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ENTIRE SOLUTIONS IN R? FOR A CLASS OF ALLEN-CAHN EQUATIONS *

FRANCESCA ALESSIO! AND PIERO MONTECCHIARI!

Abstract. We consider a class of semilinear elliptic equations of the form

—&®Au(z,y) + a(z)W (u(z,y)) =0, (z,y) € R® (0.1)

where € > 0, a : R — R is a periodic, positive function and W : R — R is modeled on the classical
two well Ginzburg-Landau potential W (s) = (s> — 1)2. We look for solutions to (0.1) which verify
the asymptotic conditions u(z,y) — +1 as x — oo uniformly with respect to y € R. We show via
variational methods that if € is sufficiently small and a is not constant, then (0.1) admits infinitely
many of such solutions, distinct up to translations, which do not exhibit one dimensional symmetries.
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1. INTRODUCTION

In paper we deal with a class of semilinear elliptic equations of the form
—e2Av(z,y) + a(x)W' (v(z,y)) =0, (1.1)
((z,y) € R?) or equivalently (setting u(z,y) = v(ew,y))
—Au(x,y) + alex)W' (u(z,y)) =0, (1.2)

where we assume ¢ > 0 and

(H1) a:R — R is not constant, 1-periodic, positive and Holder continuous,

(Hy) W € C*(R) satisfies W(s) > 0 for any s € R, W(s) > 0 for any s € (—1,1), W(£1) = 0 and W”(£1) > 0.
This kind of equation arises in various fields of Mathematical Physics. As an example, when W is the classical
two well Ginzburg-Landau potential, W (s) = (s2 —1)?, (1.2) can be viewed as a generalization of the stationary
Allen-Cahn equation introduced as a model for phase transitions in binary metallic alloys. Another kind of
equation of the Mathematical Physics that fits in our assumption is the stationary version of the so called
Sine-Gordon equation, corresponding to taking W(s) = 1+ cos(ws), potential which has been applied to several
problems in condensed state Physics like for instance the propagation of dislocations in crystals. The function v,
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in these models, is considered as an order parameter describing pointwise the state of the material. The global
minima of W represent energetically favorite pure phases and different values of v depict mixed configurations.

We look for existence and multiplicity of two phases solutions of (1.2), i.e., solutions of the boundary value
problem

{Au(:c, y) +alex)W' (u(z,y)) =0, (z,y) € R? (1.3)

lim w(z,y) = +1, uniformly w.r.t. y € R.
r—Fo0

That kind of problem has been extensively studied under various points of view. In [11], N. Ghoussoub and
C. Gui partially proved a De Giorgi’s conjecture (see [9]) regarding (1.3). The following result is a particular
consequence of their study.

Theorem 1.1. If a(z) = ag > 0 for any x € R and if u € C*(R?) is a solution of (1.3), then u(z,y) = q(z) for
all (z,y) € R%, where q € C?(R) is a solution of the problem

x

—i(z) + agW'(q(z)) =0, z€R
Elilooq(x) =+1.

By Theorem 1.1, when equation (1.2) is autonomous, any solution of (1.3) depends only on the = variable being
in fact a solution of the corresponding ordinary differential equation. We have to remark that the result in [11],
as the De Giorgi conjecture, deals with an asymptotic condition weaker than the one in (1.3), asking that the
limits £1 are realized only pointwise with respect to y € R and that w is increasing in the variable . In such
a case in [11] it is proved that the conclusion in Theorem 1.1 is still true modulo a space roto-translation. We
mention that in this form the De Giorgi conjecture is still open in R™ for n > 4 while it was recently proved in
[5] for n = 3 (see also [2]). The assumption, as in the problem (1.3), that the limits are uniform with respect
to y € R™ 1, simplifies in fact the matter and the question of De Giorgi, known in this setting as Gibbons
conjecture, is nowadays completely solved for any n > 2, see [7,8,10].

All these results show that, in the autonomous case, the problem (1.3) is in fact one dimensional and the set
of its solutions can be considered in this sense trivial. This is not the case, in general, for systems of autonomous
Allen Cahn equations as shown in [1] and this is not the case for non autonomous z-dependent Allen Cahn
type equation as shown in [3]. In fact, in [3] it is proved that introducing in the potential a non trivial periodic
dependence on the single variable z, as in (1.2), the one dimensional symmetry of the problem disappears. The
existence of at least two solutions of problem (1.3), distinct up to translations, depending on both the planar
variables x and y is displayed when ¢ is sufficiently small. This reveals that for the z-dependent Allen Cahn
type equations (1.2) even the weaker Gibbons conjecture decades.

Pursuing the study started in [3], aim of the present paper is to show that the introduction of a space
a-dependence leads to a complicated structure of the set of solutions of problem (1.3). In particular we show
that, if € is sufficiently small, it always admits infinitely many solutions depending on both the planar variables
and distinct up to space translations.

To state precisely our result it is better to recall some of the properties of the one dimensional problem
associated to (1.3),

{d(:ﬂ) +a(ex)W'(g(x)) =0, zeR, (1.4)

lim g¢(x) = +£1.

z—+o0

As it is nowadays well known, when a is not constant and ¢ is sufficiently small, the problem (1.4) admits the
so called multibump dynamics. To be precise, let zgp € C*°(R) be an increasing function such that zo(x) — +1
as ¢ — £o00 and |zo(z)| = 1 for any |z| > 1, and define the action functional

Fla) = [ FH@F + aleoWa(o) do
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on the class

I'={q€ H,.(R)/|lqllL=m@ =1and ¢ — z € H(R)}.
Then (see Sect. 2) there exists dp € (0,1/4) and g9 > 0 such that for any ¢ < g there is a family of open
intervals {(t;, t;r) / j € Z} verifying

_ -1 .
t;‘:tjﬂand tj—tj = for any j € Z,

for which, for any odd integer number k, for any p = (p1,...,px) with p1 < ps < -+ < pi € Z, setting
ckp =if{F(q) /q €T, |qt,,) — (—1)"| < b and [q(t;) — (-1)"!| <o fori=1,....k}

and
Kip={¢€T/F(q) = crp, |q(t;i) —(=1)*] < ép and |q(t;i) — (=) <y fori=1,....k}
we have that Ky , is not empty, and constituted by k-bump solutions of (1.4).

In particular the 1-bump solutions are global minima of F' on I' at the level ¢ = ¢; , = minp (). Moreover
it can be proved that, since a is not constant, when ¢ is sufficiently small the following non-degeneracy condition
holds:

K={qeTl/F(q) =c}=Upezk1p,
where the sets K1, C I' are compact and uniformly separated in I' (with respect to the H'(R) metric).

In [3] the existence of solutions depending on both the planar variables is proved looking for solutions to

problem (1.3) which are asymptotic as y — Fo0 to different minimal sets Ky ,,_, K1, . More precisely, letting

H = {u € Hyo(R?) / ||ull o2y < 1 and u— 20 € Ny coycr ' (R x (¢1,G2))},

in [3] it is shown that fixed p_ = 0 there exists at least two different values of p; € Z \ {0} for which there
exists a solution v € H of (1.3) such that

d(u(-,y), K1p.) — 0, as y — oo,

where, if ¢ € ' and A C T', we denote d(q(-), A) = inf{|l¢ — qllz2r) /¢ € A} (in fact, as shown in [13], there
results py = £1),

In the present paper we strengthen that result showing that (1.3) admits infinitely many solutions u €
HNC?(R?) with d,u # 0, which emanate as y — —oo from different 3-bump solutions of (1.4). In fact we prove

Theorem 1.2. There exists eg > 0 for which for any e € (0,eq) there exists pg € N such that if p = (p1,p2, p3) €
Z3 wverifies min{pz — p1,ps — p2} > po then there exists a solution u € H N C*(R?) of (1.3) such that dyu # 0
and limy,_, o d(u(-,y), K3 p) = 0.

We find these solutions using a variational argument which generalizes the one introduced in [3].

In [3], following a renormalization procedure inspired by the one introduced by P.H. Rabinowitz in [15, 16],
the solutions are found as minima of the renormalized action functional

Pl = [ 510,06 e + (Flut) =) dy
on the set

Mp_p ={ue | lim d(u(.y).Kip.) =0}

The fact that ¢ is the minimal level of F' on I" implies that for any v € M,_ ,,, the function y — F(u(-,y)) —c
is non negative and so the functional ¢ is well defined with values in [0, +o0]. Moreover, the discreteness of
the minimal set K allows us to show that if u € M,,_,, and ¢(u) < 400 then sup,cg d(u(-,y), 1, ) < +00.
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This excludes “sliding” phenomena for the minimizing sequences (see [1]) possibly due to the non compactness
of the domain in the z-direction. The lack of compactness in the y-direction is then overcame via concentration
compactness techniques.

Following that argument, to find solutions to (1.3) asymptotic to 3-bump solutions, fixed p € P =
{(p1,p2,p3) € Z* / p1 < p2 < p3}, we may consider the set

My ={ueH/ ygrjlood(u(-,y),Kg,p) =0, 1imJirnfd(u(-,y),lC37p) > 0}.

Y—T00

A difficulty arises when we try to define on M; a suitable renormalized functional. Indeed, differently from
the 1-bump case, the set K3, is not minimal for ' on I' and if u € M;, the function y — F(u(-,y)) — c3, is
indefinite in sign. In other word the natural renormalized functional

eol) = [ 0,06 e + (Fla.9) = ) dy

is not well defined on Mp. To overcome that difficulty we make use of a natural constraint of the prob-
lem. Indeed, we observe that any solution v € H of (1.2) on the half plane R x (—o0,yp), which satisfies
d(u(-,y),Ksp) — 0 as y — —oo, and fRX(_OO o) |0yu(z,y)|? de dy < +o0, verifies the property

1
F(u(,y)) = eap+ 510yuC )12, VY € (=00,50), (1.5)

a sort of conservation of Energy. In particular (1.5) implies that F'(u(-,y)) > ¢3,p for any y € (—o0, yo) and that
suggests us to define, given p € P, the set

M, = {u € My / inf F(u(-,y)) > 03,1,}
yER
on which we look for minima of the natural renormalized functional ¢, which is well-defined there.

As in the one bump case, to avoid sliding phenomena, we have to show that if u € M, and ¢,(u) < 400
then sup, g d(u(+,y),Ks,5) < +oco. This is done studying the discreteness properties of the level set {F' = c3,}
showing that we have sufficient compactness in the problem whenever min{ps — p1, ps — p2} is sufficiently large,
but not in general for any p € P.

That allows us to prove that for such kind of p, the minimizing sequences of ¢, on M, converges up to
subsequences, weakly in H IIOC(RQ). Unfortunately we can not say that the limit functions u, are minima of ¢,
on M, since the constraint infyer F'(up(-,y)) > c3,p is not necessarily satisfied. However we recover that u, € H
and that lim, . d(u(-,y), K3,) = 0. Moreover, setting

Yo,u = inf{y € R /d(up(,y), Ksp) > 0 and F(up(-,y)) < csp}

Yo F(up(-,y)) = c3p and that u, is a

we prove that hminfyﬁyofu d(up(-,y),Ksp) > do > 0, that liminf,
classical solution of (1.2) on the set R x (—00, Yo,u)-

If Yo, = +00, we conclude that u, € M, N C?(R?) is a solution to (1.2). Differently from the one bump
case we are not able to precisely characterize the asymptotic behaviour of this kind of solutions as y — 4o0.
Anyway we can say that in this case there exists a p’ # p € P such that u,(-,y) remains for large values of y
nearby the set KCs ;.

If otherwise yo., € R, we have that u, solves (1.2) only on the half plane R x (—o0, yo,.,). Using the conserva-
tion of Energy (1.5), we show that in such case u, satisfies the Neumann boundary condition 9yu,(-, yo..) = 0.

This will allow us to recover, by reflection, an entire solution to (1.2) even in this case.
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More precisely, setting

U’P(may)a ifySyo,u,

. if Yo,u € R,
Up (%, 2900 — Y), i Y > Yo,us “

Up = Up, if Yo,u = +o0, and /UP(I’ y) = {

we get that v, € H N C?(R) is a classical solution (of homoclinic type if yo, € R and of heteroclinic type if
Yo,u = +00) of (1.2) verifying 9,v, # 0. The fact that v, is actually a solution of (1.3) follows now in a standard
way since sup,cg d(vy(-,y), K3 p) < +00 and ¢y (v,) < +oc.

We finally want to point out some comments on our result.

First, we note that the proof described above can be adapted to find solutions asymptotic as y — —oo to
k-bump solutions for any k € N. Moreover that Energy constraint can be used even in other contests and to find
other kind of solutions. We think in particular to the possibility of finding periodic solutions of the brake orbits
type (in the y-variable), and to study the case in which the function a has more general recurrence properties
(e.g. a almost periodic).

Another remark regards the connection of our result with the ones obtained for the “fully” non autonomous
case, i.e.,

{_EQAu +a(e,y)W(u(z,y)) =0, (r,y) €R? (1.6)

lim u(x,y) = %1, uniformly w.r.t. y € R,
r—Fo0

where a is periodic in both variables. That kind of problem, and even in a more general setting, has been
already considered for example in the papers [4,6,12-14]. In these papers the existence of a wide variety of
solutions has been shown. However, in this setting, the existence of solutions asymptotic to periodic solutions
in the variable y and of the k-bump type in the variable x is still an open problem and the present work gives
a partial positive answer in that direction.

Some constants and notation. Before starting in our study we fix here some constants and notation which
will be used in the rest of the paper.
By (H1) there exist z,T € [0,1) such that

alz) =a = rtléiﬂga(t), a(T)=a= rgleaﬂéca(t). (1.7)

Considering if necessary a translation of the function a, we can assume that z < 7.
By (Ha) there exists 6 € (0,4) and W > w > 0 such that

w > W' (s) > w for any |s| € [1 — 26,1+ 24]. (1.8)

In particular, setting x(s) = min{|1 — s|, |1 + s|}, we have that

if |s| € [1 — 24, 1], then %X(s)2 <W(s) < gx(s)2 and [W'(s)| < wx(s). (1.9)
Therefore there exist b, b > 0 such that
bx(s)? < W(s) and [W'(s)] < bx(s), Vs| < 1. (1.10)
For any 6 € (0,1) we denote
ws = min W(s) (1.11)

|s|<1-5
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and we note that ws > 0 for any 6 € (0,1). Moreover we define the constants

_ 1 a
m = /2aw5 6 and mozmin{a,g—l}m. (1.12)

Note that, since a is not constant, @ > a and so mg > 0.
Finally, for a given ¢ € L?(R) we denote ||g|| = ||q|| L2(r)-

2. THE ONE DIMENSIONAL PROBLEM

In this section, letting a.(x) = a(ex), we focalize our study to the ODE problem associated to (1.3), namely,
—=q(t) +a:()W'(q(t)) =0, tEeR, (2.1)
lim; 4o q(t) = £1. '

In particular we are interested in some variational aspects of the problem.
Let zp € C*°(R) be an increasing function such that zo(t) — 1 as t — oo and |z9(¢)| = 1 for any |¢| > 1.
We define the class
I'={g€ Hj(R)/|lgllee@ =1 and ¢ — 20 € H'(R)},

on which we consider the action functional
1.
Fuul) = [ 5107 +a (W (a(t) .

