ ‖u(·, ȳ1) − u(·, ȳ2)‖ +
4√
m0

ϕp(u).

To estimate ‖u(·, ȳ1)−u(·, ȳ2)‖, note that we can write {y ∈ (ȳ1, ȳ2) |F (u(·, y)) > c∗} = ∪i∈I(y1,i, y2,i), disjoint
union. Then, since u(·, y) 
∈ Λ for all y ∈ (y1, y2), we obtain that for every i ∈ I, there exist p1,i, p2,i ∈ P
such that u(·, y1,i) ∈ Γ3,p1,i and u(·, y2,i) ∈ Γ3,p2,i . Let I1 = {i ∈ I / p1,i 
= p2,i} and #I1 its cardinality. By
Lemmas 2.10, 2.6 and by (3.2) we have that for any i ∈ I1

3d0 ≤ ‖u(·, y1,i) − u(·, y2,i)‖ ≤ 2√
m0

ϕp,(y1,i,y2,i)(u)

and so, summing on i ∈ I1, we obtain

#I1 ≤ 2
3d0

√
m0

ϕp(u).

Since as one easily recognizes

‖u(·, ȳ1) − u(·, ȳ2)‖ ≤ (#I1 + 1) sup
p∈P

diam(Γ3,p) +
∑
i∈I1

‖u(·, y1,i) − u(·, y2,i)‖,

by Lemma 2.9 and (3.2) we conclude

‖u(·, ȳ1) − u(·, ȳ2)‖ ≤
(

2
3d0

√
m0

ϕp(u) + 1
)

D +
2√
m0

ϕp(u)

then, by Remark 3.1, the Lemma follows with C = 9√
m0

(1 + D
d0

). �
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Since by Lemma 2.12, d(Γ3,p,Λ) → ∞ as [p] → ∞, setting C0 = C(supp∈P mp + 1) we have that

∃ p0 ∈ N such that if [p] ≥ p0 then d(Γ3,p,Λ) > C0. (3.3)

Then, using Lemma 3.1 we obtain

Lemma 3.2. Let [p] ≥ p0, if u ∈ Mp is such that ϕp(u) ≤ mp + 1, then

d(u(·, y),Γ3,p) ≤ C0, ∀y ∈ R.

Proof. The lemma follows by Lemma 3.1 once we prove that if [p] ≥ p0, and u ∈ Mp is such that ϕp(u) ≤ mp+1
then d(u(·, y),Λ) > 0 for any y ∈ R.

Assume by contradiction that there exist p ∈ P , u ∈ Mp and y0 ∈ R such that [p] ≥ p0, ϕp(u) ≤ mp + 1,
d(u(·, y0),Λ) = 0 and d(u(·, y),Λ) > 0 for any y < y0. By (3.1) and (3.3) there exists y1 < y0 such that

‖u(·, y1) − u(·, y0)‖ < d(Γ3,p,Λ) − C0.

By Lemma 3.1 we have moreover that ‖u(·, y) − u(·, y1)‖ ≤ C0 for any y ≤ y1. Therefore, since u ∈ Mp, we
obtain also

d(Γ3,p, u(·, y1)) ≤ lim sup
y→−∞

‖u(·, y) − u(·, y1)‖ ≤ C0

and so
d(Γ3,p,Λ) ≤ d(Γ3,p, u(·, y1)) + ‖u(·, y1) − u(·, y0)‖ < d(Γ3,p,Λ),

a contradiction. �

Remark 3.3. Given p ∈ P we define

Ω(p) = {p̄ ∈ P / d(Γ3,p,Γ3,p̄) ≤ C0}.

Note that, by Lemma 2.11, the set Ω(p) is finite. Moreover, by Lemma 3.2, if [p] ≥ p0, u ∈ Mp and y ∈ R are
such that ϕp(u) ≤ mp + 1 and F (u(·, y)) ≤ c∗ then u(·, y) ∈ ∪p∈Ω(p)Γ3,p.

Lemma 3.3. If [p] ≥ p0 and u ∈ Mp is such that ϕp(u) ≤ mp + 1 then there exists p̄ ∈ Ω(p) \ {p} such that

lim
y→+∞ d(u(·, y),Γ3,p̄) = 0.

Proof. Since u ∈ Mp and ϕp(u) ≤ mp + 1 we have lim infy→+∞ F (u(·, y)) = c3,p. Then, since [p] ≥ p0,
by Remark 3.3 and Lemma 2.6, one plainly obtains that there exists p̄ ∈ Ω(p) such that
lim infy→+∞ d(u(·, y),Γ3,p̄) = 0. Moreover, since u ∈ Mp we have limy→+∞ d(u(·, y),Γ3,p) ≥ d0 and so p̄ 
= p.

Assume by contradiction that lim supy→+∞ d(u(·, y),Γ3,p̄) = 3d > 0 and set d̄ = min{d, d0}. Then by (3.1) we
have that there exist two sequences (y1,i), (y2,i) ⊂ R such that y1,i < y2,i for any i ∈ N, y1,i → +∞ as i→ +∞,
d(u(·, y),Γ3,p̄) ∈ (d̄, 2d̄) for any y ∈ (y1,i, y2,i), i ∈ N, and finally ‖u(·, y1,i)−u(·, y2,i)‖ = d̄. Then, by Remark 2.3
we have F (u(·, y)) ≥ c∗ for any y ∈ (y1,i, y2,i), i ∈ N and by (3.2) we obtain that ϕp(u) ≥∑∞

i=1

√
m0

2 d̄ = +∞, a
contradiction. �

Remark 3.4. By Lemma 3.3 we obtain that for any p ∈ P such that [p] ≥ p0, there exists p∗ ∈ Ω(p) \ {p} such
that setting

Mp,p∗ = {u ∈ Mp / lim
y→+∞ d(u(·, y),Γ3,p∗) = 0}

we have
mp = inf

u∈Mp,p∗
ϕp(u).
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Indeed if (un) ⊂ Mp is such that ϕp(un) → mp then by Lemma 3.3 there exist n̄ ∈ N and p̄n ∈ Ω(p) \ {p} such
that limy→+∞ d(u(·, y),Γ3,p̄n) = 0 for any n ≥ n̄. Then the property follows since, by Remark 3.3, Ω(p) is finite
and so there exists p∗ ∈ Ω(p) \ {p} such that, along a subsequence, pn = p∗.

In the sequel we will denote

λ0 = min
{

1,
√
m0

4
d0

}
.

In the proofs of the following lemmas we make use of a technical result whose statement and proof is postponed
in the appendix (see Lem. 4.3).

Lemma 3.4. For every p ∈ P with [p] ≥ p0 there exists ν̂ ∈ (0, m0
8 ) such that if u ∈ Mp,p∗ , ϕp(u) ≤ mp + λ0

and u(·, y) ∈ ∪p̄∈P\{p,p∗}Γ3,p̄, then F (u(·, y)) ≥ c3,p + ν̂.

Proof. Let p ∈ P such that [p] ≥ p0 and assume by contradiction that there exists a sequence (un) ⊂ Mp,p∗ , a
sequence (p̄n) ⊂ P \ {p, p∗} and a sequence (yn) ⊂ R such that for any n ∈ N there results

ϕp(un) ≤ mp + λ0, u(·, yn) ∈ Γ3,p̄n and lim
n→∞F (un(·, yn)) = c3,p.

By Lemmas 3.2 and 3.3 we have that (p̄n) ⊂ Ω(p) \ {p, p∗} which is a finite set. Therefore, extracting a
subsequence if necessary, we can assume that there exists p̄ ∈ Ω(p) \ {p, p∗} such that p̄n = p̄ for any n ∈ N.

By translating the function un, we can furthermore assume that yn = 0 for any n ∈ N and, by Lemma 4.3,
we obtain lim infn→∞ ϕp,(−∞,0)(un) ≥ mp.

Since un(·, 0) ∈ Γ3,p̄ and limy→∞ d(un(·, y),Γ3,p∗) = 0, by Lemma 2.10 and (3.1) we derive that there exists
(ζ1, ζ2) ⊂ (0,+∞) such that ‖u(·, ζ1) − u(·, ζ2)‖ ≥ d0 and F (u(·, y)) ≥ c∗ for any y ∈ (ζ1, ζ2). Then, by (3.2),
ϕp,(0,+∞)(un) ≥ ϕp,(ζ1,ζ2)(un) ≥

√
m0

2 d0 for any n ∈ N and we conclude that

√
m0

2
d0 ≤ lim inf

n→∞ (ϕp(un) − ϕp,(−∞,0)(un)) ≤ mp + λ0 − lim sup
n→∞

ϕp,(−∞,0)(un) ≤
√
m0

4
d0,

a contradiction. �

Lemma 3.4 shows that if u ∈ Mp,p∗ and ϕp(u) ≤ mp+λ0 then u(·, y) is forced to be in Γ3,p ∪Γ3,p∗ whenever
F (u(·, y)) < c3,p + ν̂. Next Lemma strengthens that result describing how the set Γ3,p ∪ Γ3,p∗ “absorbs” the
trajectories u(·, y) ∈ Mp,p∗ ∩ {ϕp < mp + λ0}.
Lemma 3.5. For any p ∈ P with [p] ≥ p0 there exists ν̄ ∈ (0, ν̂] such that if u ∈ Mp,p∗, ϕp(u) ≤ mp + λ0 and
F (u(·, ȳ)) < c3,p + ν̄ for some ȳ ∈ R, then, either

(i) u(·, ȳ) ∈ Γ3,p and d(u(·, y),Γ3,p) ≤ d0 for all y ≤ ȳ; or
(ii) u(·, ȳ) ∈ Γ3,p∗ and d(u(·, y),Γ3,p∗) ≤ d0 for all y ≥ ȳ.

