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SECOND-ORDER SUFFICIENT OPTIMALITY CONDITIONS
FOR THE OPTIMAL CONTROL OF NAVIER-STOKES EQUATIONS ∗

Fredi Tröltzsch1 and Daniel Wachsmuth1

Abstract. In this paper sufficient optimality conditions are established for optimal control of both
steady-state and instationary Navier-Stokes equations. The second-order condition requires coercivity
of the Lagrange function on a suitable subspace together with first-order necessary conditions. It
ensures local optimality of a reference function in a Ls-neighborhood, whereby the underlying analysis
allows to use weaker norms than L∞.
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1. Introduction

In this paper, we discuss second-order sufficient optimality conditions for optimal control problems governed
by steady-state and instationary Navier-Stokes equations. These conditions form a central issue for different
mathematical questions of optimal control theory. If second-order sufficient conditions hold true at a given
control satisfying the first-order necessary conditions, then this control is locally optimal, it is unique as a
local solution, and it is stable with respect to certain perturbations of given data. Moreover, the convergence
of numerical approximations (say by finite elements) can be proven, and numerical algorithms such as SQP
methods can be shown to locally converge. These remarks show that second-order sufficient conditions are
indispensible for a complete numerical analysis of nonconvex optimal control problems.

Consequently, second-order conditions have been important assumptions in many papers on optimal control
theory of ordinary differential equations, and they became important for partial differential equations as well. We
only mention the case of elliptic equations studied by Bonnans [4], Casas, Unger, and Tröltzsch [10], Casas and
Mateos [9], the discussion of pointwise state-constraints in Casas, Unger, and Tröltzsch [11], or the convergence
analysis of SQP methods in Arada, Raymond and Tröltzsch [3]. The papers mentioned above are concerned
with semilinear elliptic and parabolic equations with nonlinearities given by Nemytski operators. Therefore, the
associated state functions have to be continuous to make these operators twice continuously differentiable.

The situation is, in some sense, easier for the Navier-Stokes equations. The nonlinearity (y ·∇) y appearing in
these equations is of quadratic type, and the associated Taylor expansion terminates after the second-order term
with zero remainder. This property has been addressed by Desai and Ito [14] and Hinze [21] for the optimal
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control of stationary and instationary Navier-Stokes equations. It simplifies the application of second-order
conditions, since spaces of L2-type for the control and W (0, T )-type for the state function are appropriate.

In [26], it was shown for the case of steady-state Navier-Stokes equations that second-order conditions are
sufficient for Lipschitz stability of optimal solutions with respect to perturbations. However, second-order
conditions were applied in a quite strong form without showing their sufficiency for local optimality.

Here, the issue of second-order sufficiency is studied more detailed. We present the conditions in a fairly
weak form that invokes also first-order sufficient conditions. More precisely, by using strongly active control
constraints we shrink the subspace where the second derivative of the Lagrange function must be positive
definite. Moreover, we carefully study the norms underlying the neighborhood, where local optimality can be
assured, which enables us to prove local optimality in an Ls-neighborhood of the reference control with s < ∞.
We discuss the steady-state and instationary Navier-Stokes equations in one paper, since the arguments are
very similar for both cases.

If box-constraints are imposed on the controls, then strongly active control-constraints should be considered
in the second-order sufficient conditions. There are simple finite-dimensional optimization problems with box-
constraints, where the Hessian matrix is negative definite, but the sufficient conditions are still satisfied. The
reason for this are strongly active constraints. It is therefore clear that they should be considered also in optimal
control, whenever box-constraints are given.

As strongly active constraints are concerned, we follow an approach by Dontchev, Hager, Poore and Yang [15]
that has been successfully applied in other papers on second-order conditions as well. A characteristic element in
the analysis of second-order conditions is the interplay between two norms, usually L2- and L∞-norms. This is
necessary to deal with the well-known two-norm discrepancy that appears in the discussion of active constraints.
At this point the method of proof differs from that presented by Maurer and Zowe [23], who did not address
this difficulty. By this technique, a certain gap between second-order necessary and second-order sufficient
conditions appears. This gap seems to be natural for problems in infinite-dimensional spaces. In a paper by
Bonnans and Zidani [5], the gap was tightened for elliptic problems under the assumption that the second-order
derivative of the Lagrangian defines a Legendre form. Casas and Mateos [8] extended the applicability of this
concept by an assumption of positivity on the second derivative of the Hamiltonian with respect to the control.
Using these techniques, we also resolve the problem of the two-norm discrepancy: an appropriate formulation
of the sufficient optimality condition implies L2-quadratic growth of the objective in a L2-neighborhood of the
reference control.

Our arguments are influenced by various papers, where first-order necessary optimality conditions and numer-
ical methods for optimal control of instationary Navier-Stokes equations are presented. We only mention Abergel
and Temam [1], Casas [7], Desai and Ito [14], Gunzburger [18], Gunzburger and Manservisi [20], Fattorini and
Sritharan [17], Hinze [21], Hinze and Kunisch [22], Sritharan [27] and the reference cited therein. We partially
repeat some known arguments for proving first-order necessary conditions only for convenience.

In view of the importance of second-order sufficient conditions, their numerical verification is a natural
desire. Unfortunately, this is a delicate question that has not yet been solved satisfactorily till now. This
concerns optimal control problems for ODEs as well as PDEs: Any numerical check is connected with some
discretization so that second-order conditions are verified in some finite-dimensional setting.

For instance, the eigenvalues of the reduced Hessian matrix can be computed for the finite-dimensional model
to verify its definiteness, see Mittelmann and Tröltzsch [24]. However, it seems to be impossible to deduce from
the numerical result the coercivity for the infinite-dimensional setting. In the control of Navier-Stokes equations,
it is known for tracking type functionals that small residuals are sufficient for second-order conditions to hold,
cf. Hinze and Kunisch [22]. Here, the problem is open whether the optimal residual is really small enough in
function space. The numerical method determines the discrete solution. If its associated remainder is small,
the same should hold for the continuous solution – provided that it is close to the discrete one. But this can
only be expected, if second-order conditions are satisfied for the solution of the infinite-dimensional problem.
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In the case of ODEs, the solvability of certain Riccati-equations can be investigated to check second-order
conditions. Again, the numerical implementation of this concept needs discretization. It is not clear if the result
contains reliable information on the continuous case.

Eigenvalues of the reduced Hessian, small remainders, and in the case of ODEs, the solution of Riccati
equations, are useful numerical techniques to check second-order conditions. However, their numerical results
will never give complete evidence for the original problem, since the computed discrete solution will be close
to the exact one only under the assumption of a second-order sufficient condition. In this way, we encounter a
circular reasoning.

In view of these remarks, one should handle second-order sufficient conditions similarly as constraint-
qualifications in nonlinear programming: they cannot be checked in general, but they should be assumed
to perform a satisfactory analysis.

2. The optimal control problems

2.1. Control of the steady-state Navier-Stokes equations

In the first part of the paper, we consider the optimal control problem to minimize

J(u, y) =
∫

Ω

|y(x) − yd(x)|2dx +
γ

2

∫
Ω

|u(x)|2dx (2.1)

subject to the steady-state Navier-Stokes equations,

−ν∆y + (y · ∇)y + ∇p = u in Ω,
div y = 0 in Ω,

y = 0 on Γ,
(2.2)

and the box constraints
ua(x) ≤ u(x) ≤ ub(x)

to be fulfilled a.e. on Ω. In this setting Ω is an open bounded Lipschitz domain in R
n with boundary Γ. In

the steady-state case, we will restrict the space dimension n to 2 ≤ n ≤ 4. In this case, H1
0 (Ω) is continuously

imbedded in L4(Ω).
To complete the problem setting, we require the desired function yd to be an element of L2(Ω)n. The

parameters γ and ν are assumed to be positive constants. In the box constraints on u two functions ua, ub ∈
Ls(Ω)n are given, satisfying ua,i(x) ≤ ub,i(x) for all i = 1 . . . n and almost all x ∈ Ω. The exponent s will be
precised later. We set

Uad = {u ∈ Ls(Ω)n : ua,i(x) ≤ ui(x) ≤ ub,i(x), i = 1 . . . n, a.e. on Ω}.

Up to now we did not explain, in which sense the state equations (2.2) has to be solved. The state y associated
with u is defined as a weak solution of (2.2) in the next section.

2.2. The instationary case

In the second part, we consider the optimal control problem to minimize

J(u, y) =
1
2

∫
Ω

|y(x, T ) − yT (x)|2dx +
1
2

∫ T

0

∫
Ω

|y(x, t) − yQ(x, t)|2dxdt

+
γ

2

∫ T

0

∫
Ω

|u(x, t)|2dxdt (2.3)
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subject to the instationary Navier-Stokes equations.

yt − ν∆y + (y · ∇)y + ∇p = u in Q,
div y = 0 in Q,
y(0) = y0 in Ω,

(2.4)

and the control constraints u ∈ Uad with control set re-defined below, where Q = (0, T ) × Ω. Here, functions
yT ∈ L2(Ω)n, yQ ∈ L2(Q)n, and y0 ∈ H ⊂ L2(Ω)n are given. The parameters γ and ν are adopted from the last
section. Let two functions ua, ub ∈ Ls(Q)n be given such that ua,i(x, t) ≤ ub,i(x, t) holds almost everywhere
on Q and for all i = 1, . . . , n. The set of admissible controls is now defined by

Uad = {u ∈ Ls(Q)n : ua,i(x, t) ≤ ui(x, t) ≤ ub,i(x, t) a.e. on Q}.