Note that the functional Fj_ is a continuous and in fact a Lipschitz continuous positive functional on I' endowed
with the H*(R) metric (see Lem. 2.13 in the appendix). Note also that in fact F,_(q) is well defined with value
in [0, 400] whenever q € H}, (R).

For future references we introduce also the set

F={¢e L®R)/|lqllr~m =1 and g — 20 € L*(R)}
which is in fact the completion of I with respect to the metric

d(q1,q2) = lla1 — @2l 2 w)-

The main objective of this section will be to study some discreteness properties of a particular sublevel of Fy,_
in T for ¢ small enough.

First we remark that, due to the unboundedness of R, the sublevels of Fj,_ in I' are not precompact in any
sense. In fact, it is sufficient to note that given a function ¢ € I' we have that the sequence ¢, (-) = q(- — Z) is
such that Fy,_(¢n) = F,.(q) for any n € N and ¢,(t) — —1 ¢ T for any ¢t € R as n — oco. Anyway, it is simple
to recognize that the sublevels of F,_ are (sequentially) weakly precompact in H} (R). In fact, denoting by
{F,. <c} theset {qg €T |F,. (¢q) <c} for every ¢ > 0, the following result holds
Lemma 2.1. Let (¢,) C {Fa. < ¢} for some ¢ > 0. Then, there exists g € H} (R) with ||q|| e ®) < 1 such that,
along a subsequence, ¢, — q in LS. (R), ¢, — ¢ weakly in L*(R) and moreover F,_(q) < liminf, . Fa_(qs)

[oS)
loc

Proof. Let £ = liminf, o Fy,(¢n). Up to a subsequence, we can assume that F,_(¢,) — ¢ as n — oo. Since
lgnllL=®) < 1 and ||¢n| < 2¢, there exists ¢ € H}. (R) and a subsequence of (¢,), denoted again (gy,), such
that ¢, — ¢ weakly in H} (R) (and so strongly in L{° (R)) and such that ¢, — ¢ weakly in L*(R). Then,
llall L@y < 1. By weak semicontinuity of the norm, we obtain ||¢|| < liminf, .. ||| and by the pointwise

convergence and the Fatou Lemma, we get [, a-W(q) dt < liminf, . [; a-W(q) dt. O
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The autonomous problem

Given a positive continuous function 3, we denote Fj(q) = [ %|(j|2 + B(t)W(q)dt. Moreover, if I is an
interval in R we set Fp ;(q) = [; 34> + B(t)W (q) dt.

It will be useful to recall some properties of the functional Fjg when [ is a given positive constant. First,
setting

Cp = inf Fb,
r

using standard argument (see e.g. [3]), it can be proved that if @ € T is such that Fy,(Q) = ¢, then it is a
classical solution to the autonomous problem

{—éj(t) + bW'(q:(t)) =0, teR )

limy 400 g(t) = £1.

Moreover we have

Lemma 2.2. For every b > 0 the problem (P,) admits a unique solution in ', modulo time translation. Such
solution is increasing, is a minimum of Fy, on T' and ¢, = Vbe.

Proof. Tt is standard to show that (P;) admits a solution @ € T" which is a minimum on I of the functional F,. To
show that @ is increasing we argue by contradiction assuming that there exist o < 7 € R such that Q(o) = Q(7).
Then the function

o Q) ift <o,
Q(t){Q(t—i—T—a) ift > o,

belongs to I' and moreover ¢, < Fy(q) = Fy(Q) — [ $|Q|> + bW (Q)dt. Then [} 1|Q[*> + bW (Q)dt = 0 and
we deduce that @ is constantly equal to 1 or —1 on the interval (o, 7), a contradiction since Q solves (P).
Note now that since the problem (P) is invariant by time translations, all the functions Q(- — 7), 7 € R, are
classical solutions to (P,) and in fact, it is a simple consequence of the maximum principle that all the solutions
to (Py) which are in T" belong to this family. Indeed, let ¢ € ' be a solution of (P,) and tp € R be such that
q(t) < —1+20 for any t <ty and G(tg) = —1 + 2. Let moreover 79 € R be such that Q(typ — 79) + 1 = 26 and
set h(t) = (q(t) — Q(t — 79))?. We have

h(t) = 2(4(t) = Q(t — 10))(@(t) — Q(t — 7)) + 2/A(t)]* = 20(W'(q(t)) — W'(Q(t — 1)) (@(t) — Q(t —70)),

and since, by (1.8), there results (W'(s1) — W'(s2))(s1 — s2) > w(s1 — s2)? for any s1,s2 € [-1 — 26, —1 + 2_],
we conclude that

h(t) > 2bw h(t) Vit < T

Since h(tg) = 0 and lims—, o h(t) = 0, by the maximum principle we conclude that h(t) = 0 for any ¢ < ¢, and
50, by uniqueness of the solution of the Cauchy problem, that q(t) = Q(¢t — 79) for any t € R.

Let now b # d > 0. Setting ¢(t) = Q(\/gt) we have

=20 (2) = (o {2) vt
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i.e., q is a solution of problem (P,). Since, as we have proved, all the solutions of (P;) in I' are minima of Fy
on I, we have Fy(q) = ¢4. Therefore

o= [ SliOF +aW(g(e) d
55 [l (@t>| ava [w <Q (@t)) dt - %@AIQ(S)IQdS+m4W(Q(S))dS
- @ (% [1ewras+s [ W(Q(S))d8> - @ F(Q) = @
In particular we obtain ¢, = vVb¢; for any b > 0. O

In the following, we will denote by ¢, the unique solution to (P,) in I' which verifies ¢,(0) = 0.

Remark 2.1. Since the equation —¢(t) + bW’ (¢(t)) = 0 is reversible, the results concerning (P,) reflect on the
symmetric problem

{ —(t) + bW (g(t) =0, z€ER )

) Py)
limy 400 q(t) = F1. (

In fact, the problem (Py) has only one solution in T' = {q € H},_(R)|¢(—t) € T}, modulo time translations, and
if we denote by Gp the solution which verifies G,(0) = 0, we have ¢, (t) = g»(—t) for all ¢ € R. Moreover we have
Fb(qb) = inff Fb = Cp.

The constants pg, dp, €9 and c*

Here below we display some estimates concerning the functionals F, with b € [a,a], the range of the func-
tion a., and fix some constants which will remain unchanged along the paper. In particular, note that the
functionals F, and Fg bound respectively from below and above the functional F,_ for any € > 0.

The basic remark is that for any & € (0,1), if ¢ € " is such that |g(t)] <1—6 for any t € (o,7) C R, then

by (1.11)
1

Fyom(@) > mk](ﬂ —q(0)[* + aws (1 — o) > \/2aws |q(T (2.2)
As direct consequence, recalling the definition of ¢ in (1.8) and the ones of m and mg given in (1.12), we
recover that if ¢ € I' is such that |g(t )| < 1-6 for any t € (0,7) and |q(7) — q(0)] = J then, by (2.2),

Fo(0,r(q) > m > 2mg. Hence, since 0 < we recognize that F(g) > 6m for any ¢ € I'. Then ¢, > 6m, and,
by Lemma 2.2 and the definition of myq in (1 12), we obtain

o — cq = <£1>ca26<%1>m26m0.

By the previous estimate, since by Lemma 2.2 the function b — ¢ is continuous on [a, @], we can fix ¢ < @ € (a, @)
and po > 0 such that

alz+t)<a and a(T+t)>a, Y t] < 2po. (2.4)

L (R) verifies ¢(0) = (=1)!(1 — 6) and ¢(7) = (—1)"*(1 - §)
for certain o < 7 € R, I € N. If § > 0, one easily guess that Fy, , y(q) > c; — 0s with o5 — 0 as § — 0. The
following lemma fix a dg > 0 in such a way the o5, is comparable with the constant mg fixed in (1.12) for any
b€ [a,Tl.

Given § € [0,1), assume that a function ¢ € H}
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Lemma 2.3. There exists 5 € (0,0) such that if ¢ € T verifies q(0) = (—1)'(1— o) and q(7) = (=1)"*F(1— &)
for some o < T eR, €N, then

Proof. Let &y € (0,0) such that \s, = (1 + ZZ)%

3 /72 16 °
(—1)! ift<o-—1,
qo)t—oc+ 1)+ (-D)i(t—0) ifo—-1<t<o,
qt) =< q(t) ifo<t<r,
)T +1—t)+ (D)t —7) ifr<t<7T+1,
(—1)i+t ift>71+1,

observing that § € T UT and so that
Cp § Fb(é) = Fb,(a—l,a) ((j) + Fb,(o’,T) (q) + Fb,(T,T-’rl)((j)' (25)

Now, let us note that since ¢(7) = (—1)"+1(1 — dp), then |(=1)"* — §(t)| = 6o(1 — (t — 7)) < & < ¢ for any
t € (r,7+ 1) and by (1.8) we obtain

. § 2 T+1 . S 2 b6 2 41
By (rry1)(@) = % +/ bW (§)dt < % + 20 / (1—(t—7))2dt
502 bw(SOQ
) < Ado- 2.
5 T =™ (2.6)
Similar estimates allow us to conclude that also [}, (,—1,5)(¢) < As, and by (2.5) the lemma follows. O

In relation with pg and Jy we set
1 . a
€0 = §p0 min {1, —QCaw(so} . (2.7)

Remark 2.2. Note that, by (2.2) and (2.7), if ¢ € T is such that |¢(¢)| < 1 — & for every t € I, where I is an
interval with length [I| > £2, then

1.
Fua(a) = [ 1P+ aW(a) dt = aw 1] = tca
I

The properties and the constants fixed above exhaust the preliminaries we need to tackle the principal object
of the study of this section. In the sequel we will denote

" = 3cq + mo. (2.8)

The set {F,. < c*}: concentration and local compactness properties

Our goal now is to characterize some discreteness properties of the sublevel {F,, < ¢*} which will be basic
in the proof of the existence of two dimensional solutions of (1.3) in the next section.

As useful tool to study this problem we first introduce the function nt : I' — N, which counts the number of
transitions of a function ¢ € I" between the values —1 + §p and 1 — .
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Given q € T', let us consider the set
Dﬁqu = {t € R| |Q(t)| <1l- 50}7

the set of times in which ¢(¢) has distance from the equilibria +1 greater than d,. The set Ds, , is an open
subset of R and so it is the disjoint union of open intervals which we denote by (s; q,%i¢), ¢ € Z. We note that,

tig 1)
by (22)7 FQ(q) 2> Z'L’EZ si:q %|Q|2 + QW((]) dzr > ZieZ aws, (ti,q - Si7q) - QW5O|D50,Q|7 and so

1
Dso.ql < WFQ((]) VgeTl. (2.9)

0

Now, for any ¢ € Z, we have |g(siq)| = |q(ti,q)| =1 — do and then we define

1 if q(siq) # q(tig),
0 otherwise.

nt(q, (Si,q: i) = {
Moreover, given any interval A C R we set

nt(q, A) = Z nt(q, (Si,q: ti,q))-

1€T | (84,q5ti,q) CA

and finally nt(q) = nt(q, R).

The function nt counts the number of transitions of the function ¢ between the values —1 + dg and 1 — §g. If
g € T we always have that nt(g) is an odd number and the space T splits in the countable union of the disjoint
classes:

Iy={qel|nt(q) =k}, k=2n+1, neN

If g € T, by definition, there exist {i1,...,ix} C Z such that

1 lf’Le{Zh)Zk‘}a
0 otherwise.

nt(q, (siq,tiq)) = {

We can assume that for any [ € {1,...,k—1} the interval (s;, ¢,%;,4) is on the left of the interval (s;,, . ¢, i, 1.q)
and we set

(Ul,q’Tlﬂ): (sil,qvtiz,q)a l=1,... .k

With this position we have that for any [ € {1,...,k},
qlog) = (-1)!(1=6) and q(rq) = (=1 (1 = ).

Fixed any € € (0,£9) and given j € Z, we define the intervals

s o
A= (LRI o (T e (210)
9 9 9 9

where T is a maximum for a as defined in (1.7) and po is defined by (2.4). Note that, if i # j then A; N A; = 0
and R = Ujez A, where A; denotes the closure of A;. Moreover for any j € Z, the intervals O; and O;4; are
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centered respectively on the left and on the right extreme of A; and, by (2.4), we have

if sup|t—s| < 2 then a-(t) > a. (2.11)
s€0; €

Note finally that |A;| = L and |O;| = 2% for any j € Z.

We can now describe simple concentration properties of the functions in {F,, < ¢*}. Firstly we show that
if g € {F,, < c*} then nt(q) < 3, in other words ¢ makes at most three transitions between the values —1 + dp
and 1 — dg.

Lemma 2.4. If ¢ €T and F,_(q) < c¢* then nt(q) < 3.

Proof. We simply observe that if nt(q) = k > 3 then by Lemma 2.3 we have

4
mo
Fa.(q) > Z Fy (o1.4m.0)(2) = 4cq — 50
=1

which contradicts the assumption F,_(q) < ¢* since by definition ¢* = 3¢, + mo and, as we know, ¢, > 6m >
12777,0. O

Now, given g € {F,, < ¢*} with nt(¢) = 3, we show that the intervals of transition (07,4, 77,4) can not intersect
the set UjezO; and outside of these intervals ¢ is nearby +1 for less than 24.

Lemma 2.5. If ¢ € T is such that F,_(q) < ¢* and nt(q) = 3 then
(i) |q(t)] > 1—26 for allt € R\ (U}_,(01,4,71,q))-
(i) (01,4, 71,4) N (UjezO5) =0, for all l € {1,2,3}.