Proof. Let us prove (ii), being the proof of (i) analogous.
Assume by contradiction that there exists a sequence (un) ⊂ Mp,p∗ such that ϕp(un) ≤ mp + λ0, and two

sequences (yn,1), (yn,2) ⊂ R such that for any n ∈ N there results

yn,1 ≤ yn,2, lim
n→∞F (un(·, yn,1)) = c3,p, un(·, yn,1) ∈ Γ3,p∗ and d(un(·, yn,2),Γ3,p∗) > d0.

By Lemma 4.3 we obtain lim infn→∞ ϕp,(−∞,yn,1)(un) ≥ mp.
Moreover, since un(·, yn,1) ∈ Γ3,p∗ and d(un(·, yn,2),Γ3,p∗) > d0, by (3.1) we obtain that there exists

ȳn,1, ȳn,2 ∈ [yn,1, yn,2] such that F (u(·, y)) ≥ c∗ for any y ∈ (ȳn, ȳn,2) and d(u(·, ȳn,1), u(·, ȳn,2)) = d0. By (3.2)
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this implies ϕp,(yn,1,+∞)(un) ≥ ϕp,(ȳn,1,ȳn,2)(un) ≥
√
m0

2 d0 for any n ∈ N. As in the proof of Lemma 3.4, that
gives rise to the contradiction

√
m0

2
d0 ≤ lim inf

n→∞ (ϕp(un) − ϕp,(−∞,yn,1)(un)) ≤ mp + λ0 − lim sup
n→∞

ϕp,(−∞,,yn,1)(un) ≤
√
m0

4
d0,

and the lemma follows. �

Note that Lemma 3.5 holds true also for minimizing sequences of ϕp on Mp,p∗ . This fact will be used in the
next lemma to derive analogous asymptotic properties of the their limits points.

Lemma 3.6. Let p ∈ P with [p] ≥ p0 and let (un) ⊂ Mp,p∗ be such that ϕp(un) → mp as n → ∞ and
d(un(·, 0),Γ3,p) = 3

2d0 for all n ∈ N. Then, there exists up ∈ H and a subsequence of (un), still denoted (un),
such that

(i) un → up as n→ ∞ weakly in H1
loc(R

2);
(ii) d(up(·, y),Γ3,p) ≤ C0 for any y ∈ R;
(iii) lim

y→−∞d(up(·, y),K3,p) = 0 and lim sup
y→+∞

d(up(·, y),Γ3,p∗) ≤ d0.

Proof. Pick any function q ∈ Γ3,p and consider a sequence of bounded intervals (y1,j , y2,j) ⊂ R such that
y1,j → −∞ and y2,j → +∞. Since ϕp(un) → mp as n → ∞ we can assume that ϕp(un) ≤ mp + λ0 for any
n ∈ N and so, by Lemmas 2.9 and 3.2 we have that for any y ∈ R

‖un(·, y) − q‖ ≤ d(un(·, y),Γ3,p) + D ≤ C0 + D.

Then, ‖un−q‖2
L2(S(y1,j ,y2,j))

≤ (y2,j−y1,j)(C̄+D)2 for any n ∈ N and j ∈ N. Since moreover ‖∇un‖2
L2(S(y1,j ,y2,j ))

≤
2(ϕp(un) + (y2,j − y1,j)c3,p) we conclude that the sequence (un − q), and so the sequence (un − z0), is bounded
in H1(S(y1,j ,y2,j)) for any j ∈ N. Then, with a diagonal argument, we derive that there exists up ∈ H1

loc(R
2)

such that along a subsequence un− z0 → up− z0 weakly in H1(S(y1,j ,y2,j)) for any j ∈ N (and a.e. in R
2). Then

up ∈ H and un − up → 0 weakly in H1(S(y1,y2)) for any (y1, y2) ⊂ R and (i) follows.
Since by Lemma 3.2 we have d(un(·, y),Γ3,p) ≤ C0 for any n ∈ N, there exists qn ∈ Γ3,p such that

lim supn→∞ ‖un(·, y) − qn(·)‖ ≤ C0. By Lemma 2.7 we have that along a subsequence, still denoted (qn),
qn → q ∈ Γ3,p as n→ ∞ in L2

loc(R) and so, by the Fatou Lemma, we obtain that for a.e. y ∈ R there results

d(up(·, y),Γ3,p) ≤ ‖up(·, y) − q‖ ≤ lim inf
n→∞ ‖un(·, y) − qn(·)‖ ≤ C0.

Then d(up(·, y),Γ3,p) ≤ C0 for a.e. y ∈ R and since u ∈ H, by (3.1) we obtain in fact that d(up(·, y),Γ3,p) ≤ C0

for any y ∈ R and (ii) follows.
Let us finally prove (iii). By (3.2) there exists L > 0 such that, for any n ∈ N there exist yn,1 ∈ (−L, 0)

and yn,2 ∈ (0, L) for which F (un(·, yn,1)), F (un(·, yn,2)) ≤ c3,p + ν̄ and so, by Lemma 3.4 and Remark 3.3,
un(·, yn,1), un(·, yn,2) ∈ Γ3,p ∪ Γ3,p∗ . By Lemma 3.5 it is simple to show that in fact

un(·, yn,1) ∈ Γ3,p and un(·, yn,2) ∈ Γ3,p∗ . (3.4)

Indeed if un(·, yn,1) ∈ Γ3,p∗ then Lemma 3.5 implies that d(un(·, y),Γ3,p∗) ≤ d0 for any y ≥ yn,1 and so in
particular d(un(·, 0),Γ3,p∗) ≤ d0 in contradiction with the assumption d(un(·, 0),Γ3,p) = 3

2d0 since as we know
d(Γ3,p,Γ3,p∗) ≥ 3d0. Analogously one obtains a contradiction assuming un(·, yn,2) ∈ Γ3,p.

By (3.4) and Lemma 3.5 we conclude that for any n ∈ N there results

d(un(·, y),Γ3,p) ≤ d0 for any y ≤ −L and d(un(·, y),Γ3,p∗) ≤ d0 for any y ≥ L
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and so, as in the proof of (ii), in the limit we obtain

d(up(·, y),Γ3,p) ≤ d0 for any y ≤ −L and d(up(·, y),Γ3,p∗) ≤ d0 for any y ≥ L.

This proves in particular that, as stated in (iii), lim supy→+∞ d(up(·, y),Γ3,p∗) ≤ d0.
To complete the proof let us show now that limy→−∞ d(up(·, y),K3,p) = 0.
We first observe that, by Remark 2.3, F (up(·, y)) ≥ c3,p for any y ≤ −L, and, by Remark 3.2, we deduce

that ϕp,(−∞,−L)(up) is well defined and ϕp,(−∞,−L)(up) ≤ lim infn→∞ ϕp(un) ≤ mp.
By (2.18) we have that for any r > 0, if y ≤ −L and d(up(·, y),K3,p) ≥ r then F (up(·, y)) ≥ min{c3,p+νr, c∗}.

Then, since ϕp,(−∞,−L)(up) ≤ mp, we deduce that lim infy→−∞ d(up(·, y),K3,p) = 0. Finally, if we assume by
contradiction that

lim sup
y→−∞

d(up(·, y),K3,p) = r > 0

we obtain the existence of a sequence of intervals (y1,j , y2,j) with y2,j+1 < y1,j < y2,j < −L for any j ∈ N,
y2,j → −∞ as j → ∞, ‖up(·, y1,j)−up(·, y2,j)‖ = r

2 and F (up(·, y)) ≥ min{c3,p+νr/4, c∗} for any y ∈ (y1,j , y2,j).
Then, by (3.2) we obtain

ϕp,(−∞,−L)(up) ≥
∞∑
j=1

ϕp,(y1,j ,y2,j)(up) ≥
√

2 min{νr/4, c∗ − c3,p}
∞∑
j=1

r

2
= +∞,

a contradiction. �

The conservation of “Energy” and the existence of two dimensional solutions

Note that the function up given by Lemma 3.6 does not necessarily satisfies the condition F (up(·, y)) ≥ c3,p
for any y ∈ R. Hence, we cannot say that up belongs to Mp and so that it is a minimum for ϕp on Mp. Anyway,
as we will show below, as limit of a minimizing sequence, up inherits suitable minimality properties which allow
us to construct from it a two dimensional solution of (1.3).

First of all, we introduce the set of limit points of the minimizing sequences of ϕp in Mp. More precisely, for
p ∈ P such that [p] ≥ p0, we set

Lp = {u ∈ H / ∃(un) ∈ Mp,p∗ such that d(un(·, 0),Γ3,p) =
3
2
d0 for any n ∈ N,

ϕp(un) → mp and un → u weakly in H1
loc(R

2) as n→ ∞}.

Remark 3.5. Note that, using the invariance with respect to the y-translation of ϕp, there always exists a
sequence (un) ⊂ Mp,p∗ such that ϕp(un) → mp and d(un(·, 0),Γ3,p) = 3

2d0 for any n ∈ N. Then, by Lemma 3.6,
Lp is not empty and constituted by functions u verifying the properties

sup
y∈R

d(u(·, y),Γ3,p) ≤ C0, lim
y→−∞ d(u(·, y),K3,p) = 0 and lim sup

y→+∞
d(u(·, y),Γ3,p∗) ≤ d0.

For any u ∈ Lp we set
Du = {y ∈ R / d(u(·, y),K3,p) ≥ d0}.

Note that, by Remark 3.5 and (3.1), Du is not empty and, by Remark 2.3, we recover that if y /∈ Du then
F (u(·, y)) ≥ c3,p. We define

y0,u =

{
+∞ ifF (u(·, y)) > c3,p for any y ∈ Du,

inf{y ∈ Du / F (u(·, y)) ≤ c3,p} otherwise.