Again, the exponent s will be specified later.

3. Optimality conditions for the steady-state problem

In this section, we provide basic results on the state equation and first-order necessary optimality conditions.
These results are more or less known from the literature. However, they are mostly presented in a different
form and not directly applicable for our purposes. Therefore, we recall them for convenience.

3.1. The state equation

First, we define a solenoidal space that is frequently used in the literature,

V := {v ∈ H1
0 (Ω)n : div v = 0}.

This space is a Hilbert space endowed with the standard scalar product of H1
0 ,

(y, v)V =
n∑

i=1

(∇yi,∇vi)L2(Ω).

The associated norm is denoted by | · |V . Further on, we will denote the pairing between V ′ and V as 〈f, v〉,
where f ∈ V ′ and v ∈ V . To simplify the notation, we define for u ∈ Lq(Ω)n

|u|q := |u|Lq(Ω)n .

The pairing between Lq(Ω)n and Lq′
(Ω)n is denoted by (·, ·)q,q′ , 1/q +1/q′ = 1. For q = q′ = 2 we get the usual

scalar product of L2(Ω)n, and we write (·, ·)2 := (·, ·)2,2. In the following, we will make use of the well-known
interpolation inequality, cf. Brezis [6].

Lemma 3.1. Let 1 ≤ q ≤ 2 be given. Define s by s = q/(2 − q) for q < 2, or s = ∞ for q = 2, respectively.
Further, let D ⊂ R

m be a bounded and measurable set. Then it holds for all u ∈ Ls(D)

|u|2Lq(D) ≤ |u|L1(D)|u|Ls(D).

Additionally, we need the following well-known lemma of imbeddings of Lp-spaces, cf. Adams [2].

Lemma 3.2. Let D ⊂ R
m be a bounded and measurable set with vol(D) :=

∫
D

1dx < ∞, and let 1 ≤ p ≤ q ≤ ∞
be given. Then for all u ∈ Lq(D) it holds

|u|Lp(D) ≤ (vol(D))1/p−1/q |u|Lq(D).
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Let us introduce for convenience a trilinear form b : V × V × V �→ R by

b(u, v, w) = ((u · ∇)v, w)2 =
∫

Ω

n∑
i,j=1

ui
∂vj

∂xi
wj dx.

The following result was proven in [28].

Lemma 3.3. For all u, v, w ∈ V it holds

b(u, v, w) = −b(u, w, v).

There is a positive constant Cn depending on the dimension n but not on u, v, w and Ω, such that

|b(u, v, w)| ≤ Cn |u|4|v|V |w|4 (3.1)

holds for all u, v, w ∈ V .

As a simple conclusion of the previous lemma, we get b(u, v, v) = 0 for all u, v ∈ V . The estimate (3.1)
expresses the continuity of b. We refer to [12, 21] for further estimates of b.

Furthermore, we introduce for p ≤ 2n/(n − 2) by Np the norm of the imbedding of H1
0 (Ω)n in Lp(Ω)n,

i.e. |y|p ≤ Np|y|H1
0 (Ω)n . For 2 ≤ n ≤ 4, the imbedding of H1

0 (Ω)n in L4(Ω)n is continuous. This fact will be
frequently used. Moreover, we conclude from (3.1)

|b(u, v, w)| ≤ CnN2
4 |u|V |v|V |w|V ∀u, v, w ∈ V. (3.2)

To obtain optimal regularity properties of the control-to-state mapping, we select real numbers q, q′, s satisfying
the following assumption

(A1)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

The numbers q, q′, s ≥ 1 satisfy the following conditions:
(i) The imbedding of H1

0 (Ω) in Lq′
(Ω) is continuous.

(ii) The exponents q and q′ are conjugate exponents, i.e. 1/q + 1/q′ = 1.
(iii) For all u ∈ Ls(Ω)n it holds

|u|2q ≤ |u|1|u|s.

Notice that condition (iii) implies q ≤ 2. Here we have in mind two different situations. At first, q = q′ = 2 and
s = ∞ meet this assumption. Then the second-order sufficient condition of section 3.3 yields local optimality
of the reference control in a Ls = L∞-neighbourhood. This means more or less that jumps of the optimal
control have to be known a-priorily. To overcome this difficulty, we employ a second configuration, namely
q′ = 4, q = 4/3, s = 2, confer Lemma 3.1. Here we are able to work with a L2-neighbourhood of the reference
control.

The use of the Ls-neighbourhoods with s < ∞ is possible since the control u appears linearly in the equation
and quadratically in the objective. Moreover, control and state are separated in the objective funtional.

Definition 3.4 (weak solution). Let u ∈ Lq(Ω)n be given. A function y ∈ V is called weak solution of (2.2) if
it satisfies the variational equation

ν (y, v)V + b(y, y, v) = (u, v)q,q′ ∀v ∈ V. (3.3)
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Observe that v ∈ V implies v ∈ Lq′
(Ω). This fact permits us to work with controls that are less regular

than L2(Ω)n. Moreover, we recall (−ν∆y, v)2 = ν (y, v)V . It is known that (3.3) admits a unique solution y if
the norm of the inhomogeneity u is sufficiently small or the coefficient ν is sufficiently large:

Theorem 3.5 (existence and uniqueness of weak solutions). For given f ∈ V ′ the equation

ν (y, v)V + b(y, y, v) = 〈f, v〉 ∀v ∈ V, (3.4)

admits at least one solution y ∈ V . If the smallness condition

ν2 > CnN2
4 |f |V ′

is satisfied, then this solution is unique.

This is proven for instance in [28], Theorems II.1.2, II.1.3.
If the functional f in (3.4) is generated by a Lq-function u,

〈f, v〉 = (u, v)q,q′ ,

then we have to impose some restrictions on the Lq(Ω)-norm of u. Let the Lq(Ω)-norm of the admissible controls
be bounded by Mq, i.e.

Mq = sup
u∈Uad

|u|q.

Then the following condition ensures existence and uniqueness of y = y(u):

(A2)

⎧⎪⎨
⎪⎩

The set of admissible controls Uad is bounded in Lq(Ω)n. The bound Mq satifies, together with the
viscosity parameter ν,

2CnNq′N2
4

ν2
Mq ≤ 1. (3.5)

In the sections dealing with the steady-state case we assume that these two Assumptions (A1) and (A2) are
satisfied. The solution mapping u �→ y can be estimated directly by standard methods, see for instance [28].

Lemma 3.6. For all u ∈ Uad, the variational equality (3.3) admits a unique solution y ∈ V . If y1, y2 ∈ V are
weak solutions of (3.3) corresponding to u1, u2 ∈ Uad, then

|yi|V ≤ Nq′

ν
|ui|q ≤ Nq′

ν
Mq and |y1 − y2|V ≤ 2Nq′

ν
|u1 − u2|q,

i.e. the solution mapping u �→ y is Lipschitz on Uad.

Proof. Existence and uniqueness of solutions follow by Theorem 3.5 in view of assumption (3.5). Testing (3.3)
with v = y yields

ν|y|2V + b(y, y, y) = (u, y)q,q′ ≤ |u|q|y|q′ ≤ ν

2
|y|2V +

N2
q′

2ν
|u|2q

by the Young inequality. Since b(y, y, y) = 0 for all y ∈ V , the first estimate follows immediately. The second
is obtained in the following way: We test the variational equalities for y1 and y2 by y1 − y2 =: z and substract
them to get

ν|z|2V + b(y1, y1, z)− b(y2, y2, z) = (u1 − u2, z)q,q′ .

Since b(y1, z, z) = 0 because of z, y1 ∈ V , we can write

b(y1, y1, z) − b(y2, y2, z) = b(y1, y2, z) − b(y1, z, z)− b(y2, y2, z) = b(z, y2, z).
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Then we obtain in view of (3.5)

|b(y1, y1, z) − b(y2, y2, z)| = |b(z, y2, z)| ≤ Cn|z|24|y2|V ≤ CnN2
4 |z|2V

Nq′

ν
Mq ≤ ν

2
|z|2V . (3.6)

Finally, using Young’s inequality again, we arrive at

|z|2V ≤ 4N2
q′

ν2
|u1 − u2|2q,

and the claim is proven. �
To derive first-order necessary optimality conditions, we also need estimates of solutions of linearized equations.

Corollary 3.7. Let ȳ ∈ V be the state corresponding to a control ū ∈ Uad. Then for every f ∈ V ′ there exists
a unique solution y ∈ V of the linearized equation

ν (y, v)V + b(y, ȳ, v) + b(ȳ, y, v) = 〈f, v〉 ∀v ∈ V. (3.7)

It holds
|y|V ≤ 2

ν
|f |V ′ . (3.8)

Proof. Existence can be argued as in the proof of [28], Theorem II.1.2. Here it is necessary that ȳ is the state
associated to some control ū ∈ Uad. In this case, we have some smallness property of ȳ which ensures the
solvability. The a priori estimate (3.8) can be shown along the lines of the previous proof. �

3.2. First order necessary optimality conditions

So far, we provided results concerning the properties of the state equation. Now, we concentrate on the
aspects of optimization. We denote by G(u) = y the solution operator u �→ y of the steady-state Navier-Stokes
equations (3.3).