Proof. To prove (i), let ¢ € T’ be such that nt(¢) = 3 and assume by contradiction that there exists ¢y €
R\ (U, (01,4,71,4)) for which |g(tp)] < 1 — 24. Since dy < § we have |q(c14)] > 1 —0 and |¢(r14)] > 1 -9
for [ = 1,2,3. Then, by the intermediate values Theorem, there exists (o,7) C R\ (U3_, (07,4, 71,4)) such that
lg(t)] < 1—6 for any t € (0,7) and |q(7) — q(0)| = 0. Then by (2.2) we have F, (,.(g) > 2mq and so using
Lemma 2.3 and (2.8) we obtain

3

3m N

Fa.(q) = ZFQ,(Uz,q,ﬂ,q)(q) + Fg,(a,r)(Q) > 3¢q — ?O +2mo > ¢7,
=1

a contradiction which proves (7).
To prove (ii), first we note that

Tlqg = 0lg < Z—g, vl € {1,2,3}. (2.12)

Otherwise, by Remark 2.2 there exists [ € {1,2,3} such that F,_(q) > Fg,(oz.q,Tz.q)(Q) > 4e¢q > . By (2.12)
and (2.11), if there exists [ € {1,2,3} such that (07,4 T7.4) N (UjezO;) # 0, we then have that a.(t) > @ for any

t € (07,,7,). Therefore, by Lemma 2.3

Fag,(aqu,riwq)(q) > FE,(O'TVQ,TTVQ)(q) > Cod — —5—
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and so, again by Lemma 2.3,

mo mo
F,, (Q) > FE,(JM,TRQ)(Q) + ZFQ,(O'ZJI,TLQ)(q) > Ccx — ? + (20Q - T) :
1]
By (2.8), since by (2.3) we have c¢g — ¢, > 3my, this contradicts the assumption F,_(q) < ¢*. O
These concentration properties allow us to start in discretizing the set {F,, < ¢*} N {nt = 3}. We let
P ={p = (p1.p2,p3) € Z*| p1 < p2 < p3} and for p € P we define
Isp={q € {Fao. <c}nt(q) =3, (01,4:T1.q) C Ap;s 1 =1,2,3}.

We study here below the existence, for all p € P, of solutions to the problem (2.1) belonging to the set I's ,. In
fact, setting c3,, = inf{F,_(¢) | ¢ € I's,}, we will prove that for any p € P the set

Ksp={a€Tsp|Fa(q) =c3p}
is not empty, compact, with respect to the H*(R) metric, and consists of solutions of (2.1). The following
preliminary result shows in particular that I'; ;, is not empty for any p € P.
Lemma 2.6. c3, <c¢* — % for any p € P.

Proof. Let us consider the above defined function g, solution to the problems (P,) with g,(0) = 0. Since ¢, is
increasing and ¢, (0) = 0 we have that there exist o < 0 < 7 such that D, 4, = (o,7). Moreover, since by (2.3)
we have Fy(¢a) < Fa(ga) = ca < 2cq, by Remark 2.2 we obtain

r—o <2 (2.13)
€0
We define the function

-1 ift<o-—1,
(o) t—oc+1)+(t—0) fo-1<t<o,

Q(t) = qa (1) ifo<t<r,
QM) (T+1—t)+(t—7) fr<t<T+1,
1 ift>7141,

noting that, arguing as in the proof of Lemma 2.3,

Mo

FQ(Q) = Fg,(a—l,a) (Q) + Fg,(U,T)(qg) + Fg,(T,T—i-l)(Q) S Ca + S

Letting p = (p1,p2,p3) € P we set

Qp (1) =Q <tp1;r2), @p(t) = Q <t+$) and Qp, (1) = Q (tpi%_ﬂ)

€

Since Fy, is invariant by time translation and reflection, we have
mo .

We note also that, by (2.13) and (2.4), if [Qp,(t)| # 1 then t € A, and a.(t) < a (j = 1,2,3). Therefore,
by (2.14), we obtain

m .
Fas,Apj (ij) = Fas(ij) < Fg(ij) < co Tt ?0’ Jj=123 (2.15)
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We finally consider the function Q3 € T' defined as follows: |Q3,(t)] = 1if t € R\ (U3_, Ap,) and

Qp () ifte Ay,
Q37p(t) = sz (t) ift e Ap2a
Qp,(t) ifteAp,.

Then by (2.8), (2.15) and (2.3) we have

3
3m, N 3m "
Fu(Qsp) =D Faoa,, (@p,) < Bca+ =50 = € + (3(ca — ca) + g~ —mo) <" = =,

j=1
and the lemma follows. O

We now show that the sets I's , are sequentially compact with respect to the weak topology in H, lloc(R)'

Lemma 2.7. If p € P and (¢n) C T's, then there exists ¢ € T'sp, such that, along a subsequence, ¢, — ¢
in LS (R) and ¢, — ¢ weakly in L?(R).

loc

Proof. Let p = (p1,p2,p3) € P and (¢,) C I's . Since F,_(¢n) < ¢* for any n € N, by Lemma 2.1 there exists
q € H} (R) with |¢|lr~ <1 and F,_(¢q) < ¢* such that, along a subsequence, still denoted (g, ), we have ¢, — ¢
in L7° (R) and ¢, — ¢ weakly in L*(R).

Since F,_(q) < 400, by (2.2), one plainly obtains that |¢(¢)| — 1 as t — +oo. To show that ¢(t) — *1 as
t — +o0o and so that ¢ € T, note that by Lemma 2.5 we have that for any n € N, if t € R\ (U_, A,,) then
|gn(t)| > 1 — 25. Hence by pointwise convergence we obtain that

_ 1475
and ¢(t) >1-—20 iftzw,
5

147
gt) < —1+426 if ¢ <DL F7
5
and so that ¢(t) — +1 as t — £oo.
To show that g € I's ,, note that, by Lemma 2.5 we have (01,4, , 71,q,) C Ap, \ (Op, UOp,+1) for any I € {1, 2,3}
and n € N. Then, for any ! € {1, 2,3} there exists 0y < 7; € Ay, \ (Op, UOp,+1) such that, up to a subsequence,
Tl,qn — Ti> Ol,q, — 01 @s n — +00 and, by L{5 convergence,

(o)) = (=11 = &) and g(n) = (=1)""(1 = d).

Hence nt(q, Ap,) > 1 for any [ € {1,2, 3} and since F,_(¢) < ¢*, by Lemma 2.4, we can conclude that nt(g) = 3.
Then, g € I'; , and the lemma is proved. O

Thanks to Lemmas 2.1 and 2.7 it is now possible to apply the direct method of the Calculus of Variations to
show that the set K3, is not empty for any p € P.

Proposition 2.1. For every e € (0,£0) and p € P we have K3, # 0. Moreover, if g € K3, then ¢ € C*(R) and
it is a classical solution to (2.1).

Proof. Let p = (p1,p2,p3) € P and (gn) C I'sp be such that F,_(¢n) — ¢3p as n — +00. By Lemmas 2.1
and 2.7 we obtain that (g,) converges along a subsequence, in the specified way, to a function ¢ € I's , with
F,.(q) <c3p. Then ¢ € '3, and F,_ (q) = c3p, i€, ¢ € K3 p.

To complete the proof we have to show that if ¢ € K3, then ¢ € C?(R) and it is a classical solution to (2.1).
To this aim we firstly note that for any ! € {1, 2,3}, there exist s; € Ap, N Op, and t; € Ay, N Op, 41 such that
lg(s1)] > 1 — 3o and |q(t;)| > 1 — do.



646 F. ALESSIO AND P. MONTECCHIARI

Indeed, otherwise, there exists [ € {1,2,3} for which |¢(t)] < 1 — &y for any t € Ap; N Op, or for any
t € Ap. N Opyy1. Then, since [Ap. N Op;| = [Ap N Oppy1| = 22, by Remark 2.2 we have in both the cases that
F%’Apf(q) > 2¢, and so, by Lemma 2.3 and (2.8),

m,
F,_(q) > Fas,ApT(q) + Z Fy. 4, (q) > 2¢cq + (202 - _O> > c*.
141
Now, let & = maxj—1.23{1 — |q(s1)|,1 — |q(t;)|} and note that &y > 6. Given ¢ € C5°(R) with lloll Lo (r) < d0 — 5,
let ¢ = ¢+ ¢ and consider ¥ (t) = min{max{v(t), —1},1} noting that F,_(¢)) > F,_(¢)). If F,_(¢)) > ¢* we have

Fo(¥) 2 Fo (§) > ¢ = c3p = Fa.(q)- (2.16)

If otherwise F,_(1)) < ¢* we claim that ¢ € I's , and so that

Faa (?ﬁ) > Faa (?b) > C3.p = Faa (Q) (2.17)

To show that ¢ € I's ,, first note that since ¢ €T and F,. (1&) < ¢*, by Lemma 2.4 we have that nt(iﬁ) < 3.
Moreover, note that

lg(s)) — (=1} <& and |q(t;) — (-=1)F < b, Vie{1,2,3}
and since ||q — z/AJHLx(R) < ol poem)y < b0 — 5, we obtain that
[(s) = (=1)'| <do and [ih(tr) — (~1)*!| <o, Vi€ {1,2,3}

from which we deduce that nt(1[), Ap,) > 1for any [ € {1,2,3}. Therefore ) e I's , as we claimed.
By (2.16) and (2.17) we conclude that

Fo(q) S Fo (g +¢), Vo€ CX(R) with [|¢||pem) < do — 9.

Then ¢ is a weak solution to —j+ a.(t)IW’(¢) = 0 on R and, by standard bootstrap arguments, a classical C?(R)
solution to (2.1). O

The next lemma shows in particular that the sets K3 ,, p € P, are sequentially compact with respect to the
H'(R) metric.

Lemma 2.8. If (¢,) C I'sp is such that Fy_(gn) — c3,p then there exists q € K3, such that along a subsequence
lgn — qll 1 (®) — 0 as n — oo.

Proof. As in the proof of Proposition 2.1 we obtain that there exists ¢ € K3, and a subsequence of (g,), still
denoted (g,), such that ¢, — ¢ in L (R) and ¢, — ¢ weakly in L?(R). Note that since JraWi(g)dt <

loc

liminf,, o fR a:W(gy) dt and since F,_(g,) — Fa_(q), we have

limsup ||¢,||* = 2nlin;o F,_(qn) — QIiminf/ a:W(gy) dt
- R

n—00 n—00

< 2F,_(¢q) — 2/ a:W(q)dt = Hq||2 < liminf ||qn||2
R n—oo

Therefore ||g,|| — ||¢]| as n — oo and so ||¢, — ¢|| — 0.
To show that ||¢, — ¢|]| — 0 as n — 0o, note that since ||¢,|| — |||l and F,_(gn) — Fa.(q) as n — oo we have

Jg acW(gn) dt — [, a.W(q)dt as n — co. Moreover, since by L7

7o convergence we have that fTT a:W(qy)dt —
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f_TT a:W(q)dt for any T > 0 we obtain that f‘t|>T a:W(gy)dt — f‘t|>T a:W(q)dt for any T > 0. We deduce

that for any 1 > 0 there exists 7' > 0 and n € N such that flt\>T a:W(q)dt < n and f‘t|>T a:W(qy)dt < n for

any n > n. Hence, since by Lemma 2.5, there exists Ty > 0 such that |g(t)] > 1 — 25 and |g,(t)] > 1 — 2 for
any |t| > To and n € N, using (1.9) we conclude that for any 1 > 0 there exists T' > Ty and 72 € N such that for
any n > i we have

L4>Tmnﬂ?sz(]iT@n+1f+<q+1fdt+/LT@n1ﬁ+<qlfdg
=2 (/KT X(an)* + x(q)* dt + /t>T X(g2) + x(q)? dt)

2 4
= 2/ X(a2)? + x(g)? dt < — W (gn) + a-W(q) dt < —L.
[t|>T wa Jiy>t wa
Therefore ||g, — ¢| — 0 as n — oo follows since, by L{S. convergence, we have flt\<T lgn — q|?>dt — 0 as
n — oo. - (I

Note that by Lemma 2.8, using a direct contradiction argument, we obtain that for any r» > 0 there exists
v, > 0 such that
iftgels, and i%f lg = qll g1 ry > 7 then F(q) > 3, + vy (2.18)
qeRs3,p

The set {F,. < c*}: discreteness properties

We end the section characterizing some metric properties of the sets I's , as subsets of the metric space T.
All these properties will be used in the next section to prove the existence of two dimensional solutions to (1.3).
Given two subsets U, and Us of T', with abuse of notation we set

d(Uy,Us) = inf llg1 — ¢2|| and diam(U;) = sup |lg1 — ¢2]|-
q1EUL, g2 €U q1,92 €U

Forp e P and i € {1,...,4} we set

pii1+1+T pi+7T
€ 5
with the agreement that py = —oo and ps = +oo. Note that R = (Uj_, Bi(p)) U (Uj_; 4p,) and that B;(p) N
(U Ap,) =0 for all i € {1,...,4}. Moreover, it is a direct consequence of Lemma 2.5 that for any ¢ € I's ;, we
have

lq(t) — (=1)"| < 20 for any t € B;(p), i € {1,...,4}. (2.19)
Next Lemma shows that diam(I's ;) is uniformly bounded with respect to p € P.

Lemma 2.9. There exists D € R such that diam(T's ,) < D for all p € P.
Proof. Let p € P and ¢1,q2 € I's . Then

3 4
o -al? =Y [ lo-wPdrd [ jn-wPd
=1 Apm =1 B, (p)

We clearly have pr_ lg1 — q2|* dz < 4] Ag|. Moreover, by (2.19) and (1.9) we have that for any t € B,(p) and
1<0<4 ’

g1 — g2 <2(lgs — (1) + lg2 — (=1)*]*) = 2(x(q1)? + x(g2)%) <

(W(q1) +W(g2)).
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Therefore

oo
o
*

4 4
4
g1 — g dt < — / ac(W(q1) + W(ge))dt <
Lz_;/BL(p) wa 2 By

— = =1

and the lemma follows. O

|=
IS}

In the next lemma we show that the sets I's ,, p € P, are well separated in T.
Lemma 2.10. If p,p € P and p # p then d(T'sp, s 5) > (222)1/2,
Proof. Let p#p € P, q€'sy, and g € I's 5. We set
k=min{l € {1,2,3} /pi # D1}
Assume that pr < pi (the other case can be handled in the same way). Then, by Lemma 2.5, we have
lg(t) — (—1)*T| < 26 and |g(t) — (—=1)*| < 26 for any ¢ € Oy, 41. Since § < 1, we have [q(t) — q(t)| > 1 for

all t € Op,41. Then |q — q’||%2(opk+l) > |Op,+1| = 2% from which, since ¢ and g are arbitrary, the lemma
follows. =

We remark that for any p € P we have

min{|By(p)|, [Bs(p)|} = %max{([p] —2),0} (2.20)

where [p] = min{ps — p1,p3 — p2}. Next lemma shows that any bounded set in I' can intersect at most a finite
number of I'3 ,, p € P.

Lemma 2.11. For any p € P we have d(I's ;,,T's 5) — +00 whenever [p] — oo or ps — —00 or p; — +00.

Proof. Let p, p€ P, q € 's ), § € '3 and, for 1 < < 4 denote B, = B,(p), B, = B,(p). Clearly

||qfq|\2z/ |qf<i|2dt+/ g — g dt.
Ba(p) Bs(p)

Since § < 1, by (2.19) we have |q(t) — q(t)| > 1 whenever ¢t € By N (B U Bs) or t € B3N (B U By). Then
lg = ll* > |B2 0 Bi| + | B> N Bs| + B3 N Ba| + B2 N Byl.