Note that, since lim
y→−∞d(u(·, y),K3,p) = 0 we have in fact y0,u > −∞.
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Remark 3.6. We remark that, by definition, for any u ∈ Lp

if y < y0,u then, d(u(·, y),K3,p) < d0 or F (u(·, y)) > c3,p. (3.5)

Then, by (3.5) and Remark 2.3, we always have that

F (u(·, y)) ≥ c3,p for any y < y0,u

and so, by Remark 3.2, we obtain that ϕp,(−∞,y0,u)(u) is well defined for any u ∈ Lp and ϕp,(−∞,y0,u)(u) ≤ mp.

Remark 3.7. Note that if y0,u = +∞, then F (u(·, y)) ≥ c3,p for any y ∈ R and so, by Remark 3.2, ϕp(u) ≤ mp.
By Remark 3.5 we have in fact that in this case u is a minimum for ϕp on Mp, i.e.,

if y0,u = +∞ then u ∈ Mp and ϕp(u) = mp.

Let us consider the case y0,u ∈ R. We point out that, by definition, there exists a sequence (yn) ⊂ [y0,u,+∞)
such that yn → y0,u as n → ∞, F (u(·, yn)) ≤ c3,p and d(u(·, yn),K3,p) ≥ d0 for any n ∈ N. Since by
Remark 3.5 we have d(u(·, y),Γ3,p) ≤ C0 for any y ∈ R, by Remark 3.3, there exists p̄ ∈ Ω(p) \ {p} for which,
along a subsequence, u(·, yn) ∈ Γ3,p̄. Therefore, since the function y ∈ R → F (u(·, y)) ∈ [0,+∞] is lower
semicontinuous (see Lemmas 4.1 in the appendix), by Lemma 2.7 and (3.1) we conclude that

if y0,u ∈ R then ∃ p̄ ∈ Ω(p) \ {p} such that u(·, y0,u) ∈ Γ3,p̄ and F (u(·, y0,u)) ≤ c3,p. (3.6)

As stated in the following lemma, in the case y0,u ∈ R, we can say more than (3.6). In the proof we make use
of a technical result whose statement and proof is postponed in the appendix (see Lem. 4.4).

Lemma 3.7. Let u ∈ Lp with y0,u ∈ R. Then we have

lim inf
y→y−0,u

F (u(·, y)) = c3,p and ϕp,(−∞,y0,u)(u) = mp.

Proof. Let us assume, by translating u if necessary, that y0,u = 0.
To show that lim infy→0− F (u(·, y)) = c3,p assume by contradiction that there exists y0 < 0 and µ > 0 such

that F (u(·, y)) ≥ c3,p + µ for any y ∈ (y0, 0). We set v(x, y) = u(x, y) − u(x, 0) and note that by (3.1) we have

‖v(·, y)‖2 ≤ −y
∫ 0

y

‖∂yu(·, s)‖2 ds, ∀y ∈ (y0, 0). (3.7)

Then, in particular, ‖v(·, y)‖ → 0 as y → 0− and taking y0 bigger if necessary, we can assume that ‖v(·, y)‖ ≤ d0

for any y ∈ (y0, 0).
For f, g ∈ L2(R) in the sequel we will denote (f, g) =

∫
R
f(x)g(x) dx.

Since ‖v(·, y)‖ ≤ d0 for any y ∈ (y0, 0), by Lemma 2.13 we obtain that there exists C > 0 depending on d0,
u(·, 0) and W such that ∀t ∈ [0, 1] and ∀y ∈ (y0, 0) there results

∣∣∣∣
∫

R

aε(W (u(·, 0) + v(·, y)) −W (u(·, 0) + tv(·, y))) dx
∣∣∣∣ ≤ (1 − t)C‖v(·, y)‖. (3.8)

By (3.7) and (3.8), since by assumption µ ≤ F (u(·, 0) + v(·, y)) − F (u(·, 0)), we obtain

µ ≤ 1
2
‖∂xv(·, y)‖2 − (∂xu(·, 0), ∂xv(·, y)) −

∫
R

aε(W (u(·, 0) + v(·, y)) −W (u(·, 0))) dx (3.9)
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for any y ∈ (y0, 0). Then, we obtain

lim inf
y→0−

‖∂xv(·, y)‖2 ≥ 2µ. (3.10)

Indeed, given any sequence yn → 0− as n → +∞, if (∂xv(·, yn))) is unbounded in L2(R) we have nothing to
prove. If otherwise, the sequence (∂xv(·, yn))) is bounded in L2(R) by (3.7) we deduce that ∂xv(·, yn) → 0 weakly
in L2(R) and then (∂xu(·, 0), ∂xv(·, yn)) → 0. Hence, by (3.7) and (3.9), we obtain limn→+∞ ‖∂xv(·, yn)‖2 ≥ 2µ.

Now, by (3.10) we can assume, taking y0 bigger if necessary, that ‖∂xv(·, y)‖2 ≥ µ for any y ∈ (y0, 0). Then,
let (yj) ⊂ (y0, 0) be such that yj → 0 as j → +∞. Then, by (3.7) we obtain v(·,yj)

‖∂xv(·,yj)‖ → 0 in L2(R) as j → +∞
and since the sequence ( ∂xv(·,yj)

‖∂xv(·,yj)‖ ) is bounded in L2(R), we deduce that ∂xv(·,yj)
‖∂xv(·,yj)‖ → 0 weakly in L2(R) and

so |(∂xu(·,0),∂xv(·,yj))|
‖∂xv(·,y)‖2 ≤ 1√

µ |(∂xu(·, 0), ∂xv(·,yj)
‖∂xv(·,y)‖ )| → 0 as j → ∞. That shows that

lim
y→0−

(∂xu(·, 0), ∂xv(·, y))
‖∂xv(·, y)‖2

= 0. (3.11)

Note now that, thanks to (3.8), for any y ∈ (y0, 0) and any t ∈ [0, 1] we have

F (u(·, 0) + v(·, y)) − F (u(·, 0) + tv(·, y)) =
‖∂xv(·, y)‖2

2
(1 − t2) + (1 − t)(∂xu(·, 0), ∂xv(·, y))

+
∫

R

aε(W (u(·, 0) + v(·, y)) −W (u(·, 0) + tv(·, y))) dx

≥ ‖∂xv(·, y)‖2(1 − t)
(

(1 + t)
2

− |(∂xu(·, 0), ∂xv(·, y))|
‖∂xv(·, y)‖2

− C
‖v(·, y)‖

‖∂xv(·, y)‖2

)
·

Then, by (3.7), (3.10) and (3.11) there exists y1 ∈ (y0, 0) such that

F (u(·, 0) + v(·, y)) − F (u(·, 0) + tv(·, y)) ≥ ‖∂xv(·, y)‖2

4
(1 − t), ∀y ∈ [y1, 0), ∀t ∈ [0, 1]. (3.12)

Let 	 = lim infy→0− F (u(·, y)), since F (u(·, 0) + v(·, y)) = F (u(·, y)), there exists y2 ∈ [y1, 0) such that

F (u(·, 0) + v(·, y2)) ≤ 	
(
1 +

µ

32	

)
and F (u(·, 0) + v(·, y)) ≥ 	

(
1 − µ

32	

)
for any y ∈ [y2, 0)

and so for any y ∈ [y2, 0) there results

F (u(·, 0) + v(·, y)) − F (u(·, 0) + v(·, y2)) ≥ − µ

16
· (3.13)

By definition of y0,u, we have F (u(·, 0)) ≤ c3,p, then we can choose ȳ ∈ (y2, 0] such that F (u(·, 0)+ ȳ
y2
v(·, y2)) =

c3,p and F (u(·, 0) + y
y2
v(·, y2)) > c3,p for any y ∈ [y2, ȳ). We define

ũ(x, y) =



u(x, y) if y < y2

u(·, 0) + y
y2
v(·, y2) if y2 ≤ y < ȳ

u(·, 0) + ȳ
y2
v(·, y2) if y ≥ ȳ

and note that ũ ∈ Mp.



660 F. ALESSIO AND P. MONTECCHIARI

Now we show that ϕp(ũ) < ϕp,(−∞,0)(u) obtaining a contradiction since, by Remark 3.6, ϕp,(−∞,0)(u) < mp.
Note that

ϕp,(−∞,0)(u) − ϕp(ũ) =
1
2

∫ 0

y2

‖∂yu‖2 − ‖∂yũ‖2 dy +
∫ 0

y2

F (u(·, y)) − F (ũ(·, y)) dy.

Since by (3.7) we have

∫ 0

y2

‖∂yũ‖2 dy =
1
y2
2

∫ ȳ

y2

‖v(·, y2)‖2 dy ≤ −(ȳ − y2)
y2

∫ 0

y2

‖∂yu‖2 dy ≤
∫ 0

y2

‖∂yu‖2 dy,

to show that ϕp,(−∞,0)(u) > ϕp(ũ) it is sufficient to prove that
∫ 0

y2
F (u(·, y)) − F (ũ(·, y)) dy > 0.

Indeed, if ȳ ≤ y2
2 , since F (ũ(·, y)) = c3,p for any y ≥ ȳ and by assumption F (u(·, y)) > c3,p + µ for any

y ∈ (y0, 0), by (3.13) and (3.12) we obtain

∫ 0

y2

F (u(·, y)) − F (ũ(·, y)) dy ≥
∫ ȳ

y2

F (u(·, y)) − F (u(·, 0) + v(·, y2)) dy +
∫ 0

ȳ

F (u(·, y)) − c3,p dy

≥ −(ȳ − y2)
µ

16
− ȳµ ≥ −y2

2

(
− µ

16
+ µ

)
> 0.