Lemma 3.8. The solution operator G : Lq(Ω)n �→ V is Fréchet-differentiable. In particular, G is Fréchet-
differentiable from L2(Ω)n to V . The derivative G′(u) is given by G′(ū)h = z, where z is a weak solution of

ν (z, v)V + b(z, ȳ, v) + b(ȳ, z, v) = (h, v)2 ∀v ∈ V, (3.9)

with ū ∈ Uad, ȳ = G(ū), h ∈ L2(Ω)n.

Differentiability proofs of the solution mapping can be found in [1, 14, 19].
Before discussing the second-order sufficient optimality condition, we derive for convenience the standard

first-order necessary optimality condition.

Definition 3.9 (locally optimal control). A control ū ∈ Uad is called locally optimal in L2(Ω)n, if there exists
a constant ρ > 0 such that

J(ȳ, ū) ≤ J(yh, uh)
holds for all uh ∈ Uad with |ū− uh|2 ≤ ρ. Here, ȳ and yh denote the states associated to ū and uh, respectively.

In the presence of box constraints on the control it is straightforward to prove existence of optimal controls
even with γ = 0. For the unconstrained case one needs positivity of the parameter γ to ensure this existence.

Theorem 3.10 (first-order necessary condition). Let ū be a locally optimal control for (2.1) with associated
state ȳ = y(ū). Then there exists a unique solution λ̄ ∈ V of the adjoint equation

ν (λ̄, v)V + b(ȳ, v, λ̄) + b(v, ȳ, λ̄) = (ȳ − yd, v)2 ∀v ∈ V. (3.10)
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Moreover, the variational inequality

(γū + λ̄, u − ū)2 ≥ 0 ∀u ∈ Uad (3.11)

is satisfied.

Proof. We sketch the proof for convenience. Notice that we deal with the control-constrained case, i.e. Uad �=
L2(Ω)2. The objective functional can be written as

φ(u) = J(G̃(u), u) =
1
2
|G̃(u) − yd|22 +

γ

2
|u|22,

where G̃ : L2(Ω)n �→ V stands for the solution operator G restricted to L2(Ω)n. By Lemma 3.8, G̃ is also
Fréchet-differentiable. The standard necessary condition for ū to be a local optimum of φ(u) is φ′(u)(u− ū) ≥ 0
for all u ∈ Uad, i.e.

φ′(u)(u − ū) = (G̃(ū) − yd, G̃′(ū)(u − ū))2 + γ (ū, u − ū)2 ≥ 0 ∀u ∈ Uad. (3.12)

We set z := G̃′(ū)(u− ū), then z satisfies the linear equation (3.9). Let λ̄ be the solution of (3.10). Its existence
can be reasoned like in Corollary 3.7. Testing (3.9) by λ̄, we get

ν (z, λ̄)V + b(z, ȳ, λ̄) + b(ȳ, z, λ̄) = (u − ū, λ̄)2. (3.13)

Testing (3.10) by z yields
ν (λ̄, z)V + b(ȳ, z, λ̄) + b(z, ȳ, λ̄) = (ȳ − yd, z)2. (3.14)

The left-hand sides in (3.13) and (3.14) are equal, so the right-hand sides are equal as well,

(u − ū, λ̄)2 = (ȳ − yd, z)2 = (ȳ − yd, G̃′(ū)(u − ū))2.

Therefore, we obtain λ̄ = G̃′(ū)∗(ȳ − yd) = G̃′(ū)∗(G̃(ū) − yd). The variational inequality now reads,

(γū + λ̄, u − ū)2 ≥ 0 ∀u ∈ Uad,

hence, the claim is proven. �

The solution λ̄ of the adjoint equation (3.10) is said to be the adjoint state associated with ȳ. It can be easily
verified that λ̄ is a weak solution of the adjoint partial differential equation

−ν∆λ − (ȳ · ∇)λ + (∇ȳ)T λ + ∇µ = ȳ − yd on Ω,
div λ = 0 on Ω,

λ = 0 on Γ.

The function µ might be interpreted as the adjoint pressure.

Corollary 3.11. The adjoint state λ̄, given by (3.10), satisfies

|λ̄|V ≤ 2
ν

N2|ȳ − yd|2.

Proof. The estimate can be proven along the lines of Lemma 3.6. �
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To simplify notations we denote the pair (y, u) by v. It is called admissible, if u belongs to Uad and y is the
weak solution of (2.2) associated with u.

Let us introduce the Lagrange function L : V ×L2(Ω)n × V �→ R for the optimal control problem as follows:

L(y, u, λ) = J(u, y) − ν (y, λ)V − b(y, y, λ) + (u, λ)2.

This function is twice Fréchet-differentiable with respect to u and y. The reader can readily verify that the
necessary conditions can be expressed equivalently by

Ly(ȳ, ū, λ̄) y = 0 ∀y ∈ V, (3.15)

and
Lu(ȳ, ū, λ̄)(u − ū) ≥ 0 ∀u ∈ Uad. (3.16)

Here, Ly, Lu denote the partial Fréchet-derivative of L with respect to y and u. The Fréchet-differentiability
of L is shown in the next Lemma.

Lemma 3.12. The Lagrangian L is twice Fréchet-differentiable with respect to v = (y, u) from V × L2(Ω)n

to R. The second-order derivative at v̄ = (ȳ, ū) fulfills together with the associated adjoint state λ̄

Lvv(v̄, λ̄)[(z1, h1), (z2, h2)] = Luu(v̄, λ̄)[h1, h2] + Lyy(v̄, λ̄)[z1, z2]

and
|Lyy(v̄, λ̄)[z1, z2]| ≤ cL|z1|V |z2|V

for all (zi, hi) ∈ V × L2(Ω)n with some constant cL > 0 that does not depend on v̄, z1, z2.

Proof. The first-order derivatives of L with respect to y and u are

Ly(v̄, λ̄)z = (z, ȳ − yd)2 − ν (z, λ̄)V − b(z, ȳ, λ̄) − b(ȳ, z, λ̄)

Lu(v̄, λ̄)h = γ (h, ū)2 + (u, λ̄)2.

The mappings ȳ �→ Ly(v̄, λ̄) and ū �→ Lu(v̄, λ̄) are affine linear. Their linear parts are bounded, hence continuous.
Therefore, both mappings are Fréchet-differentiable. This shows that L is twice Fréchet-differentiable as well.
The second-order derivative of L with respect to v is

Lvv(v̄, λ̄)[(z1, h1)(z2, h2)] = Luu(v̄, λ̄)[h1, h2] + Lyy(v̄, λ̄)[z1, z2]

= γ (h1, h2)2 + (z1, z2)2 − b(z1, z2, λ̄) − b(z2, z1, λ̄),

since mixed derivatives do not appear. Then we can estimate

|Lyy(v̄, λ̄)[z1, z2]| ≤ |z1|2|z2|2 + |b(z1, z2, λ̄)| + |b(z2, z1, λ̄)|
≤ |z1|2|z2|2 + 2Cn|z1|4|z2|4|λ̄|V
≤ cL|z1|V |z2|V .

Here we used the estimates of b in Lemma 3.3 and the boundedness of the adjoint state, see Corollary 3.11. �
The Lagrangian has only non-zero derivatives up to order two. Derivatives of higher order vanish. Therefore,

it holds
L(y + z, u + h) = L(y, u) + Ly(y, u)z + Lu(y, u)h +

1
2
Lyy(y, u)[z, z] +

1
2
Luu(y, u)[h, h].

A remainder term does not appear. To shorten notations, we abbreviate [v, v] by [v]2, i.e.

Lvv(v̄, λ̄)[(z, h)]2 := Lvv(v̄, λ̄)[(z, h), (z, h)].
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3.3. Second-order sufficient optimality condition

In the following, v̄ = (ȳ, ū) is a fixed admissible reference pair. We suppose that the first-order necessary
optimality conditions are fulfilled at v̄.

Definition 3.13 (strongly active sets). For fixed ε > 0 and all i = 1, . . . , n we define sets Ωε,i by

Ωε,i = {x ∈ Ω : |γūi(x) + λ̄i(x)| > ε}. (3.17)

Here, vi(x) denotes the value of the i-th component of a vector function v ∈ V at x ∈ Ω. Since ū and λ̄ are
measurable functions, the sets Ωε,i are measurable, too. Moreover, for u ∈ Lp(Ω)n and 1 ≤ p < ∞ we define
the Lp-norm with respect to the set of positivity by

|u|Lp,Ωε :=

(
n∑

i=1

|ui|pLp(Ωε,i)

)1/p

.

Notice that the variational inequality (3.11) uniquely determines ūi on Ωε,i. If γūi(x) + λ̄i(x) ≥ ε then ūi(x) =
ua(x) must hold. On the other hand, it follows ūi(x) = ub(x), if γūi(x) + λ̄i(x) ≤ −ε is satisfied.

Corollary 3.14. It holds

n∑
i=1

∫
Ωε,i

(γūi(x) + λ̄i(x))(ui(x) − ūi(x))dx ≥ ε |u − ū|L1,Ωε

for all u ∈ Uad.