Since By = (UL Ba N Ap,) U (Ui, Bo N B;) we have [By| < 2 + Zle |B2 N B,| and then
_ _ _ _ 3
|B2 N Bi| + | B2 N By| 2 | Ba| — | Ba| = B2 N Ba| = —

Analogously
- - - . 3
|B3 ﬂB2| + |B3 n B4| > |B3| - |B3| - |B3 ﬂB1| - E
Then, noting that min{|Bs N By|,|Bs N By|} = 0, we obtain
_ = - - - 3
llg = gll* > max{|By| — | Bz| = |B2 0 Bal, [Bs| = |Bs| — [Bs N B} - -
. . - 3
> min{|Be| — |Ba|, |Bs| - |Bsl} — -

. =B 3
> min{|Be|, |Bs|} — max{|By|, [Bs|} - -
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and by (2.20), we conclude

1 3

llg - all* > = (Ip] = 2) = max{| B2, | Bs[} - =,

from which we obtain that limp,) o d(T'3, '3 5) = +o00.
One analogously argues in the cases p3 — —oo and p; — +oo and the lemma follows. O

Finally we let
A={F, <c"}\ (Upepl'sp)

and we show that A has positive distance in T’ from the set Uperl's p.

Lemma 2.12. We have d(T3, A) > (22-)1/2 for any p € P and moreover

awsg
d(T'3p,A) — +00 as [p] = +oo.

Proof. Let pe P, g€ T3, and § € A. For 1 <. <4, we denote B, = B,(p).
We note that the set A can be written as the disjoint union of the two subset

A ={qeT/F, (q) <c* and nt(q) =1},

Ay ={qeT /F, (¢) <c, nt(q) =3 and 3j € Z such that nt(q, A;) > 2}

and in the following we will separately consider the two cases § € A; and g € As.
If § € Ay then there exists I < (0,7) < I} (E1 < Ex if t € Ey and s € E, implies ¢ < s) such that
g(o) = —1+60, (1) =1— 9 and Ds, g = I_ U (o, 7) UI;. Note that, by (2.9) and since ¢, > 6m, we have

c* 3cq + mo 4c 5m 0 om
Dol € —— = =20 < =2 - o < B0 T
aws, aws, aws, aws, €0  AWs,

(2.21)

Setting B_ = (—o00,0) \ I, By = (1,+00) \ I} we have q(t) < —1+ &y for any t € B_, q(t) > 1 — & for any
te B,.

Since ¢ € I's, by Lemma 2.5 we have that ¢(t) < —1+ 28 for any t € Ay, N Oy, and q(t) > 1 — 26 for any
t € A, NOp, 41. Therefore |¢(t) —q(t)| > 1 for any t € Ap, NOp, N By and for any t € Ay, NOp,+1 N B_. Hence

llg — ‘j”Q > |Ap, N Oy, mB+| +[A4p, N Op 41N B,|
= |(AI)1 n 0101) \ (I-i- U (_OOaT))l + |(A101 n Op1+1) \ (I— U (07 +OO))|

and since

min|(Ay, 1 0p)\ (I U (=00, )] [(Aps 0 Opy ) \ (I U (0, +00)) [}
> min{|(Ap, 1 Op)\ I |, [(Apy N Opy ) \ I} — [(0,7)]

. Po
2 min{[Ap, N Op, |, [Ap, N Opy41)[} = max{[ L], ||} = (0, 7)] 2 = = [Déy 4

by (2.21) we conclude that ||[g—q||* > ai’? , from which, since ¢ and ¢ are arbitrary, we deduce that d(I's ,, A1)? >
aWsq
5
gwrgo ’

Let us show now that if [p] — oo then d(I's,, A1) — +oo. Since ¢ € '3, we have g(t) > 1 — 26 for any
t € By, q(t) < =1+ 26 for any ¢t € By and since § < § < § there results |g(t) — ¢(t)| > 1 for any t € B3N By
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and for any t € By N B_. Hence

M*WZ/)7M*WM%/ Jg—qPde>|Ban B_| +|Bs By
BanNB_ B3HB+

= [B2\ (I U (7, +00))| + | B3 \ (I+ U (=00,7))|
> By \ (7, +00)| = 1| + B3 \ (=00, 7)| — |L4.

Then, since
max{|B; \ (¢, +00)],|Bs \ (—00, 7)[} > min{|Bal, [Bs|} — [(0, 7)|
by (2.21), and (2.20) we conclude

*

1 c

la =l 2 ()~ 27 - Daal = (] - 2)7 - 7

from which we derive that d(I's ,, A1) — 400 as [p] — +oc.
Let us now consider the case ¢ € Ap. Then there exist two (not necessarily different) indices I,m € Z, such
that nt(g, A7) > 2, nt(q, Aw) > 1 and nt(g, A;) = 0 for any j ¢ {I,m}.
If 1 < m we set
B_ = (UjemAj)\ A, By = (Ujzndy)
while if | > m we set
B_ =Ujemdj, By =(Uj>mdj) \ 4.
In any case, by Lemma 2.5, we have that g(t) < —1 + 26 for any t € B_,q(t)>1-20 forany t € B,. )
Since ¢ € TI's,, there exists k € {1,2,3} such that pi ¢ {l,m} and so there results either A,, C B_ or
Ap, C By. Since nt(g, Ap,) = 1 and since by Lemma 2.5 we have |g(t)| > 1—26 for any t € A,, N(Op, UOp, 41),

it is simple to recognize that in both the cases we have either |¢(t) — q(¢t)] > 1 for any ¢t € Ap, N Oy, or
lg(t) — q(t)| > 1 for any t € A,, N Op, 1. Then

_ : Po
lg(t) — g®)[1* = min{|Ap, N Op, || 4p, N Op4a]} = =

from which we derive that d(rg’p,Ag)Q > ’E’—g > fw—"j and so the first part of the Lemma. To end the proof we
awsq
show now that if [p] — co then d(I's p, A3) — +oc.
Since g € I's , we have q(t) > 1 — 20 for any t € Ba, q(t) < —1+ 26 for any ¢ € Bs and since § < % we obtain

lq(t) — q(t)] > 1 for any t € Bo N B_ and for any t € B3 N B. Hence

lo-al?> [ la-aPdos [ lo-aPdez BB+ B0 By,
B B

2NB_ 3NB

We observe that if m > ps then |By; N B_| > |Bs| — |A;| while if m < pa then [Bs N B4| > |Bs| — |4;]. Then in
any case
. 1
max{|B2 N B_|,|B3 N B4|} > min{|By|, |Bs|} — -
and by (2.20) we conclude that

B 1
la =l = (ip] - 3)
and the lemma follows. O
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Remark 2.3. Since 22 - 0 > 5m_ by Lemmas 2.10 and 2.12 we recover that setting

- au.m
1/2
5)
3d0 N ( s ) 7
aws,

then d(I's p,I's5) > 3do and d(I's p, A) > 3dg for any p, p € P, p # p. In particular, if ¢ € T' is such that
and 0 < d(¢,I's ) < 3do for a p € P, then F(q) > ¢* > ¢35, by Lemma 2.6. Moreover, if ¢ € I' is such that
0 < d(q,Ks,p) < 3dg for a p € P, then F(q) > c3p.

The following technical result will be used in the next section

Lemma 2.13. For any q € T there results fR a:W(q)dt < 4+o0. Moreover for any q1,q2 € T we have

] 1 :
[ oW @) - Wia)l e <l — ol ((E/asvv(ql)dt) Fllay q2|).
R 22 JR

Proof. For any q € T we have [, |W(q) — W(z)|dt = [;| fo "(z0 + s(q — 20))(q¢ — 20) ds| dt. Then, since
|20(t) + s(q(t) — z0(t))| <1 for any (s,t) € [0 1] x R, by (1.10) we obtain

/|W z0|dt<b// (20 + 5(q — 70)) s |q — 20| dt.

Since x(s1 4 s2) < x(s1) + |s2| for any s1, s2 € R, we conclude

/IW W (z0)| dt < bllg — zoll(lx(20)ll + lg = 20]l),

and so
Jaw@ar <a( | W) de+Bla = zall(hzo)l +lla - 2l) < +x.
R R

1 -
Note now that by (1.10) we have ||x(q(-))|| < (& [z aW(g)dt)2 < +oo for any ¢ € I'. Therefore, given

q1, ¢2 € T, to complete the proof of the Lemma it is sufficient to exactly repeat the argument above with ¢
and go which play respectively the role of zy and gq. (I

3. TWO DIMENSIONAL SOLUTIONS

In this section we will show that (1.3) admits infinitely many two dimensional solutions for any ¢ € (0, &¢).
In fact, we will prove that for every p € P, with [p] large enough, there exists a solution wu, € C%(R?) of (1.3)
such that Jyu, # 0 and

d(up(-,y),Ksp) — 0 as y — —oo.

In the following, for (y1,y2) C R we set S =R X (y1,y2). Let us consider the set

(y1,92)
H= {u S HIIOC(RQ) / ||U||LOO(R2) <landu-—z € m(y1,y2)CRH1(S(yl,y2))}.

Note that, by Fubini Theorem, we have that if u € H then u(-,y) € T for a.e. y € R.
Moreover we have also u(z,-) € H. (R) for a.e. z € R. Therefore, if ((1,(2) C R then u(z,(2) — u(z, (1) =

fo Oyu(z,y) dy holds for a.e. € R and so

[ Iute. @) = e P dx—/

"o yu(z,y) dy
¢1

2
dx<|c2—c1|// 18yu(z, 9)|? dyda.
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According to that, if u € H, then the function y € R — u(-,y) € T', defines a continuous trajectory in I" verifying

[, G2) =l GNP < 10yullFa(scrcanlée — Gl V(G ¢) CR. (3.1)

In the sequel, we fix € € (0,e9) and we denote

Fo..(q), ifqeT,
Fg) = { Fe (@ Hacl
+o00, ifgeI'\T.

As we will see below (see Lem. 3.10), any solution v € H of (1.2) which satisfies the further conditions
d(u(-,y),Ks,p) — 0 as y — —oo, for some p € P, and [p, |9, u(, y)|? doe dy < +oo0, verifies the property

1
F(u(,y)) = csp + 5ll0uC 0", Yy eR,

and so in particular that F'(u(-,y)) > c3, for any y € R. Such consideration suggest us to define, given p € P,
the set

My = {ueH/ Tim d(u(,y).Ks,) =0, liminfd(u( ). Ts,) > do and inf F(u()) = 5}
Y——0 Y Yy

— 400

on which we look for a minima of the functional
1 2
pp(u) = A S N0yul )II” + (F(ul,y)) — es,p) dy.

Remark 3.1. The problem of finding a minimum of ¢, on M, is well posed. In fact, if u € M, then
F(u(-,y)) > cs,p for every y € R and so the functional ¢, is well defined and non negative on M,,. Moreover,
as we will prove in Lemma 4.2 in the appendix, for any p € P there results M,, # () and setting

mp = inf ¢y, peEP,
P

we have inf,ep my, > do¥5= and sup,cp m, < +00.

Remark 3.2. In general the functional ¢, is not well defined on H. Indeed, if v € H, the function y —
F(u(-,y)) —c3,p is indefinite in sign and we cannot say, in general, that it is Lebesgue integrable on R. However,
if u € H then u(-,y) € T for a.e. y € R and so F(u(-,y)) — ¢3p > Cq. — €3, > —00 for any y € R. Therefore,
given an interval I C R the functional

i) = [ 510,061 + (PlaC) = cap) dy

is well defined for any u € H such that the set {y € I/ F(u(-,y)) < ¢3,,} has bounded measure.

It is standard to show (see e.g. [3], Lem. 3.1, for a similar argument) that the following semicontinuity
property holds: letting I C R and u € H, if ¢, r(u) is well defined and (u,,) C M, is such that u, — u weakly
in H. (R?), then ¢, 1(u) < liylrggf¢p7[(un).

Finally we point out an important inequality concerning the functional ¢, ; which constitutes the analogous
of (2.2) in the one dimensional problem and, as there, has many useful consequences. Givenu € H, if (y1,y2) C R
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is such that F(u(-,y)) > csp + v for any y € (y1,92), then

1 [Y2 1 Y2 2
@2 5 [Vt -2 5 [ ([ ot as vt
ennan ) 2 5 [ 10wyt v~ 2 o [ ([ ot play) e v )
1
> 5l wn) — ulegm) P+ e ) 2 VB ) = o)l 32)
2(y2 —y1)

Concentration and compactness properties of the minimizing sequences in M,,

As first step in studying the minimum problem of ¢, in M, we characterize here below some properties of
the minimizing sequences in M,,.

The following Lemma, obtained combining (3.2) with Lemmas 2.6, 2.9 and 2.10, tells us in particular that if
u € M, op(u) < +oo and u(-,y) ¢ A for any y € R, then the trajectory y € R — u(-,y) € T is bounded.

Lemma 3.1. There exists C > 0 such that given any p € P, if u € M, satisfies d(u(-,y),A) > 0 for any
Y € (y1,y2) then

u(-y1) = ul- y2) || < Cop(u).
Proof. Let g1 = inf{y € [y1,92] | F(u(-,y)) < c*} and 7o = sup{y € [y1,y2] | F(u(-,y)) < c*}. We have
Ju(,y1) = u(y2)ll < flusyn) —wl gl + lul 51) — uls g2l + [Jul 72) — ul y2)|
and since F'(u(-,y)) > ¢* for any y € (y1,%1) U (J2, y2) and, by Lemma 2.6, ¢* > ¢3;, + %2, using (3.2) we obtain

ey 0) = )l < e 30) = e )|+ )

To estimate |[u(-,71) — u(-, ¥2)||, note that we can write {y € (1, 92) | F(u(-,y)) > ¢*} = Uiez (Y14, Y2,:), disjoint
union. Then, since u(-,y) ¢ A for all y € (y1,y2), we obtain that for every ¢ € Z, there exist py;, p2; € P
such that u(-,y1:) € T'sp,, and u(-,y2:) € I'sp,,. Let Ty = {i € T /p1; # p2,i} and #I, its cardinality. By
Lemmas 2.10, 2.6 and by (3.2) we have that for any i € 7;

2
3dp < ||U(',y1,i) - u('7y27'i)|| < \/T—O(lopv(yl,iyyzi)(u)
and so, summing on ¢ € 77, we obtain

2
T < — .
# 1_3d0\/m—080p(u)

Since as one easily recognizes

u(,91) —u(, g)ll < (#Z1 + 1) Sugdiam(Fs,p) + > Ny = ul g0,
pe icT,

by Lemma 2.9 and (3.2) we conclude
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Since by Lemma 2.12, d(I'5 », A) — o0 as [p] — oo, setting Co = C(sup,ep m, + 1) we have that
Ipo € N such that if [p] > pg then d(I's ,, A) > Co. (3.3)

Then, using Lemma 3.1 we obtain

Lemma 3.2. Let [p] > po, if u € M, is such that op(u) < mp + 1, then
d(u(ay)a F3,p) S COa Vy e R.