If otherwise ȳ > y2
2 , we have ȳ+y2

y2
< 3

2 and so by (3.13), (3.12) and (3.10) we obtain

∫ 0

y2

F (u(·, y)) − F (ũ(·, y)) dy ≥
∫ ȳ

y2

F (u(·, y)) − F (u(·, 0) + v(·, y2)) dy

+
∫ ȳ

y2

F (u(·, 0) + v(·, y2)) − F

(
u(·, 0) +

y

y2
v(·, y2)

)
dy

≥ −(ȳ − y2)
µ

16
+
µ

4

∫ ȳ

y2

(
1 − y

y2

)
dy = (ȳ − y2)

(
− µ

16
+
µ

4
− µ

8
ȳ + y2
y2

)
> 0.

This proves that lim infy→0− F (u(·, y)) = c3,p.
To conclude, note that, by Remark 3.5, d(u(·, y),K3,p) → 0 as y → −∞. Moreover, by Remark 3.6, we know

that F (u(·, y)) ≥ c3,p for any y < 0 and ϕp,(−∞,0)(u) ≤ mp. Finally, by (3.6), we have u(·, 0) ∈ Γ3,p̄ for some
p̄ 
= p. Then, we can directly apply Lemma 4.4 to obtain ϕp,(−∞,0)(u) = mp. �

We are now able to prove that any function u ∈ Lp is a weak solution to (1.2) in R × (−∞, y0,u).

Lemma 3.8. Let u ∈ Lp, then∫
R2

∇u∇ψ + aε(x)W ′(u)ψ dxdy = 0 ∀ψ ∈ C∞
0 (R × (−∞, y0,u)).

Proof. Given any ψ ∈ C∞
0 (R × (−∞, y0,u)) we set, for t ∈ (0, 1),

vt(x, y) =




1 − (u+ tψ − 1) if u+ tψ > 1,
u+ tψ if 1 ≥ u+ tψ ≥ −1,
−1 − (u + tψ + 1) if u+ tψ < −1.

First of all note that, assuming without loss of generality, that ‖ψ‖L∞(R2) ≤ 1, ‖ψ‖H1(R2) ≤ 1 and
‖ψ(·, y)‖H1(R) ≤ 1 for any y ∈ R, we have |vt(x, y)| ≤ 1 for almost every (x, y) ∈ R

2 and since vt(x, y) = u(x, y)
on R

2 \ suppψ we have, by Remark 3.5, that vt ∈ H.
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We claim that there exists tψ ∈ (0, 1) such that ϕp,(−∞,y0,u)(vt) ≥ mp for all t ∈ (0, tψ) and then, by
Remark 3.7 and Lemma 3.7,

ϕp,(−∞,y0,u)(vt) ≥ ϕp,(−∞,y0,u)(u), ∀t ∈ (0, tψ) (3.14)

from which we can conclude the proof.
First, let us show that there exists tψ ∈ (0, d0) such that

F (vt(·, y)) ≥ c3,p for every y < y0,u, t ∈ (0, tψ). (3.15)

If y ∈ (−∞, y0,u) \Du, note that since |vt(·, y)− u(·, y)| ≤ t|ψ(·, y)|, in particular we have ‖vt(·, y)− u(·, y)‖2 ≤
t2‖ψ(·, y)‖2 ≤ t2, and for t < d0 we have ‖vt(·, y)−u(·, y)‖ ≤ d0 for any y ∈ R. Then, we derive d(vt,K3,p) < 2d0

for all t ∈ (0, d0). Hence, by Remark 2.3, we have F (vt(·, y)) ≥ c3,p for any t ∈ (0, d0) and y ∈ (−∞, y0,u) \Du.
Let x1 < x2, ζ1 < ζ2 < y0,u be such that suppψ ⊂ (x1, x2) × (ζ1, ζ2) and let y ∈ D = (−∞, ζ2] ∩Du. Since

by (3.1) and Lemma 2.8 we have that y → d(u(·, y),K3,p) is continuous, we deduce that D is closed in R. Since
by Lemma 4.1 y → F (u(·, y)) is lower semicontinuous and since by (3.5) F (u(·, y)) > c3,p for any y ∈ D, we
have that there exists µ > 0 such that F (u(·, y)) ≥ c3,p + µ for any y ∈ D ∩ [ζ1, ζ2]. If u(·, y) ∈ Γ \ Γ then also
vt(·, y) ∈ Γ \ Γ and so F (vt(·, y)) = +∞. If u(·, y) ∈ Γ, setting C1 = āmax|s|≤1 |W ′(s)| and C2 = C1(x2 − x1)

1
2

we obtain

|F (u(·, y)) − F (vt(·, y))| ≤ 1
2

∣∣∣∣
∫

R

|∂xu(x, y)|2 − |∂xvt(x, y)|2 dx
∣∣∣∣+
∣∣∣∣
∫

R

aε(W (u(x, y)) −W (vt(x, y))) dx
∣∣∣∣

≤ 1
2

∣∣∣∣
∫

R

|∂xu(x, y)|2 − |∂x(u(x, y) + tψ(x, y))|2dx| + C1

∫
R

t|ψ(x, y)
∣∣∣∣ dx

≤
∫

R

t2

2
|∂xψ(x, y)|2 + t|∂xψ(x, y)||∂xu(x, y)| dx+ C1

∫
R

t|ψ(x, y)|dx

≤ t2

2
‖ψ(·, y)‖2

H1(R) + 2t‖ψ(·, y)‖H1(R)

(
F (u(·, y))

2

) 1
2

+ tC2‖ψ(·, y)‖

≤ t2

2
+ 2t

(
F (u(·, y))

2

) 1
2

+ tC2.

Then for any y ∈ D we have

F (vt(·, y)) ≥ F (u(·, y))(1 − t) − 1
2
(t2 + t) − tC2 ≥ (c3,p + µ)(1 − t) − 1

2
(t2 + t) − tC2

from which we plainly derive that there exists tψ ∈ (0, d0) such that F (vt(·, y)) ≥ c3,p for any y ∈ D and
t ∈ (0, tψ).

Finally, if y ∈ (ζ2, y0,u)∩Du, we have vt(x, y) = u(x, y) and we know, by Remark 3.5, that F (u(·, y)) ≥ c3,p.
Gathering the estimates above (3.15) follows.

Now, note that if y0,u = +∞, since by Remark 3.7 we have u ∈ Mp, by (3.15) we obtain vt ∈ Mp, and then
ϕp(vt) ≥ mp, for all t ∈ (0, tψ) and (3.14) follows in this case.

If otherwise y0,u ∈ R, note that by (3.6) and Lemma 3.7, for all t ∈ (0, 1), vt verifies

lim
y→−∞ d(vt(·, y),K3,p) = 0, vt(x, y0,u) = u(x, y0,u) ∈ ∪p̄ �=pΓ3,p̄ and lim inf

y→y−0,u

F (vt(x, y)) = c3,p. (3.16)

Hence, by (3.15), we obtain that, for all t ∈ (0, tψ), vt verifies the conditions of Lemma 4.4 with y0 = y0,u and
we can conclude that ϕp,(−∞,y0,u)(vt) ≥ mp, for all t ∈ (0, tψ) and so (3.14) is completely proved.
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Finally, let us define

W̃ (s) =



W (1 − (s− 1)) if 1 < s ≤ 2,
W (s) if |s| ≤ 1,
W (−1 − (s+ 1)) if − 2 ≤ s < −1

observing that W̃ ∈ C1([−2, 2]) and W̃ (s) = W (s) for any s ∈ [−1, 1]. There results W (vt) = W̃ (u + tψ),
|∂xvt| = |∂x(u+ tψ)| and |∂yvt| = |∂y(u+ tψ)|, a.e. on R

2. Therefore

∫ y0,u

−∞

∫
R

|∇(u + tψ)|2 + aεW̃ (u + tψ) dx− c3,p dy = ϕp,(−∞,y0,u)(vt). (3.17)

Then, by (3.17) and (3.14), we conclude that for any t ∈ (0, tψ) there results

∫ y0,u

−∞

∫
R

1
2
|∇(u + tψ)|2 + aεW̃ (u + tψ) dx− c3,p dy − ϕp,(−∞,y0,u)(u) ≥ 0.

Hence, since |u(x, y)| ≤ 1 for a.e. (x, y) ∈ R
2, and since 1

t |W̃ (u + tψ) −W (u)| ≤ ψ max|s|<2 |W̃ ′(s)| for a.e.
(x, y) ∈ R

2 and for any t ∈ (0, 1), by using the Fubini and the dominated convergence Theorems we obtain

0 ≤ lim
t→0+

1
t

(∫ y0,u

−∞

∫
R

|∇(u+ tψ)|2 + aεW̃ (u+ tψ) dx− c3,p dy − ϕp,(−∞,y0,u)(u)
)

= lim
t→0+

1
t

∫
suppψ

1
2
(|∇(u + tψ)|2 − |∇u|2) + aε(x)(W̃ (u+ tψ) −W (u)) dxdy

=
∫

R2
∇u∇ψ + aε(x)W ′(u)ψ dxdy.

Considering −ψ as test function we deduce that
∫

R2 ∇u∇ψ + aε(x)W ′(u)ψ dxdy ≤ 0 from which in fact∫
R2 ∇u∇ψ + aε(x)W ′(u)ψ dxdy = 0 and the lemma follows. �

By the following lemma we obtain that in fact any function u ∈ Lp is a a classical solution to (1.2) on
R × (−∞, y0,u).