Proof. From the variational inequality (3.11) we conclude the pointwise condition

(γ ūi(x) + λ̄i(x))(ui(x) − ūi(x)) ≥ 0

for almost all x ∈ Ω, i = 1, . . . , n. Therefore,

∫
Ωε,i

(γ ūi(x) + λ̄i(x))(ui(x) − ūi(x)) dx =
∫

Ωε,i

|γ ūi(x) + λ̄i(x)| |(ui(x) − ūi(x)| dx

≥ ε

∫
Ωε,i

|(ui(x) − ūi(x)| dx

= ε |u − ū|L1(Ωε,i)

is satisfied. The claim follows by summing up this expression over i = 1, . . . , n. �
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We shall assume that the optimal pair v̄ = (ȳ, ū) and the associated adjoint state λ̄ satisfy the following
coercivity assumption on L′′(v̄, λ̄), henceforth called second-order sufficient optimality condition:

(SSC)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

There exist ε > 0 and δ > 0 such that

Lvv(v̄, λ̄)[(z, h)]2 ≥ δ |h|2q (3.18)

holds for all pairs (z, h) ∈ V × L2(Ω)n with

h = u − ū, u ∈ Uad, hi = 0 on Ωε,i for i = 1, . . . , n,

and z ∈ V being the weak solution of the linearized equation

ν (z, w)V + b(ȳ, z, w) + b(z, ȳ, w) = (h, w)2 ∀w ∈ V. (3.19)

The parameter q is chosen according to Assumption (A1).

Remark 3.15. Notice that the definition of h implies h(x) ≥ 0, where ū(x) = ua(x), and h(x) ≤ 0, where
ū(x) = ub(x). The condition ε > 0 can not be relaxed to ε = 0, see the counterexample in [16].

Remark 3.16. Second-order sufficient conditions cannot be expected if no penalty term is present, which
corresponds to the case γ = 0. For instance, it was shown in [29, Lem. 5.1] that (SSC) necessarily implies
γ > 0.

Next we will prove that (SSC), together with the first-order necessary conditions, is sufficient for local
optimality of (ȳ, ū).

Theorem 3.17. Let v̄ = (ȳ, ū) be admissible for the optimal control problem and suppose that v̄ fulfills the
first-order necessary optimality condition with associated adjoint state λ̄. Assume further that (SSC) is satisfied
at v̄. Then there exist α > 0 and ρ > 0 such that

J(v) ≥ J(v̄) + α |u − ū|2q
holds for all admissible pairs v = (y, u) with |u − ū|s ≤ ρ. The exponents s and q are chosen such that the
Assumptions (A1) and (A2) are met.

Proof. Throughout the proof, c is used as a generic constant. Suppose that v̄ fulfills the assumptions of the
theorem. Let (y, u) be another admissible pair. We have

J(v̄) = L(v̄, λ̄) and J(v) = L(v, λ̄),

since v̄ and v are admissible. Taylor-expansion of the Lagrange-function yields

L(v, λ̄) = L(v̄, λ̄) + Ly(v̄, λ̄)(y − ȳ) + Lu(v̄, λ̄)(u − ū) +
1
2
Lvv(v̄, λ̄)[v − v̄, v − v̄].

Notice that there is no remainder term due to the quadratic nature of the nonlinearities. Moreover, the necessary
conditions (3.15), (3.16) are satisfied at v̄ with adjoint state λ̄. Therefore, the second term vanishes. The third
term is nonnegative due to the variational inequality (3.16). However, we get even more by Corollary 3.14,

Lu(v̄, λ̄)(u − ū) =
∫

Ω

(γū + λ̄)(u − ū) dx

≥
n∑

i=1

∫
Ωε,i

(γūi + λ̄i)(ui − ūi) dx ≥ ε |u − ū|L1,Ωε
,



104 F. TRÖLTZSCH AND D. WACHSMUTH

confer the Definition 3.13 of | · |L1,Ωε
. So we arrive at

J(v) = J(v̄) + Ly(v̄, λ̄)(y − ȳ) + Lu(v̄, λ̄)(u − ū) +
1
2
Lvv(v̄, λ̄)[v − v̄]2

≥ J(v̄) + ε |u − ū|L1,Ωε
+

1
2
Lvv(v̄, λ̄)[v − v̄]2. (3.20)

Next, we investigate the second derivative of L. Here, we invoke assumption (3.18) on the coercitivity of Lvv

on a certain subspace. To do so, we introduce a new admissible control ũ ∈ Ls(Ω)n by

ũi(x) =

{
ūi(x) on Ωε,i

ui(x) on Ω \ Ωε,i

for i = 1, . . . , n. (3.21)

Then, we have u − ū = (u − ũ) + (ũ − ū), where (u − ũ)i = 0 on Ω \ Ωε,i and (ũ − ū)i = 0 on Ωε,i, so that
h := ũ − ū fits in the assumptions of (SSC). The difference z := y − ȳ solves the equation

ν (z, w)V + b(z, ȳ, w) + b(ȳ, z, w) = (u − ū, w)q,q′ − b(y − ȳ, y − ȳ, w) ∀w ∈ V.

We split z = y − ȳ into yh + yr, where yr and yh solve the equations

ν (yh, w)V + b(yh, ȳ, w) + b(ȳ, yh, w) = (h, w)q,q′ ∀w ∈ V (3.22)

and

ν (yr, w)V + b(yr, ȳ, w) + b(ȳ, yr, w) = (u − ũ, w)q,q′ − b(y − ȳ, y − ȳ, w) ∀w ∈ V. (3.23)

Notice that (3.22) is linear and that (yh, h) belongs to the subspace where (SSC) applies. The norm of these
auxiliary states has to be estimated. Using Lemma 3.6 we obtain

|yh|V ≤ c |h|q ≤ c (|ũ − u|q + |u − ū|q) . (3.24)

To estimate |yr|V , we have to investigate the V ′-norm of the right-hand side in (3.23), which defines a linear
continuous functional on V . By Lemma 3.3 we find

|b(y − ȳ, y − ȳ, ·)|V ′ ≤ CnN2
4 |y − ȳ|2V .

Now we apply Corollary 3.7 and get

|yr|V ≤ 2
ν

(
CnN2

4 |y − ȳ|2V + Nq′ |u − ũ|q
) ≤ c

(|u − ū|2q + |u − ũ|q
)
. (3.25)

Denote the pair (yh, h) by vh. This pair fits in the assumptions of the theorem. We continue the investigation
of the Lagrangian by

Lvv(v̄, λ̄)[v − v̄]2 = Luu(v̄, λ̄)[u − ũ + h]2 + Lyy(v̄, λ̄)[yh + yr]2

= Lvv(v̄, λ̄)[vh]2 + 2Luu(v̄, λ̄)[u − ũ, h]

+ Luu(v̄, λ̄)[u − ũ]2 + 2Lyy(v̄, λ̄)[yr, yh] + Lyy(v̄, λ̄)[yr]2. (3.26)

(SSC) applies to the first term Lvv(v̄, λ̄)[vh]2. The second-order derivative with respect to u satisfies

2Luu(v̄, λ̄)[u − ũ, h] + Luu(v̄, λ̄)[u − ũ]2 = 2γ (u − ũ, h)2 + γ |u − ũ|22.
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By definition of ũ we know that (u − ũ)i vanishes on Ω \ Ωε,i whereas (h)i vanishes on Ωε,i. So their scalar
product is zero. Therefore, it holds

2Luu(v̄, λ̄)[u − ũ, h] + Luu(v̄, λ̄)[u − ũ]2 = γ |u − ū|2L2,Ωε
≥ 0. (3.27)

The remaining terms in (3.26) are treated by Lemma 3.12 and the estimates (3.24), (3.25),∣∣2Lyy(v̄, λ̄)[yr, yh] + Lyy(v̄, λ̄)[yr, yr]
∣∣ ≤ c

(|yh|V |yr|V + |yr|2V
)

≤ c
{(|ũ − u|q + |u − ū|q

) (|u − ū|2q + |u − ũ|q
)

+ |u − ū|4q + |u − ũ|2q
}

.
(3.28)

Now we can proceed with the investigation of Lvv in (3.26). Invoking (3.27) and (3.28), we obtain from (3.26)

Lvv(v̄, λ̄)[v − v̄]2 ≥ δ |h|2q − c
{ (|ũ − u|q + |u − ū|q

) (|u − ū|2q + |u − ũ|q
)

+ |u − ū|4q + |u − ũ|2q
}
. (3.29)

Our next aim is to eliminate h such that only terms containing u − ū and ũ − u appear. To achieve this goal,
we first notice that

|u − ū|2q = |u − ũ + h|2q ≤ 2
(|u − ũ|2q + |h|2q

)
,

which immediately gives

|h|2q ≥ 1
2
|u − ū|2q − |u − ũ|2q .

Applying Young’s inequality several times to separate the powers of |u − ū|q and |ũ − u|q we get from (3.29)

Lvv(v̄, λ̄)[v − v̄]2 ≥ δ

2
|u − ū|2q − c

{|u − ū|4q + |u − ū|3q + |u − ū|2q |ũ − u|q
+ |u − ū|q|ũ − u|q + |ũ − u|2q

}
≥ δ

4
|u − ū|2q − c

{|u − ū|4q + |u − ū|3q + |ũ − u|2q
}

≥ |u − ū|2q
(

δ

4
− c
{|u − ū|2q + |u − ū|q

})− c|ũ − u|2q.

If u is sufficiently close to ū, i.e. |u− ū|q ≤ Ns,q |u− ū|s ≤ Ns,q ρ1, then the term in brackets is greater than δ/8.
Hence we arrive at

Lvv(v̄, λ̄)[v − v̄]2 ≥ δ

8
|u − ū|2q − c |ũ − u|2q.

Now we are able to complete the estimation of the objective functional. We continue (3.20) by

J(v) ≥ J(v̄) + ε |u − ū|L1,Ωε
+

1
2
Lvv(v̄, λ̄)[v − v̄]2

≥ J(v̄) + ε |u − ū|L1,Ωε
+

δ

16
|u − ū|2q −

c

2
|ũ − u|2q.