Proof. The lemma follows by Lemma 3.1 once we prove that if [p] > po, and u € M,, is such that ¢, (u) < m,+1
then d(u(-,y),A) > 0 for any y € R.

Assume by contradiction that there exist p € P, u € M, and yo € R such that [p] > po, ¢p(u) < m, + 1,
d(u(-,90),A) =0 and d(u(-,y),A) > 0 for any y < yo. By (3.1) and (3.3) there exists y1 < yo such that

[u(-91) = ul,90)[| <d(T3p,A) = Co.

By Lemma 3.1 we have moreover that ||u(-,y) — u(-,y1)|| < Co for any y < y1. Therefore, since u € M,, we
obtain also

d(FS,pau('ayl)) S hmsup ||’U,(, y) - u(vyl)H § CO

Y——00
and so
d(l'sp,A) <d(Tsp,u(-y1)) + lul-y1) —ul- vo)ll <d(I'sp, A),
a contradiction. O

Remark 3.3. Given p € P we define
Qp)={peP/d(I3,,I3;) < Co}.

Note that, by Lemma 2.11, the set Q(p) is finite. Moreover, by Lemma 3.2, if [p] > po, u € M,, and y € R are
such that ¢, (u) < mp +1 and F(u(-,y)) < ¢* then u(-,y) € Upcap s p-

Lemma 3.3. If [p] > po and u € M,, is such that ¢,(u) < my, + 1 then there exists p € Q(p) \ {p} such that

lim d(u(-,y),Is5) =0.

y—+00

Proof. Since u € M, and ¢,(u) < my, + 1 we have liminf, , o F(u(-,y)) = ¢3,p. Then, since [p] > po,
by Remark 3.3 and Lemma 2.6, one plainly obtains that there exists p € Q(p) such that
liminf, 4o d(u(-,y),T's5) = 0. Moreover, since u € M,, we have lim,_, 1 d(u(-,y),T's,) > do and so p # p.
Assume by contradiction that limsup, ., ., d(u(-,y),'33) = 3d > 0 and set d = min{d, do}. Then by (3.1) we
have that there exist two sequences (y1,;), (y2;) C R such that y1,; < y2; for any i € N, 1 ; — +00 asi — +o0,
d(u(-y),Ts,p) € (d,2d) for any y € (1,1, Y2,1), @ € N, and finally [|u(-,y1,;)) —u(-,y2,i)|| = d. Then, by Remark 2.3
we have F(u(-,y)) > ¢* for any y € (y1,5,92,:), ¢ € N and by (3.2) we obtain that ¢, (u) > > o2, @J: +00, a
contradiction. O

Remark 3.4. By Lemma 3.3 we obtain that for any p € P such that [p] > po, there exists p* € Q(p) \ {p} such
that setting

My = {u€ M,/ lm_d(u(,y),Ts,) =0}

— 400

we have

m, = Inf u).
p ueMp,p*st()
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Indeed if (u,) C M, is such that ¢p(un) — m, then by Lemma 3.3 there exist n € N and p, € Q(p) \ {p} such
that limy_ oo d(u(-,4), '3 5,) = 0 for any n > nn. Then the property follows since, by Remark 3.3, Q(p) is finite
and so there exists p* € Q(p) \ {p} such that, along a subsequence, p,, = p*.

In the sequel we will denote
)\0 = min {1, %do} .

In the proofs of the following lemmas we make use of a technical result whose statement and proof is postponed
in the appendix (see Lem. 4.3).

Lemma 3.4. For every p € P with [p| > po there emisAts v € (0,7%%) such that if u € My p, @p(u) < my + Ao
and u(-,y) € Upep\(pp+1 L35, then F(u(-,y)) = c3p + 0.

Proof. Let p € P such that [p] > po and assume by contradiction that there exists a sequence (u,) C Mp -, a
sequence (p,) C P\ {p,p*} and a sequence (y,) C R such that for any n € N there results

Pp(tn) < mp+ Ao, u(,yn) € 'sp, and Lim F(un(-,yn)) = c3,p.

n—oo

By Lemmas 3.2 and 3.3 we have that (p,) C Q(p) \ {p,p*} which is a finite set. Therefore, extracting a
subsequence if necessary, we can assume that there exists p € Q(p) \ {p, p*} such that p, = p for any n € N.
By translating the function w,, we can furthermore assume that y, = 0 for any n € N and, by Lemma 4.3,
we obtain iminf, o ©p (—oo,0)(Un) > myp.
Since uy,(-,0) € I's 5 and limy oo d(un(-,y),I's p=) = 0, by Lemma 2.10 and (3.1) we derive that there exists
(¢1,¢2) C (0,+00) such that ||u(-, (1) — u(-, ()| > do and F(u(-,y)) > ¢* for any y € ((1,¢2). Then, by (3.2),

mo

©p,(0,400) (Un) = Pp.(¢1,¢0) (Un) > ‘/2_d0 for any n € N and we conclude that

V1o .. . mo
5 do < 1;‘2;%“%(“”) — ©Op(—00,0) (Un)) <My 4 Ao — imsup @, (— o0 0y (tn) < Tdo,
a contradiction. O

Lemma 3.4 shows that if u € M, ,» and ¢, (u) < my+ A then u(-,y) is forced to be in I's , UT'3 ,» whenever
F(u(-,y)) < c3p + . Next Lemma strengthens that result describing how the set I's , UT's ,» “absorbs” the
trajectories u(-,y) € My p« N{pp < myp + Ao}

Lemma 3.5. For any p € P with [p] > po there exists U € (0,9] such that if u € Mp =, pp(u) < my+ Ao and
F(u(-,9)) < c3p+ 7 for some § € R, then, either

(3) u(-,9) € Tsp and d(u(-,y),Tsp) < do for ally <g; or
(i1) u(-,y) € Tspr and d(u(-,y),Lsp-) < do for ally > y.

Proof. Let us prove (i), being the proof of (i) analogous.
Assume by contradiction that there exists a sequence (u,) C M, p+ such that ¢,(u,) < mp + Ao, and two
sequences (Yn.1), (Yn,2) C R such that for any n € N there results

Yn,1 < Yn,2, nlLH;O F(un('vyn,l)) = C3.p, un('a yn,l) € F3,p* and d(un(a yn,2)a F37;0*) > do.
By Lemma 4.3 we obtain iminf,, o ©p,(—oo,y,.1) (Un) = myp.

Moreover, since un(-,yn,1) € I'zpe and d(un(-,yn2),I'3p+) > do, by (3.1) we obtain that there exists
Un,1,Yn,2 € [yn,layn,?} such that F(u(-,y)) > ¢* for any y € (gnagn,2) and d(u('agn,l)au('agnQ)) =dp. By (3.2)
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my

this implies ©,, (y, 1 400) (Un) = Pp. (Gn1,9n.2) (Un) > Y5=do for any n € N. As in the proof of Lemma 3.4, that
gives rise to the contradiction

/T

.. . /o
do < hnm Lrolf(@p(un) — ¢p7(7m7y7l’1)(un)) < myp + Ao — limsup ¢p7(7m77y7l’1)(un) < 1 do,
- n—oo

and the lemma follows. O

Note that Lemma 3.5 holds true also for minimizing sequences of ¢, on M, ,«. This fact will be used in the
next lemma to derive analogous asymptotic properties of the their limits points.

Lemma 3.6. Let p € P with [p] > po and let (u,) C M,y p« be such that op(un) — m, as n — oo and
d(un(-,0),T3,) = 3do for all n € N. Then, there exists u, € H and a subsequence of (uy), still denoted (uy,),
such that

(i) un — up as n — 0o weakly in HY (R?);
(%) d(up(-,y),T3p) < Co for any y € R;
(1) lim d(up(-,y),K3,p) =0 and limsupd(up(-, y), T3 p) < do.
Y——0 y——+00
Proof. Pick any function ¢ € I's, and consider a sequence of bounded intervals (1 ;,¥y2,) C R such that
y1,; — —oo and Y2 ; — +oo. Since ¢p(un) — My as n — 0o we can assume that ¢, (u,) < my, + Ag for any
n € N and so, by Lemmas 2.9 and 3.2 we have that for any y € R

||Un(,y) - QH < d(un('ay)ar&p) +D < CO + D.

<

_ A2
Then, ||Un q”L?(S(ij, yl,j,yQ,j)) >

)< (y2.;—v1.;)(C+D)? for any n € Nand j € N. Since moreover HVunH%?(S(
2,5

2(pp(un) + (Y2, — Y1,5)c3,p) we conclude that the sequence (u, — ¢), and so the sequence (u, — zp), is bounded
in H'(S(y, .y2.,)) for any j € N. Then, with a diagonal argument, we derive that there exists u, € H} (R?)
such that along a subsequence u, — 2o — up, — 2o weakly in HI(S(ylyhy“)) for any j € N (and a.e. in R?). Then
up € H and uy, — up — 0 weakly in H'(S(,, 4,)) for any (y1,y2) C R and (i) follows.

Since by Lemma 3.2 we have d(u,(-,y),I's,) < Co for any n € N, there exists ¢, € I's, such that
limsup,, o |un(-,¥) — ¢u(-)]] < Co. By Lemma 2.7 we have that along a subsequence, still denoted (g,),

2 (R) and so, by the Fatou Lemma, we obtain that for a.e. y € R there results

gn —q€l'3,asn—ooin Lj,

d(up (), Tsp) < tp(y) — qll < lminf (- 9) — a()] < Co.

Then d(uy(-,y),I'sp) < Co for a.e. y € R and since u € H, by (3.1) we obtain in fact that d(uy(-,y),T'sp) < Co
for any y € R and (¢4) follows.

Let us finally prove (i4i). By (3.2) there exists L > 0 such that, for any n € N there exist y, 1 € (—L,0)
and yn2 € (0,L) for which F(un(-,yn1)), F(un(-,yn2)) < ¢3p + 7 and so, by Lemma 3.4 and Remark 3.3,
Un (-3 Yn,1), Un (- Yn,2) € T3, UTs p+. By Lemma 3.5 it is simple to show that in fact

Un(-sYn,1) € T3 p and upn (-, Yn,2) € Tz pr. (3.4)

Indeed if un(-,yn,1) € I'sp- then Lemma 3.5 implies that d(u,(-,y),I'sp-) < do for any y > y,,1 and so in
particular d(uy,(+,0),I's p=) < do in contradiction with the assumption d(u,(+,0),T's ;) = 3do since as we know
d(T'sp, '3 p+) > 3dp. Analogously one obtains a contradiction assuming u, (-, yn,2) € I's p.

By (3.4) and Lemma 3.5 we conclude that for any n € N there results

d(un('ay)ar3,p) S dO for any y S —L and d(un('ay)aF3,p*) S dO for any y 2 L
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and so, as in the proof of (i), in the limit we obtain
d(up(-,y),T's,p) < do for any y < —L and d(up(-,y), s ) < do for any y > L.

This proves in particular that, as stated in (444), limsup,,_, ;. d(up(+,¥), T3 p+) < do.

To complete the proof let us show now that lim,_._ o d(up(-,y), K3,) = 0.

We first observe that, by Remark 2.3, F(u,(-,y)) > c3, for any y < —L, and, by Remark 3.2, we deduce
that ¢, (—oo,—1)(up) is well defined and ¢, (— oo, — 1) (tp) < liminf,, o @p(un) < myp.

By (2.18) we have that for any r > 0, if y < —L and d(up(+,y), K3p) > r then F(up(-,y)) > min{cz ,+vr, c*}.
Then, since ¢, (—oo,—1)(up) < My, we deduce that liminf, . o d(up(-,y),K3,) = 0. Finally, if we assume by
contradiction that

limsupd(u,(-,y), K3 p) =7>0

y——00
we obtain the existence of a sequence of intervals (y1,j,y2,;) With y2 ;41 < y1,; < y2,; < —L for any j € N,
Yo,; — —00as j — 00, |lup(-,y1,5) —up(-,y2,5)|| = 5 and F(up(-,y)) > min{cs , +1, /4, c*} for any y € (y1,5,92,5)-
Then, by (3.2) we obtain

o0 o0
j T
Pp (oo 1) (W) =D 0p (g1 5 m ) () = \/2 min{v, /4, ¢ = cap} Y 5 = o0,
j=1 j=1

a contradiction. O

The conservation of “Energy” and the existence of two dimensional solutions

Note that the function u, given by Lemma 3.6 does not necessarily satisfies the condition F'(up(-,y)) > c3,
for any y € R. Hence, we cannot say that u, belongs to M, and so that it is a minimum for ¢, on M,,. Anyway,
as we will show below, as limit of a minimizing sequence, u, inherits suitable minimality properties which allow
us to construct from it a two dimensional solution of (1.3).

First of all, we introduce the set of limit points of the minimizing sequences of ¢, in M,. More precisely, for
p € P such that [p] > pg, we set

3
L, ={ueH/Iu,) € My, such that d(u,(-,0),T's,) = §d0 for any n € N,

op(un) — m, and u, — u weakly in H. (R?) as n — oo}.

Remark 3.5. Note that, using the invariance with respect to the y-translation of ¢, there always exists a
sequence (uy,) C M, such that ¢, (u,) — m, and d(u,(-,0),T's,) = 2do for any n € N. Then, by Lemma 3.6,

L, is not empty and constituted by functions u verifying the properties

Supd(u('ay)ar3,p) S CO; lim d(u('ay)a’CS,p) =0 and limsupd(u(~,y),1“3’p*) S dO-
y€ER y—=Teo y—+oo

For any u € £, we set

Dy ={y e R/d(u(-,y),Ksp) = do}-
Note that, by Remark 3.5 and (3.1), D, is not empty and, by Remark 2.3, we recover that if y ¢ D, then
F(u(-,y)) > c3,p. We define

)40 if F(u(-,y)) > c3plor anyy € D,
You = inf{y € D,/ F(u(-,y)) <c3p} otherwise.

Note that, since lim d(u(-,y),Ks,) =0 we have in fact yg,, > —o0.

y——00
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Remark 3.6. We remark that, by definition, for any u € £,

if y < yo,u then, d(u(-,y), Ksp) < do or F(u(-,y)) > csp- (3.5)
Then, by (3.5) and Remark 2.3, we always have that

F(u(vy)) > C3,p for any Yy < Yo,u

and so, by Remark 3.2, we obtain that ¢, _oc 4, ,)(u) is well defined for any u € £, and @, (— oy, ) (1) < M.

Remark 3.7. Note that if o, = +00, then F(u(-,y)) > c3, for any y € R and so, by Remark 3.2, ¢, (u) < m,.
By Remark 3.5 we have in fact that in this case u is a minimum for ¢, on M,, i.e.,

if yo,u = 400 then u € M, and ¢, (u) = m,.