Lemma 3.9. Let y1 < y2 ∈ R. If u ∈ H verifies∫
S(y1,y2)

∇u∇ψ + aε(x)W ′(u)ψ dxdy = 0, ∀ψ ∈ H1
0 (S(y1,y2)). (3.18)

Then u ∈ C2(S(y1,y2)) and verifies −∆u + aεW
′(u) = 0 on S(y1,y2). Moreover, for any [ζ1, ζ2] ⊂ (y1, y2) there

results u− z0 ∈ H2(S(ζ1,ζ2)) and

lim
x→±∞u(x, y) = ±1 unif. w.r. to y ∈ [ζ1, ζ2]. (3.19)

Proof. Let [ζ1, ζ2] ⊂ (ζ̄1, ζ̄2) ⊂ [ζ̄1, ζ̄2] ⊂ (y1, y2) and θ ∈ C2(R) be such that θ(y) = 0 if y /∈ (ζ̄1, ζ̄2) and θ(y) = 1
for any y ∈ [ζ1, ζ2]. Defining v(x, y) = θ(y)(u(x, y) − z0(x)) we have v ∈ H1

0 (S(ζ1,ζ2)) and moreover

∫
S(ζ̄1,ζ̄2)

∇v∇ψ dxdy =
∫
S(ζ̄1,ζ̄2)

(−θaεW ′(u) + θ∂2
xz0 − ∂2

yθ(u− z0) − ∂yθ∂yu)ψ (3.20)

for any ψ ∈ H1
0 (S(ζ̄1,ζ̄2)). Then one plainly recognizes that f = −aεW ′(u)θ + θ∂2

xz0 − ∂2
yθ(u − z0) − ∂yu∂yθ ∈

L2(S(ζ̄1,ζ̄1)) and by classical elliptic argument recovers that v ∈ H2(S(ζ̄1,ζ̄2)) and so that u− z0 ∈ H2(S(ζ1,ζ2)).
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Then −∆u + aεW
′(u) = 0 as element of ∩[ζ1,ζ2]⊂(y1,y2)L

2(S(y1,y2)) and since ‖u‖L∞(R2) = 1, by a bootstrap
argument we obtain that u verifies the equation in a classical sense with ‖u‖C2(S(ζ1,ζ2)) < +∞ for any [ζ1, ζ2] ⊂
(y1, y2).

To show that (3.19) holds true observe that since u − z0 ∈ ∩[ζ1,ζ2]⊂(y1,y2)H
2(S(ζ1,ζ2)) we have that u(·, y) −

z0(·) ∈ H1(R) (in the sense of traces) for any y ∈ (ζ1, ζ2) and so that u(x, y) → ±1 as x → ±∞ for any y ∈
(ζ1, ζ2). Then, assume by contradiction that (3.19) does not hold and so that there exist [ζ1, ζ2] ⊂ (y1, y2), µ > 0,
a sequence (yn) ⊂ [ζ1, ζ2], yn → ȳ ∈ [ζ1, ζ2], and a sequence (xn) ⊂ R, |xn| → ∞ such that 1 − |u(xn, yn)| ≥ µ.
Since ‖u‖C2(S(ζ1,ζ2)) < +∞, one obtains that there exists ρ > 0 such that 1 − |u(xn, y)| ≥ µ

2 for any y ∈ [ζ1, ζ2]
such that |y− ȳ| ≤ ρ whenever n is sufficiently large, a contradiction since we already know that 1−|u(x, y)| → 0
as |x| → +∞ for any y ∈ (ζ1, ζ2). �

By Lemma 3.9 we obtain that if u ∈ Lp and y0,u = +∞, then u ∈ C2(R2) and −∆u+ aεW
′(u) = 0 on R

2,
i.e., u is a solution to (1.2). If otherwise u ∈ Lp is such that y0,u ∈ R, by Lemma 3.9 we have that u solves (1.2)
only on the half plane R× (−∞, y0,u). We will prove, by the following Lemma, that in such case u satisfies the
Neumann boundary condition ∂yu(·, y0,u) ≡ 0. This will allow us to recover, by reflection, an entire solution
to (1.2) even in this case.

In fact, in the next lemma, noting that in the equation (1.2) the variable y is cyclic, we prove that a sort of
Energy has to be conserved for the functions u ∈ Lp.
Lemma 3.10. If u ∈ Lp, then the energy function

y → Eu(y) = −1
2
‖∂yu(·, y)‖2 + F (u(·, y))

is constant on (−∞, y0,u). In particular

Eu(y) = c3,p for all y ∈ (−∞, y0,u) and lim inf
y→y−0,u

‖∂yu(·, y)‖ = 0. (3.21)

Proof. Let u ∈ Lp and (ζ1, ζ2) ⊂ (−∞, y0,u). By Lemma 3.9 we know that u ∈ C2(S(ζ1,ζ2)) verifies −∆u +
aεW

′(u) = 0 on S(ζ1,ζ2). Multiplying both the terms of the equation by ∂yu(x, y) we get that

0 = −∂x,xu ∂yu− ∂y,yu ∂yu+ aε(x)W ′(u)∂yu = −∂x,xu ∂yu+ ∂y

(
−1

2
|∂yu|2 + aε(x)W (u)

)

= −∂x(∂xu ∂yu) + ∂y

(
1
2
|∂xu|2 − 1

2
|∂yu|2 + aε(x)W (u)

)
.

Given [ζ̄1, ζ̄2] ⊂ (ζ1, ζ2), by Lemma 3.9 we know that u− z0 ∈ H2(S(ζ̄1,ζ̄2)) and hence ∇u ∈ H1(S(ζ̄1,ζ̄2)). Then,
integrating on S(ζ̄1,ζ̄2) and using Fubini Theorem we obtain

0 = −
∫
S(ζ̄1,ζ̄2)

∂x(∂xu ∂yu) dxdy +
∫
S(ζ̄1,ζ̄2)

∂y

(
1
2
|∂xu|2 − 1

2
|∂yu|2 + aε(x)W (u)

)
dxdy

= −
∫ ζ̄2

ζ̄1

∫
R

∂x(∂xu ∂yu) dxdy +
∫

R

∫ ζ̄2

ζ̄1

∂y

(
1
2
|∂xu|2 − 1

2
|∂yu|2 + aε(x)W (u)

)
dy dx

= −
∫ ζ̄2

ζ̄1

∫
R

∂x(∂xu ∂yu) dxdy + Eu(ζ̄2) − Eu(ζ̄1).

By Lemma 3.9 u − z0 ∈ H2(S(ζ̄1,ζ̄2)). Then ∂xu(·, y), ∂yu(·, y) ∈ H1(R) for a.e. y ∈ (ζ̄1, ζ̄2) and so ∂xu(x, y),
∂yu(x, y) → 0 as |x| → +∞ for a.e. y ∈ (ζ̄1, ζ̄2). Therefore

∫
R
∂x(∂xu ∂yu) dx = 0 for a.e. y ∈ [ζ̄1, ζ̄2] and

Eu(ζ̄2) = Eu(ζ̄1) follows.
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That proves that the function Eu(y) is constant on (−∞, y0,u). It is not difficult to recognize that Eu(y) =
c3,p. Indeed, By Lemma 3.7 we have

∫ y0,u

−∞
1
2‖∂yu(·, y)‖2 + (F (u(·, y)) − c3,p) dy = mp < +∞ and so there

exists a sequence (yj) ⊂ (−∞, y0,u) such that yj → −∞ and 1
2‖∂yu(·, yj)‖2 + (F (u(·, yj)) − c3,p) → 0. Since,

by Remarks 2.3 and 3.6, F (u(·, yj)) ≥ c3,p for any j ∈ N we have ‖∂yu(·, yj)‖2 → 0 and F (u(·, yj)) → c3,p.
Then Eu(y) = c3,p for any y ∈ (−∞, y0,u) follows. Since by Lemma 3.7, lim infy→y−0,u

F (u(·, y)) = c3,p, we can
conclude that lim infy→y−0,u

‖∂yu(·, y)‖ = 2 lim infy→y−0,u
(F (u(·, y)) − Eu(y)) = 0 and (3.21) follows. �

We are now able to prove the existence of solutions to (1.2).

Proposition 3.1. Let u ∈ Lp. Then, setting

vp ≡ u, if y0,u = +∞, or vp(x, y) =

{
u(x, y), if y ≤ y0,u,

u(x, 2y0,u − y), if y > y0,u,
if y0,u ∈ R,

we have that vp ∈ C2(R) is a classical solution to (1.2) on R
2. Moreover, ‖vp‖C2(R2) < +∞ and vp(x, y) → ±1

as x→ ±∞ uniformly with respect to |y| ≤ T , for any T > 0.

Proof. If y0,u = +∞, the statement follows by Lemmas 3.8 and 3.9 noting that ‖u‖C2(R2) < +∞ derive from
‖u‖L∞(R2) ≤ 1 using local Schauder estimates.

Let y0,u ∈ R and since the functional is invariant with respect to the y-translations, it is non restrictive to
assume that y0,u = 0. By (3.21) we already know that Eu = c3,p = − 1

2‖u(·, y)‖2 + F (u(·, y)) for any y < 0.
By Lemma 3.7 we know that

∃ (yj) ⊂ R− such that yj → 0 and F (u(·, yj)) → c3,p (3.22)

and hence ‖∂yu(·, yj)‖ → 0. By Lemma 3.9, using the Green formula, we have that for any ψ ∈ C∞
0 (R2) and

j ∈ N

0 =
∫

R×(−∞,yj)

−∆uψ + aεW
′(u)ψ dxdy =

∫
R×(−∞,yj)

∇u∇ψ + aεW
′(u)ψ dxdy −

∫
R

∂yu(x, yj)ψ(x, yj) dx,

and so ∫
R×(−∞,0)

∇u∇ψ + aεW
′(u)ψ dxdy = lim

j→∞

∫
R×(−∞,yj)

∇u∇ψ + aεW
′(u)ψ dxdy

= lim
j→∞

∫
R

∂yu(x, yj)ψ(x, yj) dx = 0.