By definition, ũ and u differ only on the sets Ω \ Ωi,ε, while ũ and ū coincide on Ω \ Ωi,ε, hence we conclude
using Lemma 3.1,

|ũ − u|2q ≤ |ũ − u|1|ũ − u|s = |u − ū|L1,Ωε
|u − ū|s ≤ ρ2|u − ū|L1,Ωε

,

if the Ls-norm of the difference is sufficiently small, i.e. |u − ū|s ≤ ρ2. Hence,

J(v) ≥ J(v̄) + ε |u − ū|L1,Ωε
+

δ

16
|u − ū|2q −

c

2
|ũ − u|2q

≥ J(v̄) +
(
ε − c

2
ρ2

)
|u − ū|L1,Ωε

+
δ

16
|u − ū|2q.
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Choosing ρ2 so small that ε − c
2ρ2 > 0, we prove the claim with α = δ/16 and ρ = min(ρ1, ρ2). �

The next result is a immediate conclusion.

Theorem 3.18. Suppose that the assumptions of Theorem 3.17 hold true. Then ū is a locally optimal control
in the sense of Ls(Ω)n.

Remark 3.19. The second-order sufficient optimality condition can be adapted to general objective functionals
following [10]. However, then one obtains differentiability of the functional J with respect to control and state
only in L∞-type spaces. Consequently, one has to work with L∞-neighborhoods of the reference control.

3.4. Extensions and remarks

Let us investigate briefly under which conditions it can be ensured that condition (SSC) holds. For simplicity,
we consider the unconstrained case, Uad = L2(Ω)2. It is well-known that the second-order sufficient condition
is satisfied if the residual ȳ − yd is small enough, i.e. the desired state could be approximated closely. See for
instance [21,22]. Thanks to the precise estimates of the solutions of the nonlinear as well as the linear systems
in the previous sections, we can specify how small the difference between optimal state and desired state has
to be.

Lemma 3.20. Let v̄ = (ȳ, ū) be admissible for the optimal control problem and suppose that v̄ fulfills the
first-order necessary optimality condition with associated adjoint state λ̄. Then the second-order sufficient
condition (SSC) is fulfilled if the residual |ȳ−yd|2 is sufficiently small or the parameters γ and ν are sufficiently
large, such that the inequality (3.30) below is satisfied.

Proof. The second derivative of the Lagrangian L is given by

Lvv(v̄, λ̄)[(z, h)]2 = |z|22 + γ|h|22 + 2b(z, z, λ̄).

The only addend that can disturb positivity is b(z, z, λ̄). We can estimate it according to (3.2) by

|b(z, z, λ̄)| ≤ CnN2
4 |z|2V |λ̄|V .

The state z and the adjoint λ̄ are weak solutions of linear equations. Hence they can be estimated using
Corollaries 3.7 and 3.11 by

|z|V ≤ 2
ν

Nq′ |h|q, |λ̄|V ≤ 2
ν

N2|ȳ − yd|2.
Thus, we obtain

Lvv(v̄, λ̄)[(z, h)]2 ≥ |z|22 + γ|h|22 − 2
(

2
ν

Nq′ |h|q
)2( 2

ν
N2|ȳ − yd|2

)

≥ |z|22 +
(

γN2,q − 16
ν3

N2
q′N2|ȳ − yd|2

)
|h|2q

with N2,q = vol(Ω)1/q−1/2. This implies that Lvv is positive definite, if it holds

γ >
16
ν3

N2
q′N2

N2,q
|ȳ − yd|2, (3.30)

which means that γ, ν are large enough or |ȳ − yd|2 is small enough. Please note, that the term |z|22 cannot
provide any additional coercivity since the mapping h �→ z is compact from Lq(Ω)2 to L2(Ω)2. The constants N
are imbedding constants depending only on the domain Ω. �
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Here, we presented a condition on the parameters under which (SSC) is satisfied. However, it cannot be
answered by analytic considerations in what flow configurations, e.g. cavity or channel flow, it is likely that (SSC)
is fulfilled.

3.4.1. General objective functionals

The analysis of the proof of sufficiency in not restricted to the special quadratic nature of the objective
functional J defined in (2.1). Let us consider the minimization of the functional

J̃(y, u) =
∫

Ω

q(x, y(x), u(x)) dx.

We have to require appropriate measurability and differentiability assumptions, which are standard in the
literature, see for instance [10, 25]. Furthermore, we need L∞-regularity of the state and control to obtain
Frechét differentiability of the objective functional. Additionally, we get an extra second-order remainder term
in the Taylor expansion (3.20) of the Lagrange functional. Up to this differences, the method of proof remains
the same.

3.4.2. An equivalent formulation of second-order sufficient optimality conditions

Here, we comment on other formulations of second-order suficient conditions known from literature [4, 5, 8].
Let us consider the sufficient optimality condition (SSC) with parameters q = q′ = 2. We assume in this section
that the Assumptions (A1) and (A2) are satisfied. Let us recall (SSC) for q = 2 for convenience:

(SSC)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

There exist ε > 0 and δ > 0 such that

Lvv(v̄, λ̄)[(z, h)]2 ≥ δ |h|22 (3.31)

holds for all pairs (z, h) ∈ V × L2(Ω)n with

h = u − ū, u ∈ Uad, hi = 0 on Ωε,i for i = 1, . . . , n, (3.32)

and z ∈ V being the weak solution of the homogeneous and linearized equation

ν (z, w)V + b(ȳ, z, w) + b(z, ȳ, w) = (h, w)2 ∀w ∈ V. (3.33)

In the case of quadratic objective functionals, the condition (SSC) can be simplified equivalently following the
lines of Bonnans [4,5]. The equivalent condition introduced there was discussed for semilinear elliptic equations
but not yet for control of Navier-Stokes equations.

The tangent cone on Uad at ū, denoted by T (ū), is defined by

T (ū) =
{

h ∈ L2(Ω)n
∣∣∣h = lim

k→∞
uk − ū

tk
, uk ∈ Uad, tk ↓ 0

}
.
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T (ū) is convex, non-empty and closed in L2(Ω)n, hence also weakly closed. By T (ū), we are able to formu-
late (SSC) in the following way:

(SSC0)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

It holds
Lvv(v̄, λ̄)[(z, h)]2 > 0 (3.34)

for all pairs (z, h) ∈ V × L2(Ω)n with h �≡ 0, h ∈ T (ū), and

hi = 0 on Ω0,i

for all i = 1, . . . , n, where z is the solution of the associated linearized equation (3.33).

Notice that Ω0,i = {x ∈ Ω : |γūi(x) + λ̄i(x)| > 0}.
Theorem 3.21. The conditions (SSC) and (SSC0) are equivalent.

Proof. It is easy to see that (SSC) implies (SSC0). Let 0 �= h ∈ T (ū) with hi = 0 a.e. on Ω0,i. Since Ωε,i ⊂ Ω0,i,
it holds hi = 0 on Ωε,i. Further, there exists a sequence hk = (uk − ū)/tk converging to h in L2(Ω)n. After
extracting a subsequence if necessary, we find that uk,i(x) − ūi(x) → 0 a.e. on Ω0,i. Hence, we can choose uk

such that uk,i(x) = ūi(x) on Ω0,i. This implies hk,i = 0 on Ω0,i, and hk can be used as test function in (SSC).
Let z, zk be the associated solutions of the linearized equation and v := (z, h), vk := (zk, hk). Then it holds

Lvv(v̄, λ̄)[v]2 = Lvv(v̄, λ̄)[v − vk + vk]2

= Lvv(v̄, λ̄)[vk]2 + 2Lvv(v̄, λ̄)[v − vk, vk] + Lvv(v̄, λ̄)[v − vk]2.

Using assumption (3.31), estimates of Lvv in Lemma 3.12, and Corollary 3.7, we obtain

Lvv(v̄, λ̄)[v]2 ≥ δ|hk|22 − c1|h − hk|2|hk|2 − c2|h − hk|22 ≥ δ

2
|hk|22 − c|h − hk|22,

which gives in the limit k → ∞
Lvv(v̄, λ̄)[v]2 ≥ δ

2
|h|22 > 0,

and (SSC0) is satisfied.
Let us prove the converse direction. Assume, that (SSC0) holds true but not (SSC). Then for all ε > 0 and

δ > 0 there exists hδ,ε ∈ L2(Ω)n such that (hδ,ε)i = 0 on Ωε,i, hδ,ε = uδ,ε − ū, uδ,ε ∈ Uad, and

Lvv(v̄, λ̄)[(zδ,ε, hδ,ε)]2 < δ |hδ,ε|22
is fulfilled with associated zδ,ε. Multiplying hδ,ε by some positive constant, we can assume |hδ,ε|2 = 1 and
hδ,ε ∈ T (ū). Choosing δk = εk = 1/k, hk := hδk,εk

, we find

Lvv(v̄, λ̄)[(zk, hk)]2 <
1
k

,

where zk is the weak solution of (3.33), hence

lim
k

supLvv(v̄, λ̄)[(zk, hk)]2 ≤ 0.