Let us consider the case yo,, € R. We point out that, by definition, there exists a sequence (yn) C [Y0,u, +0)
such that y, — you as n — o0, F(u(-,yn)) < c3p and d(u(-,yn), K3p) > do for any n € N. Since by
Remark 3.5 we have d(u(-,y),I's ) < Co for any y € R, by Remark 3.3, there exists p € Q(p) \ {p} for which,
along a subsequence, u(-,y,) € I's 5. Therefore, since the function y € R — F(u(-,y)) € [0,+0o0] is lower

semicontinuous (see Lemmas 4.1 in the appendix), by Lemma 2.7 and (3.1) we conclude that
if yo,u € R then 3p € Q(p) \ {p} such that u(-,yo..) € I's 5 and F(u(:, yo,u)) < ¢3p- (3.6)

As stated in the following lemma, in the case yo,, € R, we can say more than (3.6). In the proof we make use
of a technical result whose statement and proof is postponed in the appendix (see Lem. 4.4).

Lemma 3.7. Let u € £, with yo,, € R. Then we have

lim inf F(u(-,y)) =c3, and gap,(_oo,yw)(u) = M.
Y=Y0,u

Proof. Let us assume, by translating u if necessary, that yo ., = 0.
To show that liminf, o~ F(u(-,y)) = c3, assume by contradiction that there exists yo < 0 and p > 0 such
that F(u(-,y)) > ¢3,p + p for any y € (yo,0). We set v(z,y) = u(z,y) — u(x,0) and note that by (3.1) we have

0
[, w)]1? < —y / 10,u( 9P ds, Yy € (0. 0). (3.7)

Then, in particular, ||v(-,y)|| — 0 as y — 0~ and taking yo bigger if necessary, we can assume that ||v(-, y)|| < do
for any y € (yo,0).

For f, g € L*(R) in the sequel we will denote (f,g) = [, f(x)g(x) da.

Since ||v(-,y)|| < do for any y € (yo,0), by Lemma 2.13 we obtain that there exists C' > 0 depending on dp,
u(+,0) and W such that V¢ € [0,1] and Yy € (yo,0) there results

<@ =8)Clo(y)ll. (3-8)

/R ac(W (u(-,0) + v(-,9)) — W(u(-,0) + to(-, ) da

By (3.7) and (3.8), since by assumption p < F(u(-,0) + v(-,y)) — F(u(-,0)), we obtain

p< %H@wv(-,y)HQ — (9pu(-,0), Byv(-,y)) — /RaE(W(u(um +o(sy) = W(u(-,0))) dz (3.9)
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for any y € (yo,0). Then, we obtain
fim uf 0,0(.,1)] > 20 (3.10)
y—0-

Indeed, given any sequence y, — 0~ as n — +o0, if (9;v(:,9,))) is unbounded in L?(R) we have nothing to
prove. If otherwise, the sequence (9,v(-,»))) is bounded in L?(R) by (3.7) we deduce that 0, v(-, y,,) — 0 weakly
in L?(R) and then (9,u(-,0), dzv(-,yn)) — 0. Hence, by (3.7) and (3.9), we obtain lim, oo [|0z0(-, yn)||* > 24.

Now, by (3.10) we can assume, taking yo bigger if necessary, that ||0,v(-,y)||* > p for any y € (y0,0). Then,
let (y;) C (yo,0) be such that y; — 0 as j — +o00. Then, by (3.7) we obtain % — 0in L*(R) as j — +o0

and since the sequence (%) is bounded in L?(R), we deduce that % — 0 weakly in L?(R) and

9z u(+,0),02v(",y; Oz v (Y5 .
so 1 ||(6w3(.7y1)}|(‘2y’))| < ﬁ|(81.u(-,0), 7”8;;((.?;))” )] — 0 as j — oo. That shows that
11m (amu(.’0)7aﬂ7v(2.)y)) — 0. (3'11)
y=0- [|8z0(, 9

Note now that, thanks to (3.8), for any y € (y0,0) and any ¢ € [0, 1] we have

_ low )l
2

n / 0 (W (u(-,0) + 0 )) — W (u(-0) + tu(-y))) da
R

) A0 @0 o) o)l
= 100wl “‘”( SR P RUOwA ‘Cnazv(-,y)n?)'

F(u(v 0) + U('7y)) - F(u(a O) + tv(-,y)) (1 - t2) + (1 - t)(axu('v O)a a:cv('vy))

Then, by (3.7), (3.10) and (3.11) there exists y1 € (yo,0) such that

Fu(0) +v(-,y)) = Fu(,0) + to(-,y)) =

wa—w, Yy € [y1,0), vt € [0,1]. (3.12)

Let £ = liminf, - F(u(-,y)), since F(u(-,0) +v(-,y)) = F(u(-,y)), there exists y2 € [y1,0) such that

F(u(,0) +v(,y2)) < ¢ (1 + é) and F(u(-,0) +v(-,y)) > ¢ (1 - é) for any y € [y2,0)
and so for any y € [y2,0) there results
Pu(-,0) + v(y)) = F(u(-,0) + v(- 32)) = — - (3.13)

By definition of yg ., we have F(u(-,0)) < ¢3,p, then we can choose § € (y2,0] such that F'(u(-,0)+ Z%v(-, y2)) =
czp and F(u(:,0) + 22v(-, y2)) > cs,p for any y € [y2, 7). We define
u(z,y) ify <o
ﬂ(I,y) = u(~,0)+;’—2v(~,y2) if Y2 <y <y
u(~,0)+;’;2v(~,y2) 1fy2g

and note that @ € M,,.
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Now we show that ¢, (%) < ¢}, (—o0,0)(u) obtaining a contradiction since, by Remark 3.6, ¢}, (—oo,0) (1) < mp.
Note that

1 . 0 .
onoe0®) = @ = 5 [ 10,1 = [0, dy + [ Flute9)) ~ (i) .
Y2 Y2
Since by (3.7) we have

l0,all? dy = — /
Yy

2
Y2 Y3

g _ 0 0
—\Y ¥y
fotue)lPay < =22 [ jouiay < [ oyul?ay,

2 Y2 Y2

to show that ¢, (_oo0)(u) > ¥, (@) it is sufficient to prove that fyoz F(u(-,y)) — F(a(-,y))dy > 0.
Indeed, if y < %, since F(u(-,y)) = c3, for any y > ¢ and by assumption F(u(-,y)) > c3p + p for any
y € (y0,0), by (3.13) and (3.12) we obtain

/F(U(-,y))—F(ﬂ(-,y))dyZ yF(u(w))—F(U(-70)+v(-,y2))dy+[ F(u(-,y)) —c3,pdy

Y2 Y2

_ o yz( 1 )
> (J—yo)= —gu > -2 (-2 0.
> —(y y2)16 gz =35 (-5 +r) >

If otherwise 7 > %, we have g';% < 2 and so by (3.13), (3.12) and (3.10) we obtain

0 Y
/ Flu(y)) — F(i(-y)) dy > / F(u(y)) — F(u(-0) + v(y2)) dy

Y2 Y2

# [P0+ o) - F (a0) + L)) ay

Y2
_ poop Y Y _ R N T P
> —(y y2)16+4/y2< y2> y=(y yz)( 671 3 " )

This proves that liminf, o F(u(-,y)) = c3,p.

To conclude, note that, by Remark 3.5, d(u(-,y), Cs,) — 0 as y — —oo. Moreover, by Remark 3.6, we know
that F'(u(-,y)) > c3, for any y < 0 and ¢, (—oo0y(u) < my. Finally, by (3.6), we have u(-,0) € I's 5 for some
P # p. Then, we can directly apply Lemma 4.4 to obtain ¢, (o 0)(u) = my. (I

We are now able to prove that any function u € £, is a weak solution to (1.2) in R X (—00, Y0,4)-

Lemma 3.8. Let u € L, then
[ Vuv b ale W wppdsdy =0 ¥ € GF(R x (o0 u0.0)
R2

Proof. Given any ¢ € C§°(R X (—00,y0.)) we set, for t € (0,1),

1—(uttp—1)  ifutt)>1,
ve(2,y) = qu+t if 1> wu+t)>—1,
—“1—(ut+typ+1) fu+ty < -1
First of all note that, assuming without loss of generality, that [[¢|pe(r2y < 1, [[9[g1(rey < 1 and

l(, y) |l (ry < 1 for any y € R, we have |v(z,y)| < 1 for almost every (z,y) € R? and since v(x,y) = u(z,y)
on R? \ supp v we have, by Remark 3.5, that v; € H.
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We claim that there exists ¢y, € (0,1) such that ¢, oy, )(ve) > my for all ¢ € (0,2,) and then, by
Remark 3.7 and Lemma 3.7,

(pp,(foo,yo,u)(vt) > @p,(foo,yo,u)(u)v vt € (Ovtw) (314)

from which we can conclude the proof.
First, let us show that there exists ¢, € (0,do) such that

F(ve(-,y)) > c3,p for every y < yo,u, t € (0,y). (3.15)

If y € (—00, yo,u) \ Du, note that since |vt (-, y) — u(-,y)| < t|1(-,y)|, in particular we have |Jv:(-,y) — u(-, y)||* <
2|19 (-, y)||* < t2, and for t < dy we have |Jv;(-, y) —u(:,y)|| < do for any y € R. Then, we derive d(v¢, K3,) < 2do
for all t € (0,do). Hence, by Remark 2.3, we have F(v:(-,y)) > ¢3,p for any ¢t € (0, do) and y € (—00,Y0.u) \ Du-

Let x1 < xg, (1 < (2 < Yo,u be such that suppv C (x1,22) X ((1,¢2) and let y € D = (—o00, (2] N D,,. Since
by (3.1) and Lemma 2.8 we have that y — d(u(-,y), s ) is continuous, we deduce that D is closed in R. Since
by Lemma 4.1 y — F(u(-,y)) is lower semicontinuous and since by (3.5) F(u(-,y)) > cs, for any y € D, we
have that there exists u > 0 such that F(u(-,y)) > ¢, + p for any y € DN [(1,C). If u(-,y) € T\ T then also
ve(-,y) € T\ T and so F(v(-,y)) = +oo. If u(-,y) € I, setting C1 = amax|s <1 |[W'(s)| and Cy = Cy (w2 — z1)2
we obtain

F(u(9)) — Flun())] < 1\ [ 10:uw, ) = 0o ) s+

/R ae (W (u(z, ) — W (ve(z,9)) da

<! ‘ / Ot )~ 0a(ulie, ) + o) Pl + €1 [ tw(x,y)‘dx

< / 1020, ) P + 1050, 1) [Dsule, )| do + Cr / (e, )| de
R

IN

S Brey + 206Dl (522 ol

§+2t <7F(“(2"y)))é + 0.

IN

Then for any y € D we have
1 1
Fui(,9)) 2 Flu( ) (1 =) = 5 +1) = tC2 > (e3p + p)(1 =) = S (£ +1) —tCh

from which we plainly derive that there exists ¢, € (0,dp) such that F(v(-,y)) > c3, for any y € D and
t € (0, tw).

Finally, if y € ((2,Y0,u) N Dy, we have v(z,y) = u(z,y) and we know, by Remark 3.5, that F(u(-,y)) > c3,p.
Gathering the estimates above (3.15) follows.

Now, note that if yo ., = 400, since by Remark 3.7 we have u € M,, by (3.15) we obtain v, € M, and then
wp(ve) > my, for all t € (0,ty) and (3.14) follows in this case.

If otherwise yo,, € R, note that by (3.6) and Lemma 3.7, for all ¢ € (0, 1), v; verifies

lim d(ve(-,y),Ksp) =0, ve(x,yo.u) = w(T,Yo,u) € Upxpl's 5 and liminf F(v(x,y)) = c3 . (3.16)

Y——0 yﬂyau

Hence, by (3.15), we obtain that, for all ¢ € (0,ty), v; verifies the conditions of Lemma 4.4 with yo = yo,., and
we can conclude that @, (o y, ) (V) > my, for all t € (0,%,) and so (3.14) is completely proved.
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Finally, let us define
Wl—-(s—1)) ifl<s<2,
W(s) =< W(s) if |s| <1,
W(-1—(s+1) if —2<s<—1
observing that W e C'([-2,2]) and W (s) = W (s) for any s € [~1,1]. There results W (v;) = W (u + t1),

|0zv] = |05 (u + )| and |9yve| = |0y (u + )], a.e. on R2. Therefore
Yo,u 9 ~
/ /]R [V(u+t))* +a.W(u+t)de — c3pdy = <Pp,(—oo,y0,u)(’0t)~ (3.17)
—o0
Then, by (3.17) and (3.14), we conclude that for any ¢ € (0,¢,) there results

Yo,u 1 ~
/ /]R §|V(u + tw)|2 +a:W(u+t)de —cspdy — SDp,(foo,yO,u)(U) > 0.
— 00

Hence, since |u(z,y)| < 1 for a.e. (z,y) € R?, and since %|W(u + 1) — W(u)| < 1 max|g<2 |W'(s)| for a.e.
(z,y) € R? and for any ¢ € (0, 1), by using the Fubini and the dominated convergence Theorems we obtain

1 Yo,u ~
0< tlir(l)1+ n </ / |V (u+ 15@/1)|2 +a.W(u+ty)de —c3pdy — gap,(_oo,yw)(u)>
- —o0 R
1 1 -
= lim —/ —(IV(u+t)|> = |Vul|?) + ac(z) (W (u + tp) — W(u)) dz dy
t—*O+ t Suppw 2

= / VuV + ac ()W (u)y dz dy.
R2

Considering — as test function we deduce that [y, VuVe + ac(z)W'(u)ipdedy < 0 from which in fact
Jgz VuVY + ac ()W’ (u)ip dz dy = 0 and the lemma follows. O

By the following lemma we obtain that in fact any function w € £, is a a classical solution to (1.2) on
R X (—00,Y0,u)-

Lemma 3.9. Let y1 < y2 € R. If u € H wverifies

/ VuV + a:(z)W' (u)yp dedy = 0, V) € Hy (S(y,40))- (3.18)
s

(y1,v2)

Then u € C?(S(y, ) and verifies —Au + a-W'(u) = 0 on S
results u — zo € H*(S(¢, ¢,)) and

yi,y2)- Moreover, for any [Ci,C2] C (y1,y2) there

lim w(z,y) ==+1 wunif. w.r. toy € [C, ) (3.19)

r—to0

Proof. Let [C1,¢2] C (C1,¢2) € [C1,G2] € (y1,92) and 6 € C*(R) be such that 6(y) = 0if y ¢ ((1,C2) and (y) =1
for any y € [¢1, (o). Defining v(z,y) = 0(y)(u(z, y) — z0(x)) we have v € Hj (S, ¢,)) and moreover

I

for any ¢ € Hg(S¢, ¢,))- Then one plainly recognizes that f = —a.W'(u)f + 097z — 920(u — z0) — Oyud,f €
L*(S(¢, ¢,)) and by classical elliptic argument recovers that v € H*(S¢, ¢,)) and so that u — zo € H*(S(¢, ¢,))-

VoV dedy = / (—0aW' (u) + 00220 — 026(u — 20) — 8,00,u)y (3.20)

(¢1.¢2) 5(&1.,89)
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Then —Au + a:W’(u) = 0 as element of Ni¢, ¢,1c (y1,y2) L2 (S(y1,y2)) and since [[u]| L= (r2) = 1, by a bootstrap
argument we obtain that u verifies the equation in a classical sense with HUHCQ(S(Q,Q)) < o0 for any [(1, (] C
(y1,y2).-

To show that (3.19) holds true observe that since u — 20 € Ni¢; a1 (y1,52) H2(S(¢1,¢2)) we have that u(-,y) —
20(-) € HY(R) (in the sense of traces) for any y € (¢1,(2) and so that u(z,y) — +1 as x — oo for any y €
(C1,¢2). Then, assume by contradiction that (3.19) does not hold and so that there exist [(1, (2] C (y1,y2), 1 > 0,
a sequence (yn) C [C1, Caly g — § € [C1, o], and a sequence (zn) C R, |a| — 0o such that 1 — [u(zm,yn)] > 1.
Since [[ullc2(s, ) < +00, one obtains that there exists p > 0 such that 1 — [u(zn,y)| > 4§ for any y € [, (2]
such that |y —g| < p whenever n is sufficiently large, a contradiction since we already know that 1 — |u(z,y)| — 0
as |z| — +oo for any y € ((1, (2). O

By Lemma 3.9 we obtain that if u € £, and yo,, = +00, then u € C*(R?) and —Au + a.W’'(u) = 0 on R,
i.e., u is a solution to (1.2). If otherwise u € £, is such that yo ., € R, by Lemma 3.9 we have that u solves (1.2)
only on the half plane R x (—00,yo,,). We will prove, by the following Lemma, that in such case u satisfies the
Neumann boundary condition dyu(-,yo,.) = 0. This will allow us to recover, by reflection, an entire solution
to (1.2) even in this case.