With a simple change of coordinates we obtain also that

∫
R×(0,+∞)

∇u(x,−y)∇ψ + aεW
′(u(x,−y))ψ dxdy = 0, ∀ψ ∈ C∞

0 (R2).

Then, vp satisfies ∫
R2

∇vp∇ψ + aε(x)W ′(vp)ψ dxdy = 0, ∀ψ ∈ C∞
0 (R2)

and using Lemma 3.9 the proposition follows as in the case y0,u = +∞. �
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Thanks to Proposition 3.1 and Lemma 3.9, we can say that (1.2) always admits a two dimensional solution
verifying d(u(·, y),K3,p) → 0 as y → −∞ whenever p ∈ P is such that [p] ≥ p0. Moreover,

– if y0,u = +∞, such solution is of the heteroclinic type, i.e. vp ∈ C2(R2) verifies (1.2) and vp ∈ Mp;
– if y0,u ∈ R, then the solution is of the homoclinic type, i.e. vp ∈ C2(R2) verifies (1.2), d(vp,K3,p) → 0

as y → ±∞ and, by Remark 3.5 and Lemma 2.10, d(vp(·, y0,u),K3,p) ≥ 3d0.
To complete the proof of the main theorem we have to show that in any case vp(x, y) → ±1 as x → ±∞
uniformly with respect to y ∈ R.

Lemma 3.11. Let p ∈ P with [p] ≥ p0, for every u ∈ Lp, let vp be given by Proposition 3.1. Then, vp(x, y) → ±1
as x→ ±∞ uniformly with respect to y ∈ R.

Proof. By Proposition 3.1 we know that vp ∈ C2(R), ‖vp‖C2(R2) < +∞ and that for any T > 0 there results
vp(x, y) → ±1 as x→ ±∞ uniformly with respect to |y| ≤ T .

As first step in the proof we claim now that for any (ζ1, ζ2) ⊂ R there exists a constant C > 0 depending
only on ζ2 − ζ1 such that

‖vp‖H2(S(ζ1,ζ2)) ≤ C.

To this aim note firstly that, by Lemma 3.6, d(vp(·, y),Γ3,p) ≤ C0 for any y ∈ R.
In particular we obtain that supy∈R

‖vp(·, y) − z0(·)‖2 = C1 < +∞ and so by Lemma 2.13 we recover that∫
R
W (vp(x, y)) dx ≤ C2 < +∞ for any y ∈ R. Then, since by (1.10), we have |W ′(s)|2 ≤ b̄2

b W (s) for any |s| ≤ 1
we derive that there exists a constant C3 > 0 such that ‖W ′(vp)‖2

L2(S(ζ1,ζ2))
≤ C3(ζ2 − ζ1) for any (ζ1, ζ2) ⊂ R.

Secondly we observe that since ϕp(vp) = mp if y0,u = +∞ and ϕp(vp) = 2mp if y0,u < +∞ we always have
that ‖∂yvp‖2

L2(R2) ≤ 4mp.
Then, for any (ζ1, ζ2) ⊂ R we let θ ∈ C2(R) be such that θ(y) = 0 if y /∈ (ζ1 − 1, ζ2 + 1), θ(y) = 1 for any

y ∈ (ζ1, ζ2) and ‖θ‖C2(R) ≤ 2. Defining v(x, y) = θ(y)(vp(x, y) − z0(x)) we have v ∈ H1
0 (S(ζ1−1,ζ2+1)),

‖v‖2
L2(S(ζ1−1,ζ2+1))

≤ 4‖vp − z0‖2
L2(S(ζ1−1,ζ2+1))

≤ 4C1(ζ2 − ζ1 + 2)

and moreover, since vp is a classical solution to (1.2),

∆v = θaεW
′(vp) − θ∂2

xz0 + ∂2
yθ(vp − z0) + ∂yθ∂yvp.

Then, since ∆v = θaεW
′(vp) − θ∂2

xz0 + ∂2
yθ(vp − z0) + ∂yθ∂yvp ∈ L2(S(ζ1−1,ζ2+1)) and

‖∆v‖L2(S(ζ1−1,ζ2+1)) ≤ 2(aC1/2
3 + C

1/2
1 + ‖∂2

xz0‖)(ζ2 − ζ1 + 2)1/2 + 4m1/2
p

by classical elliptic argument we recover that v ∈ H2(S(ζ1−1,ζ2+1)) and that there exists a constant C depending
only on ζ2 − ζ1 such that ‖v‖H2(S(ζ1−1,ζ2+1)) ≤ C. Then, since ‖vp − z0‖H2(S(ζ1,ζ2)) = ‖v‖H2(S(ζ1,ζ2)), our claim
follows.

In particular we obtain that the function y ∈ R → ∂yvp(·, y) ∈ L2(R) is uniformly continuous. Indeed, as
in (3.1), for any (ζ1, ζ2) ⊂ R we have

‖∂yvp(·, ζ1) − ∂yvp(·, ζ2)‖2 ≤ (ζ2 − ζ1)‖∂2
yvp‖L2(S(ζ1,ζ2)) ≤ (ζ2 − ζ1)‖vp − z0‖H2(S(ζ1,ζ2))

from which we derive that
lim

y→±∞ ‖∂yvp(·, y)‖ = 0.

Indeed, if there exist a sequence |yj| → ∞ as j → ∞ and r > 0 such that ‖∂yvp(·, yj)‖ ≥ 2r for any j ∈ N,
then by uniform continuity there exists ρ > 0 such that ‖∂yvp(·, y)‖ ≥ r for any y ∈ ∪j∈N(yj − ρ, yj + ρ) and so
ϕp(vp) ≥

∑∞
j=1

r2

2 ρ = +∞, a contradiction since ϕp(vp) < +∞.
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By Lemma 3.10 we then obtain that

lim
y→±∞F (vp(·, y)) = c3,p

and so that there exists L > 0 such that

vp(·, y) ∈ Γ3,p for any y < −L and vp(·, y) ∈ Γ3,p̄ for any y > L

where p̄ = p if y0,u < +∞ and p̄ = p∗ if y0,u = +∞. By Lemma 2.5 we deduce that there exists T > 0 such
that if |y| > L then

vp(x, y) ≥ 1 − 2δ for any x > T and vp(x, y) ≤ −1 + 2δ for any x < −T. (3.23)

We will assume that T is such that also 1 − |z0(x)| ≥ 2δ for any |x| ≥ T .
Assume now by contradiction that vp(x, y) does not converge to ±1 as x → ±∞ uniformly with respect to

y ∈ R. Then there exists a sequence (xj , yj) ⊂ R
2 such that |xj | → ∞, |yj| → ∞ as j → ∞ and 1−|vp(xj , yj)| ≥

2r > 0 for any j ∈ N. Since ‖vp‖C2(R2) < +∞ we obtain that there exists ρ ∈ (0, 1) such that 1 − |vp(x, y)| ≥ r

for any (x, y) ∈ ∪j∈NBρ((xj , yj)) (as usual we denote Bρ((xj , yj)) = {(x, y) ∈ R
2 / (x− xj)2 + (y − yj)2 < ρ2}).

Since |xj | → ∞ as j → ∞ and z0(x) → ±1 as x→ ±∞ we deduce that

lim inf
j→∞

‖vp − z0‖L2(Bρ((xj ,yj))) ≥ π1/2rρ. (3.24)

For any j, n ∈ N we set Qj,n = {(x, y) ∈ R
2 / n− 1 < |x| < n, |y − yj | < ρ}. Since, as we know there exists a

constant C > 0 depending only on ρ such that for any j ∈ N

∑
n∈N

‖vp − z0‖2
H2(Qj,n) = ‖vp − z0‖2

H2(S(yj−ρ,yj+ρ))
≤ C2

we obtain that for any j ∈ N big enough

[|xj |]
2

min
n∈{[ |xj |

2 ]+1,[|xj|]−1}
‖vp − z0‖2

H2(Qj,n) ≤
[|xj|]−1∑

n=[
|xj |
2 ]+1

‖vp − z0‖2
H2(Qj,n) ≤ C2,

where we denote with [x] the entire part of x ∈ R.
Therefore for any j ∈ N there exists n̄j ∈ {[ |xj|

2 ] + 1, [|xj |] − 1} such that

‖vp − z0‖2
H2(Qj,n̄j

) ≤
2C2

[|xj |] ·

Now, for any j ∈ N we set

Aj = {(x, y) ∈ R
2 / |x| ≥ n̄j , |y − yj| < ρ}

and we let θj ∈ C2(R2) to be a function which verifies, ‖θj‖C2(R2) ≤ 2, θj(x, y) = 1 on Aj and θj(x, y) = 0 if
|x| ≤ n̄j − 1 or |y − yj| ≥ ρ+ 1.
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Note that θj(vp − z0) ∈ H1
0 (R2) and so integrating the equation −θj(vp − z0)∆vp + θj(vp − z0)aεW ′(vp) = 0

on the strip S(yj−ρ,yj+ρ), and applying the Green Formula, we obtain

∫
S(yj−ρ,yj+ρ)

∇vp∇(θj(vp − z0)) + θj(vp − z0)aεW ′(vp) dxdy −
∫
y=yj+ρ

∂yvp(θj(vp − z0)) dx

+
∫
y=yj−ρ

∂yvp(θj(vp − z0)) dx = 0.