Since the set {hk}∞k=1 is bounded in L2(Ω)n, there exists an element h̃ ∈ L2(Ω)n, such that, after extracting
a subsequence if necessary, the hk converge weakly in L2(Ω)n to h̃. The tangent cone T (ū) is weakly closed,
therefore h̃ ∈ T (ū).
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Next, we want to show hk,i(x) → 0 a.e. pointwise on Ω0,i. Let x0 ∈ Ω0,i be given. Then it holds |γūi(x0) +
λ̄i(x0)| = τ ′ > 0, which implies by definition x0 ∈ Ωτ,i for all 0 ≤ τ ≤ τ ′. Hence, there exists an index ki(x0)
such that x0 ∈ Ωεk,i = Ω1/k,i for all k > ki(x0). By construction of hk we conclude hk,i(x0) = 0 for all
k > ki(x0). It follows h̃(x) = 0 on Ω0 almost everywhere.

We decompose Lvv and use |hk|2 = 1 to get

Lvv(v̄, λ̄)[(zk, hk)]2 = γ|hk|22 + Q(zk) = γ + Q(zk), (3.35)

with Q(z) = |z|22−2b(z, z, λ̄). The solution mapping h �→ z associated with (3.33) is linear and continuous from
L2(Ω)n to V . Thus, we obtain zk ⇀ z̃ in V and zk → z̃ in H , since V is compactly imbedded in H . A well-
known result of Temam [28], Lemma II.1.5, yields b(zk, zk, λ̄) → b(z̃, z̃, λ̄). We conclude limk→∞ Q(zk) = Q(z̃).
Passing to the limit in (3.35), we get

Q(z̃) ≤ lim
k

supLvv(v̄, λ̄)[(zk, hk)]2 − γ ≤ −γ < 0,

which proves that h̃ cannot vanish, remember Q(0) = 0. Finally,

Lvv(v̄, λ̄)[(z̃, h̃)]2 = γ|h̃|22 + Q(z̃) ≤ γ − γ ≤ 0

is obtained, which contradicts (SSC0). �

Another second-order sufficient optimality condition introduced by Casas and Mateos [8] involves the Hamil-
tonian of the optimal control problem. Due to the special form of our objective functional, this formulation is
equivalent to (SSC0).

Following the lines of Bonnans [4], we can prove that (SSC0) even implies a L2-growth condition in a L2-
neighborhood around (ȳ, ū).

Theorem 3.22. Let v̄ = (ȳ, ū) be admissible for the optimal control problem and suppose that v̄ fulfills the first-
order necessary optimality condition with associated adjoint state λ̄. Assume further that (SSC0) is satisfied
at v̄. Then there exist α > 0 and ρ > 0 such that

J(v) ≥ J(v̄) + α |u − ū|22 (3.36)

holds for all admissible pairs v = (y, u) with |u − ū|2 ≤ ρ.

Proof. Let us suppose that (SSC0) is satisfied, whereas (3.36) does not hold. Then for all α > 0 and ρ > 0 there
exists uα,ρ ∈ Uad with |uα,ρ − ū|2 ≤ ρ and

J(vα,ρ) < J(v̄) + α |uα,ρ − ū|22, (3.37)

where vα,ρ = (uα,ρ, yα,ρ) and yα,ρ is the solution of (3.3) associated with uα,ρ. We choose αk = ρk = 1/k and
uk = uαk,ρk

, yk = yαk,ρk
.

By construction, it follows uk → ū in L2(Ω)n as k → ∞. Hence, we can write uk = ū + tkhk, |hk|2 = 1 and
tk → 0 as k → ∞. Because the set of these hk is bounded in L2(Ω)n we can extract a subsequence denoted again
by (hk) converging weakly to h̃ ∈ T (ū) ⊂ L2(Ω)n. In the following, let zk be the solution of (3.33) associated
with hk.

Since (ū, ȳ) and (uk, yk) satisfy the state equation, it holds L(v̄, λ̄) = J(v̄) and L(vk, λ̄) = J(vk). Then we
obtain

J(vk) = L(vk, λ̄) = L(v̄, λ̄) + tkLu(v̄, λ̄)hk + tkLy(v̄, λ̄)zk + t2kLvv[(zk, hk)2]. (3.38)
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The first-order necessary conditions (3.15), (3.16) are fulfilled, so we find Ly(v̄, λ̄)zk = 0 and Lu(v̄, λ̄)hk ≥ 0.
At first, we show h̃ = 0 a.e. on Ω0. We derive from (3.37) and (3.38)

0 ≤ Lu(v̄, λ̄)hk =
1
tk

(J(vk) − J(v̄)) − tkLvv[(zk, hk)2] < tk

{
1
k
− Lvv[(zk, hk)2]

}
, (3.39)

which gives Lu(v̄, λ̄)h̃ = 0 since Lvv[(zk, hk)2] is bounded. The variational inequality

(γūi(x) + λ̄i(x))hk,i(x) ≥ 0

holds a.e. on Ω, i = 1, . . . , n, so the weak limit h̃i(x) satisfies

(γūi(x) + λ̄i(x))h̃(x) ≥ 0

as well. This, together with Lu(v̄, λ̄)h̃ = 0, yields h̃(x) = 0 on Ω0, cf. the definition of Ω0.
Finally, we show that (3.37) contradicts (SSC0). Obviously (3.39) implies

Lvv[(zk, hk)2] <
1
k
·

Arguing as in the proof of the previous Theorem 3.21, we find that h̃ satisfies

Lvv(v̄, λ̄)[(z̃, h̃)]2 ≤ 0,

with h �≡ 0. Since h̃ is admissible as test function in (SSC0), this shows that the positivity assumption of (SSC0)
is violated. �

Remark 3.23. Observe that this theorem overcomes the two-norm discrepancy typically appearing in optimal
control of semilinear equations. This is due to the very special form of the quadratic cost functional (2.1),
the linear appearance of the control u in the state equation, and the differentiability of the nonlinearity of the
Navier-Stokes equations and the associated solution operator G in weaker than L∞-norms.

Remark 3.24. Casas and Mateos [8] require positivity of Lvv for increments vanishing on Ω\Ω0 together with
uniform positivity of the second derivative of the Hamiltonian with respect to the control on Ω \ Ωτ for some
τ > 0. The last property is fulfilled for our optimal control problem. The Hamiltonian is given by

H(x, y, u, λ) =
1
2
|y − yd(x)|2 +

γ

2
|u|2 + λ · u.

Its second derivative with respect to u is
∂2H

∂u2
(x, y, u, λ) = γ,

which is uniform positive on Ω. Therefore, we are able to work with active sets Ω0,i in (SSC0).
In Dunn’s counterexample [16], the second derivative of the Hamiltonian with respect to the control is

nonnegative on Ω \ Ω0 but indefinite on Ω \ Ωτ for every τ > 0. Hence, the use of the active set Ω0 in (SSC)
causes a contradiction.

4. The instationary case

In this section, we consider in a very similar way the optimal control problem (2.3)–(2.4) for the instationary
Navier-Stokes equations. The similarity of arguments will permit to shorten the presentation.
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4.1. Notations and preliminary results

Here, we will restrict ourselve to the two-dimensional case, n = 2, since a satisfactory theory of the instation-
ary Navier-Stokes equations is only available for this space dimension. In the two-dimensional case, a unique
weak solution of (2.4) exists that depends continuously on the given data. First, we introduce some notations
and provide some results that we need later on.

To begin with, we define the solenoidal space

H := {v ∈ L2(Ω)2 : div v = 0}.

Endowed with the usual L2-scalar product, denoted by (·, ·)H , this space is a Hilbert space. The associated
norm is denoted by | · |H . We shall work in the standard spaces of abstract functions from [0, T ] to a real Banach
space X , Lp(0, T ; X) and C([0, T ]; X), endowed with their natural norms,

‖y‖Lp(X) := ‖y‖Lp(0,T ;X) =

(∫ T

0

|y(t)|pXdt

)1/p

,

‖y‖C([0,T ];X) := max
t∈[0,T ]

|y(t)|X ,

1 ≤ p < ∞. To deal with the time derivative in (2.4), we introduce the following spaces of functions y whose
time derivative yt exists as abstract function,

Wα(0, T ; V ) := {y ∈ L2(0, T ; V ) : yt ∈ Lα(0, T ; V ′)},

where 1 ≤ α < ∞. Moreover, we write for convenience

W (0, T ) := W 2(0, T ; V ).

Endowed with the norm

‖y‖W α := ‖y‖W α(0,T ;V ) = ‖y‖L2(V ) + ‖yt‖Lα(V ′),

these spaces are Banach spaces, respectively Hilbert spaces in the case of W (0, T ). In the sequel, we will use
for u ∈ Lp(Q)2 the notation

‖u‖p := |u|Lp(Q)2 .

In all what follows, ‖ · ‖ stands for norms of abstract functions, while | · | denotes norms of “stationary” spaces
like H and V .