In fact, in the next lemma, noting that in the equation (1.2) the variable y is cyclic, we prove that a sort of
Energy has to be conserved for the functions u € £,,.

Lemma 3.10. Ifu € L, then the energy function
1 2
y = Bu(y) = —5l10yul y)II° + F(ul-,y))
is constant on (—o0, Yo ). In particular

E.(y) =c3p forally € (—oo,you) and liminf|dyu(-,y)| =0. (3.21)

Y=Y0,u

Proof. Let u € £, and ((1,{2) C (—00,40,4). By Lemma 3.9 we know that u € C?(S, ¢,)) verifies —Au +
a:W'(u) =0 on S, ¢,). Multiplying both the terms of the equation by d,u(z,y) we get that

0 = =0y 2u0yu — Oy yu dyu + ac (X)W’ (u)dyu = —0y yu dyu + Oy <%|8yu|2 + ae(m)W(u)>

1 1

Given [(1, (2] C (¢1,¢2), by Lemma 3.9 we know that u — 2z € HQ(S@LG)) and hence Vu € HI(S(G@)). Then,
integrating on S(¢, ¢,y and using Fubini Theorem we obtain

o |
521,82

52 52 1 1
= 7/ / 0z (0zu 8yu) drdy + / / Oy (—|azu|2 _ _|8yu|2 + ae(m)W(u)) dy dx
C1 R RJG 2 2

0z (0zu Oyu) do dy + /

Oy <%|8mu|2 - %|8yu|2 + aE(x)W(u)) dz dy
S

(€1.62)

G2
- [ / 02 (0puOyu) do dy + By, (G) — Eu(Gr)-
L JR

By Lemma 3.9 u — zg € H*(S(¢, ¢,))- Then d,u(-,y), yu(-,y) € H'(R) for a.e. y € (C1,(2) and so dyu(x,y),
Oyu(z,y) — 0 as |z| — +oo for a.e. y € ((1,(z). Therefore [, 0,(d,udyu)ds = 0 for a.e. y € [(1,(2] and

E.(C2) = Eyu(&) follows.
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That proves that the function E,(y) is constant on (—o0, o). It is not difficult to recognize that E,(y) =
c3p- Indeed, By Lemma 3.7 we have [ 1[0, u(-,y)||*> + (F(u(-,y)) — c3)dy = m, < +0o and so there
exists a sequence (y;) C (—00,90,) such that y; — —oo and 1||dyu(-,y;)[|*> + (F(u(-,y;)) — ¢3,) — 0. Since,
by Remarks 2.3 and 3.6, F(u(-,y;)) > cs,p for any j € N we have ||0,u(-,y;)||* — 0 and F(u(-,y;)) — c3p-
Then E,(y) = c3,p for any y € (—00,%o,.) follows. Since by Lemma 3.7, lim infy_}y;u F(u(-,y)) = c3,p, we can

conclude that lim infy_}y[;u 10yu(-, y)|| = 2lim infy_)y(;“’ (F(u(-,y)) — Eu(y)) = 0 and (3.21) follows. d

We are now able to prove the existence of solutions to (1.2).

Proposition 3.1. Let u € L,. Then, setting

u(may)v if y < Yo,us

) if you € R
(T, 2Y0,u — Y)s i Y > Yo,us v

vp=u, ifyo. =400, or uv(x,y)= {

we have that v, € C*(R) is a classical solution to (1.2) on R?. Moreover, |vp|lc2rz) < +00 and vy(z,y) — £1
as x — Foo uniformly with respect to |y| < T, for any T > 0.

Proof. If yo,., = +00, the statement follows by Lemmas 3.8 and 3.9 noting that |u||c2g2) < +o00 derive from
lul| o (r2) < 1 using local Schauder estimates.

Let yo,., € R and since the functional is invariant with respect to the y-translations, it is non restrictive to
assume that yo ., = 0. By (3.21) we already know that E, = c3, = —3|lu(-,y)||*> + F(u(-,y)) for any y < 0.

By Lemma 3.7 we know that

3(y;) € R_ such that y; — 0 and F(u(-,y;)) — c3p (3.22)

and hence [|0,u(-,y;)|| — 0. By Lemma 3.9, using the Green formula, we have that for any 1 € C§°(R?) and
jeN

0= / —Autp+a W' (u)ypdedy = / VuV + a:W'(u)y de dy — / Oyu(z,yj)(x, y;) dz,
Rx (—00,y5) R R

(7007743')
and so
/ VuV +a:W'(u)yp dedy = lim VuV + a:W'(u)y de dy
Rx(—00,0) I JRX (—o00,y5)

= lim [ Oyu(z,y;)¢¥(z,y;)dz =0.

j—00 R

With a simple change of coordinates we obtain also that
/ Vu(a, —y) Ve + a- W' (u(z, —y))ddedy =0, ¥y € CF°(R?).
Rx (0,+00)

Then, v, satisfies
/ Vo,V + ac ()W (v,)p dedy =0, Vo € C5°(R?)
]R2

and using Lemma 3.9 the proposition follows as in the case yg,, = +00. (I
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Thanks to Proposition 3.1 and Lemma 3.9, we can say that (1.2) always admits a two dimensional solution
verifying d(u(-,y), Ks,p) — 0 as y — —oo whenever p € P is such that [p] > po. Moreover,
— if yo,, = +00, such solution is of the heteroclinic type, i.e. v, € C?(R?) verifies (1.2) and v, € M;
— if yo,u € R, then the solution is of the homoclinic type, i.e. v, € C?(R?) verifies (1.2), d(vy,K3,) — 0
as y — £oo and, by Remark 3.5 and Lemma 2.10, d(vp (-, Y0,u), KC3,p) > 3do.
To complete the proof of the main theorem we have to show that in any case v,(x,y) — £1 as ¢ — £oo
uniformly with respect to y € R.

Lemma 3.11. Letp € P with [p] > po, for every u € L, let v, be given by Proposition 8.1. Then, vy(x,y) — £1
as x — too uniformly with respect to y € R.

Proof. By Proposition 3.1 we know that v, € C*(R), ||vp|lc2r2) < 400 and that for any 7' > 0 there results
vp(x,y) — £1 as © — oo uniformly with respect to |y| < T.

As first step in the proof we claim now that for any ((1,¢2) C R there exists a constant C' > 0 depending

only on (s — (3 such that
lopll (8¢, ) < C-
To this aim note firstly that, by Lemma 3.6, d(vp(-,y),I's ) < Cp for any y € R.

In particular we obtain that sup,cp [[v,(-,y) — 20(-)||* = C1 < +00 and so by Lemma 2.13 we recover that
Je W (vp(z,y)) dz < Cy < 400 for any y € R. Then, since by (1.10), we have [W’'(s)[*> < 72W( ) for any |s] <1
we derive that there exists a constant Cs5 > 0 such that ”W/(UP)HL?(S(C e S < C3(¢y — (1) for any (G, C2) C R.

Secondly we observe that since ¢, (vp) = my, if Yo = +00 and ¢, (vy) = 2my, if Yo, < +00 we always have
that ||y U,,||L2(]R2 < dmy,.

Then, for any (¢1,¢2) C R we let # € C?(R) be such that 0(y) = 0ify ¢ ({1 — 1, + 1), 6(y) = 1 for any

Yy E (Cl,(g) and ||0||c2(r) < 2. Defining v(z,y) = 0(y)(vp(x,y) — 20(x)) we have v € H&(S(Q_LQH)),
[ol17 <401(G¢2 — 1 +2)

< 4jvp — 20|72

L2(S(41 1, C2+1)) - (S(Cl 1, C2+1)) -

and moreover, since v, is a classical solution to (1.2),
Av = 0a W' (vp) — 00220 + 026(vy — 20) + 900, vy.
Then, since Av = Oa. W' (vy) — 00220 4+ 050(vy — 20) + 0,00yv, € L*(S(¢,—1,¢,4+1)) and
18] a5, 1) < 2@C5" + C2 4 0220]1) (G2 = G+ 2)Y2 o+ 4y

by classical elliptic argument we recover that v € H? (St¢ci—1,¢c,41)) and that there exists a constant C' depending
only on (3 — (3 such that [|v| g2 < C. Then, since [lv, — 20l m2(s(, (,)) = IVl H2(5, )+ OUT claim
follows.

In particular we obtain that the function y € R — Jyv,(-,y) € L?(R) is uniformly continuous. Indeed, as
n (3.1), for any (¢1,¢2) C R we have

(S(Cl 1(2+1)) -

10y vp (-5 C1) = Byup (- C)I1? < (G2 = COB;vpll (s, o) < (G2 = COlop — 20l E2(5¢, )

from which we derive that

im0, )] = 0.

Indeed, if there exist a sequence |y;| — oo as j — oo and r > 0 such that ||0,vp(-,y;)|| > 2r for any j € N,
then by uniform continuity there exists p > 0 such that ||0,v, (-, y)|| > r for any y € Ujen(y; — p,y; + p) and so

ep(vp) > 3202, gp = 400, a contradiction since ¢, (v,) < +00.
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By Lemma 3.10 we then obtain that

lim F(vp(-,y)) = czp

y—Foo
and so that there exists L > 0 such that
vp(+,y) €3 for any y < —L and v,(-,y) € I's 5 for any y > L

where p = p if yo, < +00 and p = p* if Yo, = +00. By Lemma 2.5 we deduce that there exists T > 0 such
that if |y| > L then

vp(z,y) > 1—26 for any x > T and vy(z,y) < —1+ 26 for any = < —T. (3.23)

We will assume that 7' is such that also 1 — |zo(z)| > 26 for any || > T.

Assume now by contradiction that v,(x,y) does not converge to £1 as * — £oo uniformly with respect to
y € R. Then there exists a sequence (z;,y;) C R? such that |z;] — oo, |y;| — oo as j — oo and 1—|v,(z;,y;)] >
2r > 0 for any j € N. Since ||v,||c2®2) < +00 we obtain that there exists p € (0,1) such that 1 — [v,(z,y)| > r
for any (x,y) € UjenB,((x;,y;)) (as usual we denote B,((z;,v;)) = {(z,y) € R? / (x — x;)* + (y — y;)? < p?}).
Since |zj| — oo as j — oo and zg(x) — £1 as ¢ — Foo we deduce that

n) = 7T1/27“p. (3.24)

lim inf Jlo, — 2ol L2(5, (w5 s

For any j,n € N we set Q;, = {(z,y) € R* /n—1 < |z| <n, |y —y;| < p}. Since, as we know there exists a
constant C' > 0 depending only on p such that for any j € N

2 2 2
2;\1 lvp = 20l 72 (@, ) = lvp — ZO||H2(s(yj,p,yj+p)) <C
ne

we obtain that for any j € N big enough

[lzz]-1
[|z;51] .
2J \x.\mm llvp — ZOH%W(Qj,n) = Z l[op — ZOH%ﬂ(Qj,n) <7
ne{[=-]+1,[=;]-1} =241
- 2

where we denote with [z] the entire part of x € R.
Therefore for any j € N there exists 71, € {[@] + 1,[|Jz;]] — 1} such that

207

2
||U10 - ZOHH?(Qjﬁj) < ij”

Now, for any j € N we set
Aj = {(zy) €R? /o] = 7y, |y —y;| < p}

and we let 6; € C?(R?) to be a function which verifies, ||0;||c2r2) < 2, 0j(z,y) =1 on A; and 0;(z,y) = 0 if
le| <nj—TLorly—y|2p+1.
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Note that 6;(v, — 20) € H (R?) and so integrating the equation —6; (v, — z0)Av, + 0;(v, — 20)ac W' (vp) =0
on the strip S(y; 5.y, +4), and applying the Green Formula, we obtain

J

Vo, V(0;(vp — 20)) + 0;(vp — 20)a-W'(vp) dz dy — / Oyvp(8;(vp — 20)) da

(yj—pyj+pe) y=yite

+ / Oyvp(0;(vp — 20)) dz = 0.
Yy=y;—p

Then, since ||0yvp(-, )| — 0 as y — oo, we conclude that
/ Vo, V(0;(v, — 20)) + 0 (vp — z0)a:W'(vp)dzdy — 0 as j — oo. (3.25)
S(yjfpyyjﬂi)

On the other hand we note that

J

Vo, V(8 (vp — 20)) dady = / Vo, V(8 (vp — 20)) dady + / Vo, V(vp — 29) dzdy

(yj—pPsyj+p) 7 Aj

g

> V(v = 20) 1224,y = 10220ll 224 192 (vp — 20) | L2,y = 2V 0pll L2 0 IV (00 = 20) | L2(Q, 1)

VO;Vu, (vp, — 20) + 0;Vu, V(v, — z0) dedy + / (V(vp — 20))% + 0p200x(vy — 20) dady
Aj

Jsnj

20|V 022y, 00 — 20l 2225, )

Then, since ||9z20|r2(4;) — 0, V(v — zo)||Lz(ijﬁj) — 0 and |jv, — ZOHLz(Qj,ﬁj) — 0 as j — oo, we conclude
that

lim inf/ Vo, V(8;(vp — 20)) dzdy > 0.