Then, since ‖∂yvp(·, y)‖ → 0 as y → ±∞, we conclude that∫
S(yj−ρ,yj+ρ)

∇vp∇(θj(vp − z0)) + θj(vp − z0)aεW ′(vp) dxdy → 0 as j → ∞. (3.25)

On the other hand we note that∫
S(yj−ρ,yj+ρ)

∇vp∇(θj(vp − z0)) dxdy =
∫
Qj,n̄j

∇vp∇(θj(vp − z0)) dxdy +
∫
Aj

∇vp∇(vp − z0) dxdy

=
∫
Qj,n̄j

∇θj∇vp (vp − z0) + θj∇vp∇(vp − z0) dxdy +
∫
Aj

(∇(vp − z0))2 + ∂xz0∂x(vp − z0) dxdy

≥ ‖∇(vp − z0)‖2
L2(Aj)

− ‖∂xz0‖L2(Aj)‖∂x(vp − z0)‖L2(Aj) − 2‖∇vp‖L2(Qj,n̄j
)‖∇(vp − z0)‖L2(Qj,n̄j

)

−2‖∇vp‖L2(Qj,n̄j
)‖vp − z0‖L2(Qj,n̄j

).

Then, since ‖∂xz0‖L2(Aj) → 0, ‖∇(vp − z0)‖L2(Qj,n̄j
) → 0 and ‖vp − z0‖L2(Qj,n̄j

) → 0 as j → ∞, we conclude
that

lim inf
j→∞

∫
S(yj−ρ,yj+ρ)

∇vp∇(θj(vp − z0)) dxdy ≥ 0.

Note finally that for any j ∈ N such that n̄j > T , by (3.23) and (1.8), we have that W ′′(vp(x, y)) ≥ w for all
(x, y) ∈ Aj and so we deduce that∫

S(yj−ρ,yj+ρ)

θj(vp − z0)aεW ′(vp) dxdy =
∫
Qj,n̄j

θj(vp − z0)aεW ′(vp) dxdy

+
∫
Aj

(vp − z0)aε(W ′(vp) −W ′(z0)) dxdy +
∫
Aj

(vp − z0)aεW ′(z0) dxdy

≥ aw‖vp − z0‖2
L2(Aj)

− 2a‖vp − z0‖L2(Aj)‖W ′(z0)‖L2(Aj) − 2a‖vp − z0‖L2(Qj,n̄j
)‖W ′(vp)‖L2(Qj,n̄j

).

Then, since by (3.24) we have

lim inf
j→∞

‖vp − z0‖2
L2(Aj)

≥ lim inf
j→∞

‖vp − z0‖2
L2(Bρ((xj ,yj))

≥ πr2ρ2,

and since ‖vp − z0‖L2(Qj,n̄j
) → 0 and ‖W ′(z0)‖L2(Aj) → 0 as j → ∞, we conclude that

lim inf
j→∞

∫
S(yj−ρ,yj+ρ)

θj(vp − z0)aεW ′(vp) dxdy ≥ awπr2ρ2.

Gathering the estimates above, we deduce that

lim inf
j→∞

∫
S(yj−ρ,yj+ρ)

∇vp∇(θj(vp − z0)) + θj(vp − z0)aεW ′(vp) dxdy ≥ awπr2ρ2

a contradiction with (3.25). �
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4. Appendix

In this section we will display the details of some technical result used in the previous section.

Lemma 4.1. Given u ∈ H, the function y ∈ R → F (u(·, y)) ∈ [0,+∞] is lower semicontinuous.

Proof. If yn → y0 and lim inf F (u(·, yn)) = +∞ there is nothing to prove. If otherwise there exists a subsequence
(ynk

) ⊂ (yn) such that limF (u(·, ynk
)) = lim inf F (u(·, yn)) < +∞, then, by Lemma 2.1, there exists q ∈ H1

loc(R)
such that, along a subsequence, u(·, ynk

) → q(·) weakly in H1
loc(R) and F (q) ≤ limF (u(·, ynk

)). Since, by (3.1),
u(·, ynk

) − u(·, y0) → 0 strongly in L2(R) we conclude that q(·) = u(·, y0) and the lemma follows. �

Lemma 4.2. There results Mp 
= ∅. Moreover

inf
p∈P

mp ≥ d0

√
m0

8
and sup

p∈P
mp < +∞.

Proof. Let q ∈ K3,p. We isolate the transitions of q defining qp1 , qp2 , qp3 in such a way that qpl
(x) = q(x) if

x ∈ (σl,q, τl,q) and 1 − |qpl
(x)| = 0 if x ∈ R \ (σl,q − 1, τl,q + 1), l = 1, 2, 3. In fact given l = {1, 2, 3}, we set

qpl
(x) =




(−1)l if x ≤ σl,q − 1,
(−1)l(σl,q − x) + (−1)l(1 − δ0)(x− σl,q + 1) if σl,q − 1 < x ≤ σl,q,

q(x) if σl,q < x < τl,q,

(−1)l+1(1 − δ0)(τl,q + 1 − x) + (−1)l+1(x− τl,q) if τl,q ≤ x ≤ τl,q + 1,
(1)l+1 if x ≥ τl,q + 1.

We define now q0(x) = qp1(x) + qp2(x) + qp3(x) and we observe that nt(q0) = 3 and (σl,q0 , τl,q0) = (σl,q, τl,q) ⊂
Apl

\ ∪j∈ZOj for any l ∈ {1, 2, 3}.
Let t1, t2, t3 be such that tl ∈ (σl,q0 , τl,q0) and q0(tl) = 0. Set moreover Tl = pl+x+1

ε − tl, T̃l = tl − pl+x
ε and

note that Tl + T̃l = 1
ε for any l ∈ {1, 2, 3}.

Define

u(x, y) =




q(x) if y ≤ −1,

−q(x)y + q0(x)(y + 1) if − 1 < y ≤ 0,∑3
l=1 qpl

(x− yTl) if 0 < y ≤ 1,∑3
l=1 qpl

(x− Tl − (y − 1)T̃l) if 1 < y ≤ 2,

q0(x− 1
ε )(3 − y) + q(x− 1

ε )(y − 2) if 2 < y ≤ 3,

q(x− 1
ε ) if y > 3,

and note that u ∈ H, limy→−∞ d(u(x, y),K3,p) = 0 and letting p′ = p + (1, 1, 1) we have p′ ∈ P , q(x −
1
ε ) ∈ K3,p′ and so limy→+∞ d(u(x, y),K3,p′) = 0. Since, by Lemma 2.10, d(K3,p,K3,p′) ≥ 3d0, we obtain
lim infy→+∞ d(u(x, y),K3,p) ≥ 3d0.

We show now that F (u(·, y)) ≥ c3,p for any y ∈ R and so u ∈ Mp.
First of all note that F (u(·, y)) = c3,p for any y ∈ R \ (−1, 3). If y ∈ (−1, 0] then u(·, y) is a convex

combination of the two functions q and q0, therefore nt(u(·, y)) = 3 and (σl,u(·,y), τl,u(·,y)) = (σl,q, τl,q) ⊂ Apl
for

any l ∈ {1, 2, 3}. We have either F (u(·, y)) ≥ c∗ or F (u(·, y)) < c∗ and in both the cases we have F (u(·, y)) ≥ c3,p.
Indeed, if F (u(·, y)) < c∗ then u ∈ Γ3,p and so F (u(·, y)) ≥ c3,p. The same reasoning can be used to show that
if y ∈ (2, 3] then F (u(·, y)) ≥ c3,p. Let us now consider the case y ∈ (0, 1]. We have u(·, y) =

∑3
l=1 qpl

(x − yTl)
and so nt(u(·, y)) = 3 and

(σl,u(·,y), τl,u(·,y)) = (σl,q + yTl, τl,q + yTl) for any l ∈ {1, 2, 3}.
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If (∪3
l=1(σl,q + yTl, τl,q + yTl)) ∩ (∪j∈ZJj) 
= ∅ then, by Lemma 2.5 we have F (u(·, y)) > c∗. If (∪3

l=1(σl,q +
yTl, τl,q + yTl))∩ (∪j∈ZJj) = ∅, since σl,q + yTl ∈ Apl

, we have (σl,q + yTl, τl,q + yTl) ⊂ Apl
for any l ∈ {1, 2, 3}.

Then, as above, if F (u(·, y)) ≤ c∗, we have u(·, y) ∈ Γ3,p and so F (u(·, y)) ≥ c3,p. Analogous is the case y ∈ (1, 2]
and, as claimed, u ∈ Mp follows.

Now, we will find a constant C > 0, independent on p ∈ P , such that ϕp(u) ≤ C, proving in this way that
supp∈P mp < +∞.

To this aim note that since Tl + T̃l ≤ 1
ε for any l ∈ {1, 2, 3}, we have

ϕp(u) ≤
∫ 0

−1

1
2
‖q − q0‖2 + F (−yq + (y + 1)q0) − c3,p dy +

∫ 2

0

1
2ε2

3∑
l=1

‖q̇pl
‖2 +

3∑
l=1

F (qpl
) − c3,p dy

+
∫ 3

2

1
2
‖q0 − q‖2 + F ((3 − y)q0 + (y − 2)q) − c3,p dy.

It is simple to recognize that there exists C > 0 such that

∫ 2

0

1
2ε2

3∑
l=1

‖q̇pl
‖2 +

3∑
l=1

F (qpl
) − c3,p dy ≤ C

for any p ∈ P . Indeed
∑3

l=1 ‖q̇pl
‖2 ≤ ‖q̇‖2 + 6δ02 ≤ 2c∗ + 6δ02 and, arguing as in the proof of Lemma 2.3 and

by Lemma 2.6, (2.14),
∑3

l=1 F (qpl
) ≤ F (q) + 6m0

16 < c∗ +m0 for any p ∈ P .
Let us now estimate the term∫ 0

−1

1
2
‖q − q0‖2 + F (−yq + (y + 1)q0) − c3,p dy.