Corollary 4.1. Let v ∈ V and y ∈ W (0, T ) be given. It holds

|v|4 ≤ 21/4|v|1/2
H |v|1/2

V . (4.1)

Moreover, the function y is, up to changes on sets of zero measure, equivalent to a function of C([0, T ], H), and
there is a constant c > 0 such that

‖y‖4 + ‖y‖C([0,T ],H) ≤ c ‖y‖W (0,T ). (4.2)

Proof. The first claim is proven in [28, Lem. III.3.3]. Note that W (0, T ) is continuously imbedded in C([0, T ], H),
cf. [13]. For the L4-claim see again in [28]. �
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In view of inequality (4.1), we can state another estimate of the trilinear form b. In the two-dimensional case
it holds

|b(u, v, w)| ≤ √
2|u|1/2

H |u|1/2
V |v|V |w|1/2

H |w|1/2
V (4.3)

for all u, v, w ∈ V . This follows directly from the estimate given in (3.1) and the previous corollary.
To specify the problem setting, we introduce a linear operator A : L2(0, T ; V ) �→ L2(0, T ; V ′) by

∫ T

0

〈(Ay)(t), v(t)〉V ′,V dt :=
∫ T

0

(y(t), v(t))V dt,

and a nonlinear operator B : L2(0, T ; V ) �→ L1(0, T ; V ′) by

∫ T

0

〈(
B(y)

)
(t), w(t)

〉
V ′,V dt :=

∫ T

0

b(y(t), y(t), w(t))dt,

where y, v ∈ L2(0, T ; V ) and w ∈ L∞(0, T ; V ), respectively.
We need a bound on the admissible controls to establish a Lipschitz estimate of solutions of (2.4). Without

loss of generality, we assume in the sequel that the set Uad is bounded in L2(Q)2, i.e. there exists a constant
M > 0 such that

sup
u∈Uad

‖u‖2 ≤ M. (4.4)

If this assumption is violated then we can introduce an artificial bound. For that purpose, let ū be the optimal
control and J̄ = J(ū) the corresponding value of the objective. Then ū is also optimal for the same optimal
control problem with changed set of admissible controls Ũad = Uad ∩ {u ∈ L2(Q)2 : ‖u‖2 ≤ 2(J̄ + 1)/γ}.

As in the stationary case, we want to derive a sufficient optimality condition that ensures local optimality
of the reference control not only in L∞(Q)2 but also in Ls(Q)2, with some s < ∞. It remains to specify the
exponent s.

(A3)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Let q, q′, s be real numbers such that the following statements are true.
(i) q′ ≤ 4.
(ii) The exponents q and q′ are conjugate exponents, i.e. 1

q + 1
q′ = 1.

(iii) For all u ∈ Ls(Q)2 it holds

‖u‖2
q ≤ ‖u‖1‖u‖s.

Here we find that the two triplets (q, q′, s) = (4/3, 4, 2) and (q, q′, s) = (2, 2,∞) fulfill this assumptions as they
did in the stationary case. The assumption (i) is needed to obtain by Lemma 3.2

‖y‖q′ ≤ (volQ)1/q′−1/4‖y‖4 (4.5)

for all y ∈ W (0, T ). In the rest of this section we assume that Assumption (A3) is satisfied.

4.2. The state equation

We begin with the notation of weak solutions for the instationary Navier-Stokes equations (2.4)

Definition 4.2 (weak solution). Let f ∈ L2(0, T ; V ′) and y0 ∈ H be given. A function y ∈ L2(0, T ; V ) with
yt ∈ L1(0, T ; V ′) is called weak solution of (2.4) if

yt + νAy + B(y) = f,
y(0) = y0.

(4.6)

Results concerning the solvability of (4.6) are standard, cf. [12, 28] for proofs and further details.
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Theorem 4.3 (existence and uniqueness of solutions). For every f ∈ L2(0, T ; V ′) and y0 ∈ H, the equation (4.6)
has a unique solution y ∈ W (0, T ).

Notice that the regularity y ∈ W (0, T ) is more than the regularity needed to define weak solutions. As in
the stationary case, we want to work with the weakest norms of the control as possible. In the presence of a
distributed control u ∈ L2(Q)2, the inhomogeneity f is formed by

〈f(t), v(t)〉V ′,V := (u(t), v(t))q,q′ v ∈ L2(0, T ; V ), t ∈ [0, T ],

where q is an exponent less or equal 2. Next we will derive some useful estimates of weak solutions. Observe, that
we need u ∈ L2(Q)2 to prove that the solutions are of class C([0, T ], H), but the estimates contain Lq(Q)2-norms
of u, which are weaker since q ≤ 2.

Lemma 4.4. For each u ∈ L2(Q)2 there exists a unique weak solution y ∈ W (0, T ) of (2.4). It holds

‖y‖L2(V ) + ‖y‖C([0,T ],H) ≤ cB (|y0|H + ‖u‖q) , (4.7)

where cB = cB(q) is independent of y0 and u. If y1, y2 are two solutions of (2.4) associated with control
functions u1, u2 ∈ Uad, repectively, then the Lipschitz estimate

‖y1 − y2‖L2(V ) + ‖y1 − y2‖C([0,T ],H) ≤ cL ‖u1 − u2‖q (4.8)

is satisfied with some constant cL > 0.

Proof. Existence and regularity follow from Theorem 4.3. Let y be the unique weak solution of (2.4) defined
by (4.6). We test (4.6) by y. Then the nonlinear term vanishes due to b(y(t), y(t), y(t)) = 0 for almost all
t ∈ [0, T ]. We get the following differential equation:

1
2

d
dt

|y(t)|2H + ν|y(t)|2V = (u(t), y(t))q,q′ a.e. on [0, T ].

Integration from 0 to t ∈ [0, T ] yields

1
2
|y(t)|2H − 1

2
|y0|2H + ν

∫ t

0

|y(s)|2V ds =
∫ t

0

(u(s), y(s))q,q′ds. (4.9)

Using Hölders inequality, the inequalities (4.1), (4.5), and Young’s inequality, we derive

∫ t

0

(u, y)q,q′ds ≤
∫ t

0

|u(s)|q|y(s)|q′ds ≤
(∫ t

0

|u(s)|qqds

)1/q (∫ t

0

|y(s)|q′
q′ds

)1/q′

≤ ca‖u‖q

(∫ t

0

|y(s)|q′/2
H |y(s)|q′/2

V ds

)1/q′

≤ ca‖u‖q‖y‖1/2
C([0,T ],H)‖y‖1/2

Lq′/2(0,t;V )
,

where ca = 21/4(vol Q)µ and µ = 1/q′ − 1/4 are given by (4.1) and (4.5). Notice, that q′ ≤ 4 implies q′/2 ≤ 2,
hence we can apply Lemma 3.2 with respect to the time interval [0, t] to proceed

≤ caT 2µ‖u‖q‖y‖1/2
C([0,T ],H)‖y‖1/2

L2(0,t;V )

≤ cb‖u‖2
q +

1
4
‖y‖2

C([0,T ],H) +
ν

2
‖y‖2

L2(0,t;V ), (4.10)
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where cb = 1
2 (volQ)2µT 4µν−1/2. Putting (4.9) and (4.10) together, we find that

1
2
|y(t)|2H +

ν

2
‖y‖2

L2(0,t;V ) ≤
1
2
|y0|2H + cb‖u‖2

q +
1
4
‖y‖2

C([0,T ],H)

holds for almost all t ∈ [0, T ]. Here, the C([0, T ], H)-norm of y appears on the right-hand side to bound |y(t)|H .
Since y ∈ C([0, T ], H) is given by Theorem 4.3, this inequality makes sense. Taking the maximum for t ∈ [0, T ]
on the left-hand side we get

1
4
‖y‖2

C([0,T ],H) ≤
1
2
|y0|2H + cb‖u‖2

q.

The L2(0, T ; V )-estimate of y follows immediately,

‖y‖2
L2(V ) ≤

2
ν
|y0|2H +

4cb

ν
‖u‖2

q ≤ 2
ν
|y0|2H +

2
ν3/2

M2 =: K. (4.11)

In this way, we have derived a uniform bound on ‖y‖L2(V ) for all states y associated with admissible controls.
It remains to prove the Lipschitz-estimate. Let y1, y2 be two solutions of (2.4) associated with the control
functions u1, u2. Denote by y and u the difference of them, y = y1 − y2 and u = u1 − u2. We substract the
corresponding variational equalities, test with v = y, and integrate over [0, t]. This yields

1
2
|y(t)|2H + ν

∫ t

0

|y(s)|2V ds =
∫ t

0

(u(s), y(s))q,q′ds −
∫ t

0

b(y(s), y2(s), y(s))ds, (4.12)

since y(0) = y1(0)−y2(0) ≡ 0. For the treatment of the nonlinear terms we refer to equation (3.7). Analogously
as above, we conclude

∫ t

0

(u(s), y(s))q,q′ds ≤ cu‖u‖2
q +

1
N ‖y‖2

C([0,T ],H) +
ν

2
‖y‖2

L2(0,t;V ),

with cu = 1
4 (volQ)2µT 4µN 1/2ν−1/2 and a constant N > 0 to be specified later. The nonlinear term is estimated

by (4.3), ∣∣∣∣
∫ t

0

b(y(s), y2(s), y(s))ds

∣∣∣∣ ≤ √
2
∫ t

0

|y(s)|H |y(s)|V |y2(s)|V ds

≤ ν

4

∫ t

0

|y(s)|2V ds +
2
ν

∫ t

0

|y(s)|2H |y2(s)|2V ds.

Inserting these estimates in (4.12), we obtain

1
2
|y(t)|2H +

ν

4
‖y‖2

L2(0,t;V ) ≤ cu‖u‖2
q +

1
N ‖y‖2

C([0,T ],H) +
2
ν

∫ t

0

|y(s)|2H |y2(s)|2V ds.

Since y2 ∈ L2(0, T ; V ), the norm square |y2(·)|2V is integrable and Gronwall’s lemma applies to get

|y(t)|2H ≤ exp
(

4
ν
‖y2‖2

L2(V )

)(
cu‖u‖2

q +
2
N ‖y‖2

C([0,T ],H)

)
.