‘7*}00 S

(yj—psyj+e)

Note finally that for any j € N such that n; > T, by (3.23) and (1.8), we have that W (v,(z,y)) > w for all
(z,y) € A; and so we deduce that

J

0;(vy — z0)a:W'(vp) dzdy = / 0;(vy — z0)a:W'(vp) dz dy
Qj.ny

(yj—psyj+e)

+

(vp — 20)ac (W' (vp) — W'(20)) dedy + / (vp — z0)aW'(zo) dz dy
A; Aj

> awllvp = z0ll724,) = 26llvp — 20l 2ap W' (20)ll 22 (ay) = 2allvp — 20l 2250, W' (00) I £2(Qs00)-
Then, since by (3.24) we have
.. 2 R 2 2 2
hjﬂigolf lop = 20ll72(4,) = hjﬂigolf lop = 20llZ2(B, (2, ) = 777>

and since [|vp, — 20 £2(@,.,.) — 0 and [[W'(20)|[z2(4,) — 0 as j — oo, we conclude that
g

lim inf/ 0;(vy — 20)acW'(vy) dz dy > awnr?p?.
Jee S(yjfp,yjdrp)
Gathering the estimates above, we deduce that
lim inf/ Vo, V(0 (v — 20)) + 0;(vp — 20)ac W' (vp) do dy > a wrr?p?
Jee S(yjfpyyjﬂi)

a contradiction with (3.25). O
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4. APPENDIX

In this section we will display the details of some technical result used in the previous section.
Lemma 4.1. Given u € H, the function y € R — F(u(-,y)) € [0,400] is lower semicontinuous.

Proof. If y, — yo and liminf F(u(-, y,)) = +oo there is nothing to prove. If otherwise there exists a subsequence
(Yn,,) C (yn) such that lim F(u(-, yn, )) = liminf F(u(-,y,)) < 400, then, by Lemma 2.1, there exists ¢ € H. .(R)
such that, along a subsequence, u(-, yn,) — ¢(-) weakly in H} (R) and F(q) < lim F(u(-,yn,)). Since, by (3.1),

u(-,Yn, ) — u(,y0) — 0 strongly in L?(R) we conclude that ¢(-) = u(-,yo) and the lemma follows. O
Lemma 4.2. There results M, # 0. Moreover

m
inf m, > do 0 and sup m, < +00.
;DE'P 8 pe’[)

Proof. Let ¢ € K3,. We isolate the transitions of ¢ defining g, , ¢p,, ¢p; in such a way that g, (z) = ¢(x) if
x € (01,4,71,q) and 1 —|gp, ()| =0if x € R\ (014 — 1,714 + 1), 1 = 1,2,3. In fact given [ = {1, 2,3}, we set

(—1)! ife <opq—1,
(—=D)o1y — ) + (=D 1 = dp)(x — 014 + 1) iforg—1<z<o,,

dp, (l‘) = Q(x) if Olg <X < Tlq,
(D)1 =) (mg+1—2)+ (D) z—71,) ifn,<z<7m,+1,
(1)1 ifx>m4+1.

We define now qo(z) = gp, (z) + gp, (z) + gps (z) and we observe that nt(go) = 3 and (01,40, T1,q0) = (T1,¢: T1,q) C
Ap, \UjezO; for any | € {1,2,3}.

Let t1,t2,t3 be such that ¢; € (01,4, 71,¢0) and go(t;) = 0. Set moreover T; = %ﬂ'l —t, Ti =t — @ and
note that Tj + 1; = % for any [ € {1,2,3}.

Define
q(x) if y < -1,
—q(z)y + qo(z)(y + 1) if —1<y<o,
wla,g) = Zzzlqpl(zfyn) ) ifo<y<1,
Yicidp(@ =T — (y—1)1T) ifl1<y<2,
@z =B -y +alz—y—-2) if2<y<3,
q(m—%) if y > 3,

and note that u € H, lim,_._o d(u(x,y),Ks,) = 0 and letting p’ = p + (1,1,1) we have p’ € P, ¢z —
%) € Ksp and so limy 4o d(u(z,y),Ksy) = 0. Since, by Lemma 2.10, d(Ksp, K3 ,) > 3do, we obtain
liminf, 4 d(u(z,y), Ksp) > 3do.

We show now that F(u(-,y)) > ¢z, for any y € R and so u € M,,.

First of all note that F'(u(-,y)) = c3p for any y € R\ (—1,3). If y € (—1,0] then u(-,y) is a convex
combination of the two functions ¢ and qo, therefore nt(u(-,y)) = 3 and (07,u(.,y)> Ti,u(.,y)) = (T1,¢, T1,q) C Ap, for
any ! € {1,2,3}. We have either F(u(-,y)) > ¢* or F(u(-,y)) < ¢* and in both the cases we have F(u(-,y)) > c3 p.
Indeed, if F(u(-,y)) < ¢* then u € I's , and so F(u(-,y)) > c3p. The same reasoning can be used to show that
if y € (2,3] then F(u(-,y)) > ¢3,p. Let us now consider the case y € (0,1]. We have u(-,y) = 2?21 qp, (x — yT7)
and so nt(u(-,y)) = 3 and

(OLulp) Thuty)) = (01,g + YTy, 114 +yTy) for any [ € {1,2,3}.
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If (U (01,q + yT1, 11 + yT1)) N (UjezJ;) # O then, by Lemma 2.5 we have F(u(-,y)) > c*. If (U (014 +
yT1, 1.4 +y11)) N (Ujezd;) = 0, since 01,4 + y1I; € Ay, we have (07,4 + Y17, 71,4 + y1;) C Ay, for any I € {1,2,3}.
Then, as above, if F'(u(-,y)) < ¢*, we have u(-,y) € I's , and so F'(u(-,y)) > ¢3,. Analogous is the case y € (1,2]
and, as claimed, v € M, follows.

Now, we will find a constant C' > 0, independent on p € P, such that ¢,(u) < C, proving in this way that
Sup,ep My < +00.

To this aim note that since T} + T} < % for any I € {1,2,3}, we have

0 2 3 3
1 1 .
eol) < [ Sla=al+ Pleya+ o+ Da) = eapdy+ [ 555 3 il + 3 Fla) = capdy
=1 =1

3

1

+/ 5llao — all? + F((3—y)qo + (y — 2)q) — c3pdy.
2

It is simple to recognize that there exists C' > 0 such that

2 3 3
1 .
[ il + 3 Flan) — sy <
=1 =1

for any p € P. Indeed 213:1 ldp. |12 < [|4]|? + 6607 < 2¢* + 650> and, arguing as in the proof of Lemma 2.3 and
by Lemma 2.6, (2.14), Zle F(qp,) < F(q) + 65 < c* +my for any p € P.
Let us now estimate the term

0
1
[ 3=l + Plya-+ o+ Dao) - cap
Since F(q) = c3, and since, by Lemma 2.5, 1 — |q(z)| < 20 for any 2 € R\ (U, (01,4, 71,¢)), then, by (1.9) we
obtain that

*

2
/ X(g)?dz < =—.
]R\(Ulljzl(o'l,qvﬂ,q)) aw
Therefore
4c*
lz = oll” < 2/ X(@)° + x(g0)* dw < — + 126,°,
]R\(U?:l(gl,qﬂ'l,q)) aw

To evaluate f_ol F(—yq+ (y+1)qo) dy note firstly that since ||go||?> < ||]|? + 680% and since ||¢||?> < 2¢*, we have

| —yd+ (y+ doll* < 2(|dll* + lldo]l*) < 8¢* + 128> for any y € (—1,0).

Hence

0 0
/ F(—yq+ (y + 1)qo) dy < 4¢* + 650° + / / a:W(-yq+ (y + 1)qo) dz dy.
—-1JR

-1
Observe now that for any y € (—1,0) we plainly have

3
/ W(-yq+ (y + 1)qo) dz < — max W(s).
U1 (01,4,71,9) € |s|<1

Note moreover that for any y € (—1,0) there results

| —yq(z) + (y + 1)go(z)| = 1 — 26 for any z € R\ (U, (01,4, 71,4))
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and so by (1.9) we obtain that for any y € (—1,0)

v gl

/ W(—yg + (y + o) dz < / X+ (y + 1)) do.
]R\(Ulazl(o'l,qﬂ-l,q)) ]R\(Ula:l(o'l,qg'rl,q))

Then observe that

X(=yq(x) + (y + 1)go(x)) < x(qo(®)) + |y(qo(®) — q(x))| < x(q0(x)) + |q¢(x) — qo(=)],

for any € R and y € (—1,0]. Therefore since as one plainly recognizes

X(q0(x)) = 0 and x(q(x)) = lg(2) — go(2)| for any z € R\ (UL, (014 — 1,714 +1))

and since B
X(=yq(x) + (y + 1)qo(x)) < 26 for any = € Up_, (01,4 — 1,01,4) U (11,4, 71,4 + 1)),
we obtain that,

-2
/ X(—ya+ (y+ Do) de < 243° + / (@) dz
R\(U?zl(o'l,qan,q)) ]R\(Ulle(gl,q_lﬂ'l,q"'l))

*

C

< U3’ +

aw

This proves that there exists a constant C' > 0 independent from p € P such that ffl g — qol* + Fa(—yq +

(y+1)qo) — 3, dy < C. Similarly one shows that f23 sllao — all* + Fa((3 = y)ao + (y — 2)q) — c3pdy < C for
any p € P.

Finally observe that if u € M,, then by (3.1) there exists (a,b) C R such that d(u(-,y),I's;) € (%, %) for
any y € (a,b) and |lu(-,a) —u(-,b)|| = % Then by Remark 2.3 we recover that F(u(-,y)) > ¢* for any y € (a,b)
and by (3.2) and Lemma 2.6 we obtain

d V/
myp > 1/2(c* — 03,1,)10 > do 78710 for any p € P, (4.1)

concluding the proof of the lemma. (I
Lemma 4.3. If (un) C My, F(un(-,0)) — c3p and un(-,0) € Iz 5 for a p # p then liminf ¢, _ o) (un) > my.

Proof. By Lemmas 2.1 and 2.7 there exists ¢ € I's 5 such that F(q) < c3, and a subsequence of (u,), still
denoted (un), such that, setting v, (-) = un(-,0) — g(-), there results v,(-,0) — 0 in L{S (R) and 0, — 0 weakly
in L?(R).

We set t, = sup{t € [0,1] / F(q + tv,) < ¢3,}, and we note that by continuity F(q + t,v,) = c3, for any
ncN.

We define the new sequence

un (2, y) ify <0,
Un(7,y) =  qn(x) + (1 —tn —y)vn(z) 0 <y <1—ty,
n () iif y > 1 —tp.

Let us observe that @, € M, and so that ¢, (t,) > m,. Then, since

1-t
) "1
onoe(tn) = 2p(@n) = [ Sl Flan() (Lt = 5)on()) ~ cap
0
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the Lemma follows once we prove that as n — oo we have

L gl Pl + (=t = 9)0,0) = capdy — 0. (42)

To this aim we observe that since F(q+v,) — F(q+ty,v,) — 0, v, — 0 in L (R) and v, — 0 weakly in L?(R),

loc
we have that for any 7" > 0 there results

(1—t)

5 [l +/ a:(W(g+vy) — W(q +tyv,))de — 0 as n — oo.
|z|>T

Since ¢ and g+ vy, belong to I's 5, by Lemma 2.5 there exists 7Ty > 0 such that if || > Ty then |g(x)| € [1 —27, 1],
lq(z) + v, (2)] € [1 — 25, 1] and so also |q(x) + tav,(x)] € [1 — 25, 1]. By convexity of W around the points —1
and 1, we recover that for any |z| > Tp we have W (q(x) + t,vn(2))) < (1 —t,)W(q) + t,W (g + v,,) and so that
for any T > T)

1—t2 .
S ol + (1= 1) [

|z|>T

a:W(g+v,)de < (1-— tn)/ a:W(q)dx + o(1) as n — oo.
|z|>T

Moreover, by (1.9), we obtain that for any |z| > T, there results a.W(q + v,) > abx(q + v,)? = ab(x(q) —
sgn(x)v,,)? and so we recover that for any T > Tp

1— 2
n [onl® + (1 = tn)ab (x(q) — sgn(z)v,)* do < (1 - tn)/ a:W(q)dx + o(1) as n — oo.
2 z|>T ||>T

Then, since [, a-W(q)dz < 400, [; x(¢)?dz < 400 and since [|v,|| < diam(T's ;) < D for any n € N, it is
immediate to verify that for any n > 0 there exists T > 0 such that

1—1¢2
Ot i+ (- tan [ a2 <o) as - o
2 [>T,

o)
loc

This last inequality, since v, — 0 in L (R), implies

(1- tn)anH?{l(R) — 0 asn — 0. (4.3)

—tln

By (4.3) it is simple to derive (4.2). Indeed fol Hvnl?dy = 2(1 — t,)||vn]| — 0 directly by (4.3). Moreover,
using Lemma 2.13, since F(q + ¢,v5,) = ¢35, it is not difficult to obtain that there exists C' > 0 such that

Flgn+ (1 =ty —y)vn) —c3p=F(g+ (1 —y)vn) — Flg+tavn) < C(1 —ty — y)|lvnllm(w)

for any n € Nand y € [0,1 — ¢,]. Then, by (4.3), folft" F(gn + (1 =ty —y)vn) — c3pdy — 0 and the lemma

follows. O
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Lemma 4.4. Ifue ™, p € P and yo € R are such that:
i) d(u(-,y), K3 p) = 0 as y — —oo and u(-,yo) € I's 5 for a p # p;
i) F(u(-,y) > c3,p for all y < yo and liminf, - F(u(-,y)) = c3p,
then 0, (—oo,yo)(u) > myp.

Proof. Let y, — y, be such that u(-,y,) € I's for any n € N and F(u(-,yn)) — c3p. Setting v,(-) =
u(-,yo) — u(-, yn) let moreover ¢, € [0,1] be such that F(u(-, yn) + tnvn) = 3, and F(u(-,yn) + tvn) > ¢z, for
any t € [0,¢,). Then, using (3.1), it is not difficult to recognize that for any n € N the function

w(z,y + yn) ify<0
un(:n, y) = U(Jv,yn) +yv, H0<y<t,
u(x,yn) + thv, ify>t,

belongs to My, that F(uy(-,0)) — ¢3, and that u,(-,0) € I's 5. By Lemma 4.3 we obtain that
myp < UM nf g, (—co,0)(Un) = MMt oy (oo y,) (1) = ©p,(—o0,y0) (1),
and the lemma follows. g
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