Since F (q) = c3,p and since, by Lemma 2.5, 1 − |q(x)| ≤ 2δ for any x ∈ R \ (∪3
l=1(σl,q , τl,q)), then, by (1.9) we

obtain that ∫
R\(∪3

l=1(σl,q ,τl,q))

χ(q)2 dx ≤ 2c∗

aw
·

Therefore

‖q − q0‖2 ≤ 2
∫

R\(∪3
l=1(σl,q,τl,q))

χ(q)2 + χ(q0)2 dx ≤ 4c∗

aw
+ 12δ02.

To evaluate
∫ 0

−1 F (−yq+(y+1)q0) dy note firstly that since ‖q̇0‖2 ≤ ‖q̇‖2 +6δ02 and since ‖q̇‖2 ≤ 2c∗, we have

‖ − yq̇ + (y + 1)q̇0‖2 ≤ 2(‖q̇‖2 + ‖q̇0‖2) ≤ 8c∗ + 12δ02 for any y ∈ (−1, 0).

Hence ∫ 0

−1

F (−yq + (y + 1)q0) dy ≤ 4c∗ + 6δ02 +
∫ 0

−1

∫
R

aεW (−yq + (y + 1)q0) dxdy.

Observe now that for any y ∈ (−1, 0) we plainly have
∫
∪3

l=1(σl,q,τl,q)

W (−yq + (y + 1)q0) dx ≤ 3
ε

max
|s|≤1

W (s).

Note moreover that for any y ∈ (−1, 0) there results

| − yq(x) + (y + 1)q0(x)| ≥ 1 − 2δ for any x ∈ R \ (∪3
l=1(σl,q , τl,q))
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and so by (1.9) we obtain that for any y ∈ (−1, 0)∫
R\(∪3

l=1(σl,q,τl,q))

W (−yq + (y + 1)q0) dx ≤ w

2

∫
R\(∪3

l=1(σl,q,τl,q))

χ(−yq + (y + 1)q0)2 dx.

Then observe that

χ(−yq(x) + (y + 1)q0(x)) ≤ χ(q0(x)) + |y(q0(x) − q(x))| ≤ χ(q0(x)) + |q(x) − q0(x)|,

for any x ∈ R and y ∈ (−1, 0]. Therefore since as one plainly recognizes

χ(q0(x)) = 0 and χ(q(x)) = |q(x) − q0(x)| for any x ∈ R \ (∪3
l=1(σl,q − 1, τl,q + 1))

and since
χ(−yq(x) + (y + 1)q0(x)) ≤ 2δ for any x ∈ ∪3

l=1((σl,q − 1, σl,q) ∪ (τl,q , τl,q + 1)),
we obtain that,∫

R\(∪3
l=1(σl,q,τl,q))

χ(−yq + (y + 1)q0)2 dx ≤ 24δ
2

+
∫

R\(∪3
l=1(σl,q−1,τl,q+1))

χ(q)2 dx

≤ 24δ
2

+
c∗

aw
·

This proves that there exists a constant C > 0 independent from p ∈ P such that
∫ 0

−1
1
2‖q − q0‖2 + Fa(−yq +

(y + 1)q0) − c3,p dy ≤ C. Similarly one shows that
∫ 3

2
1
2‖q0 − q‖2 + Fa((3 − y)q0 + (y − 2)q) − c3,p dy ≤ C for

any p ∈ P .
Finally observe that if u ∈ Mp then by (3.1) there exists (a, b) ⊂ R such that d(u(·, y),Γ3,p) ∈ (d04 ,

d0
2 ) for

any y ∈ (a, b) and ‖u(·, a)−u(·, b)‖ = d0
4 · Then by Remark 2.3 we recover that F (u(·, y)) ≥ c∗ for any y ∈ (a, b)

and by (3.2) and Lemma 2.6 we obtain

mp ≥
√

2(c∗ − c3,p)
d0

4
≥ d0

√
m0

8
for any p ∈ P , (4.1)

concluding the proof of the lemma. �
Lemma 4.3. If (un) ⊂ Mp, F (un(·, 0)) → c3,p and un(·, 0) ∈ Γ3,p̄ for a p̄ 
= p then lim inf ϕp,(−∞,0)(un) ≥ mp.

Proof. By Lemmas 2.1 and 2.7 there exists q ∈ Γ3,p̄ such that F (q) ≤ c3,p and a subsequence of (un), still
denoted (un), such that, setting vn(·) = un(·, 0) − q(·), there results vn(·, 0) → 0 in L∞

loc(R) and v̇n → 0 weakly
in L2(R).

We set tn = sup{t ∈ [0, 1] / F (q + tvn) ≤ c3,p}, and we note that by continuity F (q + tnvn) = c3,p for any
n ∈ N.

We define the new sequence

ũn(x, y) =



un(x, y) if y ≤ 0,
qn(x) + (1 − tn − y)vn(x) if 0 ≤ y ≤ 1 − tn,

qn(x) iif y ≥ 1 − tn.

Let us observe that ũn ∈ Mp and so that ϕp(ũn) ≥ mp. Then, since

ϕp,(−∞,0)(un) = ϕp(ũn) −
∫ 1−tn

0

1
2
‖vn‖2 + F (qn(·) + (1 − tn − y)vn(·)) − c3,p dy,
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the Lemma follows once we prove that as n→ ∞ we have

∫ 1−tn

0

1
2
‖vn‖2 + F (qn(·) + (1 − tn − y)vn(·)) − c3,p dy → 0. (4.2)

To this aim we observe that since F (q+ vn)−F (q+ tnvn) → 0, vn → 0 in L∞
loc(R) and v̇n → 0 weakly in L2(R),

we have that for any T > 0 there results

(1 − t2n)
2

‖v̇n‖2 +
∫
|x|>T

aε(W (q + vn) −W (q + tnvn)) dx→ 0 as n→ ∞.

Since q and q+vn belong to Γ3,p̄, by Lemma 2.5 there exists T0 > 0 such that if |x| > T0 then |q(x)| ∈ [1−2δ, 1],
|q(x) + vn(x)| ∈ [1 − 2δ, 1] and so also |q(x) + tnvn(x)| ∈ [1 − 2δ, 1]. By convexity of W around the points −1
and 1, we recover that for any |x| ≥ T0 we have W (q(x) + tnvn(x))) ≤ (1− tn)W (q) + tnW (q+ vn) and so that
for any T > T0

1 − t2n
2

‖v̇n‖2 + (1 − tn)
∫
|x|>T

aεW (q + vn) dx ≤ (1 − tn)
∫
|x|≥T

aεW (q) dx + o(1) as n→ ∞.

Moreover, by (1.9), we obtain that for any |x| ≥ T0 there results aεW (q + vn) ≥ a bχ(q + vn)2 = a b(χ(q) −
sgn(x)vn)2 and so we recover that for any T > T0

1 − t2n
2

‖v̇n‖2 + (1 − tn)a b
∫
|x|>T

(χ(q) − sgn(x)vn)2 dx ≤ (1 − tn)
∫
|x|≥T

aεW (q) dx + o(1) as n→ ∞.

Then, since
∫

R
aεW (q) dx < +∞,

∫
R
χ(q)2 dx < +∞ and since ‖vn‖ ≤ diam(Γ3,p̄) ≤ D for any n ∈ N, it is

immediate to verify that for any η > 0 there exists Tη > 0 such that

(1 − t2n)
2

‖v̇n‖2 + (1 − tn)a b
∫
|x|>Tη

v2
n dx ≤ η + o(1) as n→ ∞.

This last inequality, since vn → 0 in L∞
loc(R), implies

(1 − tn)‖vn‖2
H1(R) → 0 as n→ ∞. (4.3)

By (4.3) it is simple to derive (4.2). Indeed
∫ 1−tn
0

1
2‖vn‖2 dy = 1

2 (1 − tn)‖vn‖ → 0 directly by (4.3). Moreover,
using Lemma 2.13, since F (q + tnvn) = c3,p, it is not difficult to obtain that there exists C > 0 such that

F (qn + (1 − tn − y)vn) − c3,p = F (q + (1 − y)vn) − F (q + tnvn) ≤ C(1 − tn − y)‖vn‖H1(R)

for any n ∈ N and y ∈ [0, 1 − tn]. Then, by (4.3),
∫ 1−tn
0

F (qn + (1 − tn − y)vn) − c3,p dy → 0 and the lemma
follows. �
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Lemma 4.4. If u ∈ H, p ∈ P and y0 ∈ R are such that:
i) d(u(·, y),K3,p) → 0 as y → −∞ and u(·, y0) ∈ Γ3,p̄ for a p̄ 
= p;
ii) F (u(·, y) ≥ c3,p for all y < y0 and lim infy→y−0

F (u(·, y)) = c3,p,
then ϕp,(−∞,y0)(u) ≥ mp.

Proof. Let yn → y−0 be such that u(·, yn) ∈ Γ3,p̄ for any n ∈ N and F (u(·, yn)) → c3,p. Setting vn(·) =
u(·, y0) − u(·, yn) let moreover tn ∈ [0, 1] be such that F (u(·, yn) + tnvn) = c3,p and F (u(·, yn) + tvn) > c3,p for
any t ∈ [0, tn). Then, using (3.1), it is not difficult to recognize that for any n ∈ N the function

un(x, y) =



u(x, y + yn) if y < 0
u(x, yn) + yvn if 0 ≤ y < tn

u(x, yn) + tnvn if y ≥ tn

belongs to Mp, that F (un(·, 0)) → c3,p and that un(·, 0) ∈ Γ3,p̄. By Lemma 4.3 we obtain that

mp ≤ lim inf
n→∞ ϕp,(−∞,0)(un) = lim inf

n→∞ ϕp,(−∞,yn)(u) = ϕp,(−∞,y0)(u),

and the lemma follows. �
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