We choose N := 8 exp
(

4
νK
)
, where K is given by (4.11). The uniform bound derived also in equation (4.11)

yields that the following inequality holds for all t ∈ [0, T ]:

1
2
|y(t)|2H ≤ 1

4
‖y‖2

C([0,T ],H) + c‖u‖2
q.
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With the same arguments as above, we conclude

‖y‖C([0,T ],H) + ‖y‖L2(V ) ≤ c‖u‖q,

and the Lipschitz dependence of the states on the controls is proven. �

To establish optimality conditions, we will also need estimates of solutions of linearized equations. Therefore,
we introduce the derivative B′(yl) of the nonlinear operator B which is given by

∫ T

0

〈B′(yl(t))y(t), w(t)〉V ′,V dt :=
∫ T

0

{b(yl(t), y(t), w(t)) + b(y(t), yl(t), w(t))} dt.

In view of (4.3), it can be shown that B′(yl) ∈ L(L2(0, T ; V ), L4/3(0, T ; V ′)) for yl ∈ W (0, T ) .

Lemma 4.5. Let yl ∈ W (0, T ) be the state associated with a control ul ∈ Uad. Then, for all u ∈ L2(Q)2, there
exists a unique weak solution y ∈ W (0, T ) of the linearized equation

yt + νAy + B′(yl)y = u,
y(0) = 0.

(4.13)

It satisfies the estimate
‖y‖C([0,T ],H) + ‖y‖L2(V ) ≤ cl‖u‖q. (4.14)

Proof. For the proof of existence we refer to [20]. A similar result was proven in [7] for the three-dimensional
case. The estimate (4.14) can be shown as in the previous lemma. The uniqueness of solutions is a consequence
of the linearity of the equation and the continuity estimate (4.14). �

4.3. First order necessary optimality conditions

Now we return to our optimal control problem. Before stating the second-order sufficient optimality condition,
we briefly recall the necessary conditions for local optimality. For the proofs and further discussion see [1,7,19,21]
and the references cited therein.

Definition 4.6 (locally optimal control). A control ū ∈ Uad is said to be locally optimal in L2(Q)2, if there
exists a constant ρ > 0 such that

J(ȳ, ū) ≤ J(yh, uh)
holds for all uh ∈ Uad with ‖ū − uh‖2 ≤ ρ. Here, ȳ and yh denote the states associated with ū and uh,
respectively.

In the following, we denote by B′(ȳ)∗ the adjoint of B′(ȳ). For ȳ ∈ W (0, T ), it is a continuous linear operator
from L2(0, T ; V ) to L4/3(0, T ; V ′).

Theorem 4.7 (necessary condition). Let ū be a locally optimal control with associated state ȳ = y(ū). Then
there exists a unique solution λ̄ ∈ W 4/3(0, T ; V ) of the adjoint equation

−λ̄t + νAλ̄ + B′(ȳ)∗λ̄ = ȳ − yQ

λ̄(T ) = ȳ(T ) − yT .
(4.15)

Moreover, the variational inequality

(γū + λ̄, u − ū)L2(Q)2 ≥ 0 ∀u ∈ Uad (4.16)

is satisfied.
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Proof. A proof can be found in [19, 20]. It can be carried out along the lines of the proof of Theorem 3.10 for
the stationary case. First, one can show the Fréchet-differentiablity of the solution operator of the instationary
equation. The adjoint system and the variational inequality is then derived by the method of transposition.
The regularity of λ̄ is proven in [22]. �

Next, we state an estimate of the norm of the adjoint state, see [21] for the details.

Corollary 4.8. Let λ ∈ W 4/3(0, T ; V ) be the weak solution of (4.15), where y ∈ W (0, T ) is a state associated
with an admissible control u ∈ Uad. Then it holds

‖λ‖2
L2(V ) ≤ c

(
|y(T ) − yT |2L2(Ω) + ‖y − yQ‖2

2

)
.

Let us introduce the Lagrange function L : W (0, T ) × L2(Q)2 × W 4/3(0, T ; V ) of the instationary optimal
control problem by

L(y, u, λ) = J(u, y) +
∫ T

0

{〈yt, λ〉V ′,V − ν(y, λ)V − b(y, y, λ) + (u, λ)}dt.

One can easily verify that the necessary optimality conditions given in Theorem 4.7 are equivalent to

Lu(ȳ, ū, λ̄)(u − ū) ≥ 0 ∀u ∈ Uad,

and

Ly(ȳ, ū, λ̄)h = 0 ∀h ∈ W (0, T ) with h(0) = 0.

As in the stationary case, it can be proven that L is twice Fréchet-differentiable with respect to y and u, confer
Lemma 3.12. Here we derive an estimate of the norm of Lyy.

In the analysis of the second-order condition estimations of the time derivative yt of a state y ∈ W (0, T ) are
not needed. Therefore, we introduce a space W̃ by

W̃ = L2(0, T ; V ) ∩ C([0, T ], H).

equipped with the norm

‖y‖2
W̃

:= ‖y‖2
L2(V ) + ‖y‖2

C([0,T ],H).

Lemma 4.9. The second derivative of the Lagrangian L at y ∈ W (0, T ) with associated adjoint state λ in the
direction z1, z2 ∈ W (0, T ) satisfies the estimate

|Lyy(y, u, λ)[z1, z2]| ≤ cL ‖z1‖W̃ ‖z2‖W̃

for all z1, z2 ∈ W (0, T ).

Proof. The second derivative of L is given by

Lyy(y, u, λ)[z1, z2] = (z1(T ), z2(T ))2 +
∫ T

0

(z1, z2)2 − b(z1, z2, λ) − b(z2, z1, λ) dt.
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The nonlinear terms are estimated by (4.3),∣∣∣∣∣
∫ T

0

b(z1, z2, λ) dt

∣∣∣∣∣ ≤ c

∫ T

0

|z1(t)|1/2
H |z1(t)|1/2

V |z2(t)|1/2
H |z2(t)|1/2

V |λ(t)|V dt

≤ c ‖z1‖1/2
C([0,T ],H)‖z2‖1/2

C([0,T ],H)

∫ T

0

|z1(t)|1/2
V |z2(t)|1/2

V |λ(t)|V dt

≤ c ‖z1‖1/2
C([0,T ],H)‖z2‖1/2

C([0,T ],H)‖z1‖1/2
L2(V )‖z2‖1/2

L2(V )‖λ‖L2(V )

≤ c ‖z1‖W̃ ‖z2‖W̃ ‖λ‖L2(V ).

Corollary 4.8 together with Lemma 4.4 and the boundedness of the controls (4.4) yields a uniform bound on all
adjoint states, ‖λ‖L2(V ) ≤ C, independently of y and u. Now the claim follows immediately. �

4.4. Second-order sufficient optimality condition

In what follows we fix v̄ := (ȳ, ū) to be an admissible reference pair. We suppose that v̄ satisfies the first-order
necessary optimality conditions.

Definition 4.10 (strongly active sets). Let ε > 0 and i ∈ {1, 2} be given. Define sets Qε,i ⊆ Q = Ω× [0, T ] by

Qε,i = {(x, t) ∈ Q : |γūi(x, t) + λ̄i(x, t)| > ε}.
For u ∈ Lp(Q)2 and 1 ≤ p < ∞ we define the Lp-norm with respect to the sets of strongly active control
constraints

‖u‖Lp,Qε :=

(
2∑

i=1

‖ui‖p
Lp(Qε,i)

)1/p

.

As in the previous section, we can show the following conclusion, cf. Corollary 3.14.

Corollary 4.11. For all u ∈ Uad it holds

2∑
i=1

∫ T

0

∫
Qε,i

(γūi(x, t) + λ̄i(x, t))(ui(x, t) − ūi(x, t))dxdt ≥ ε ‖u − ū‖L1(Qε).

We assume that the reference pair v̄ = (ȳ, ū) satisfies the following coercivity assumption on L′′(v̄, λ̄), in the
sequel called second-order sufficient condition:

(SSC)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

There exist ε > 0 and δ > 0 such that

Lvv(v̄, λ̄)[(z, h)]2 ≥ δ ‖h‖2
q

holds for all pairs (z, h) ∈ W (0, T )× L2(Q)2 with

h = u − ū, u ∈ Uad, hi = 0 on Qε,i for i = 1, 2,

and z ∈ W (0, T ) being the weak solution of the linearized equation

zt + Az + B′(ȳ)z = h
z(0) = 0.

Now, we collected all tools to prove that (SSC) is sufficient for local optimality of (ȳ, ū), provided the first-order
necessary conditions are fulfilled. The proof in the instationary case follows exactly the lines of the proof in the
stationary case, cf. Theorem 3.17. So we only state the associated results without proof.
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Theorem 4.12. Let v̄ = (ȳ, ū) be admissible for the optimal control problem and suppose that v̄ fulfills the
first-order necessary optimality condition with associated adjoint state λ̄. Assume further that (SSC) is satisfied
at v̄. Then there exist α > 0 and ρ > 0 such that

J(v) ≥ J(v̄) + α ‖u − ū‖2
q

holds for all admissible pairs v = (y, u) with ‖u− ū‖s ≤ ρ, where the exponents s and q are chosen according to
Assumption (A3).

Remark 4.13. As in the stationary case, cf. Section 3.4.2, one can establish an equivalent sufficient con-
dition (SSC0), which ensures together with first-order necessary optimality conditions local optimality of a
reference control without any two-norm discrepancy. However, here one needs extra regularity requirements for
the data.
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References

[1] F. Abergel and R. Temam, On some control problems in fluid mechanics. Theoret. Comput. Fluid Dynam. 1 (1990) 303–325.
[2] R.A. Adams, Sobolev spaces. Academic Press, San Diego (1978).
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