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HOMOTOPY METHOD FOR MINIMUM CONSUMPTION ORBIT TRANSFER
PROBLEM ∗
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Abstract. The numerical resolution of the low thrust orbital transfer problem around the Earth with
the maximization of the final mass or minimization of the consumption is investigated. This problem
is difficult to solve by shooting method because the optimal control is discontinuous and a homotopic
method is proposed to deal with these difficulties for which convergence properties are established. For
a thrust of 0.1 Newton and a final time 50% greater than the minimum one, we obtain 1786 switching
times.
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Introduction

The minimum time orbit transfer of a satellite around the Earth with low thrust has previously been inves-
tigated and solved by Caillau and Noailles [4]. Here, we are interested in the same problem with the final time
fixed in three dimensions but with the maximization of the final mass, or the minimization of the consumption.
To solve such a problem by shooting methods it is assumed, because the optimal control is discontinuous, that
the structure of the optimal control is known [10]. The aim of this study is to construct a method to obtain the
result without any a priori information on the optimal control.

The basic idea of the method we propose is to define a set of optimal control problems which depend on a
parameter λ ∈ [0, 1] which connect the regular optimal control problem with minimization of the energy (square
of L2 norm of the control) for λ = 0 to our problem with minimization of the consumption (L1 norm of the
control) for λ = 1. The Pontryagin Maximum Principle then provides a family of Boundary Value Problems
and the shooting function associated to this family of (BV P )λ gives us a homotopy S(z, λ). Following the path
of the homotopy zeros will generate a solution of the problem. In particular, the number of switching times and
their localization are found.

This paper is organized as follows: the optimal control formulation of the orbital transfer problem is described
in Section 1. Sections 2 and 3 are devoted to the necessary condition and to the existence of solution. In
Section 4, the differentiability properties of the shooting function are studied and the numerical difficulties for
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method.
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solving this problem using shooting methods are analyzed. Section 5 explains the homotopy method and studies
the convergence theorem. In Section 6 the Predictor-Corrector algorithm is presented. Finally, the numerical
results are given in Section 7.

1. Problem statement

The satellite is considered as a material point and Cartesian coordinates are used. If r(t) ∈ R3 denotes the
position, v(t) ∈ R3 the velocity, m(t) the mass of the satellite and T (t) ∈ R3 the thrust of the engine, then the
state equation is

ṙ(t) = v(t)

v̇(t) = − µr(t)
|r(t)|3 +

T (t)
m(t)

ṁ(t) = −β|T (t)|,

where µ is the gravitation constant of the Earth, β is a positive constant and |.| is the euclidian norm. There
are also boundary constraints: the state is known at the initial time (r(0), v(0),m(0)) = (r0, v0,m0) and must
arrive in position and speed at the fixed final time tf in (r(tf ), v(tf )) = (rf , vf ). An other constraint is that
the thrust of the engine is limited

|T (t)| ≤ Tmax.

The objective is to maximize the final mass or, because of the state equation in the mass, to minimize the
consumption of the engine

Max m(tf ) ⇐⇒ Min
∫ tf

0

|T (t)|dt.
If the control is standardized, u(t) = T (t)/Tmax, the optimal control problem can be expressed as

(P )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Min J(u) =
∫ tf
0

|u(t)|dt
ṙ(t) = v(t) a.e. in [0, tf ] tf fixed

v̇(t) = Γ(r(t)) +
Tmax

m(t)
u(t)

ṁ(t) = −βTmax|u(t)|
(r(t), v(t),m(t)) ∈ A
|u(t)| ≤ 1
r(0), v(0),m(0) fixed
r(tf ), v(tf ) fixed,

with Γ(r(t)) = −µr(t)/|r(t)|3.
The two next sections are devoted to the necessary condition and to the existence of solution. For this, three

assumptions are useful. First the satellite does not come too close to the Earth and does not use all its fuel:
(H1) the state stays in a security zone A ∈ R7,

A = {x = (r, v,m) ∈ R7|r > ρ0 > 0,m > χ0 > 0},
where χ0 is the mass of the satellite without fuel.

Second, the system is controllable:
(H2) the final time tf is strictly greater than the minimum transfer time[4].

Eventually, the initial and final orbits are different:
(H3) the optimal control is not the null control.

We begin with the study of the necessary condition which will be helpful in proving the existence of solution.
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2. Necessary condition

The Hamiltonian of the problem is

H(r, v,m, u, p0, pr, pv, pm) = (p0 − βTmaxpm)|u| + Tmax

m
(u|pv) + (v|pr) + (Γ(r)|pv) (1)

where p0 ≥ 0, and pr, pv and pm are adjoint states in relation with r, v and m. Under assumption (H1)
the Pontryagin Maximum Principle [5] implies that there exists p0 ≥ 0 and absolutely continuous functions
(pr(t), pv(t), pm(t)) not simultaneously 0 which verify

(1) the adjoint equation

ṗr(t) = −tΓ′(r(t))pv(t) (2)

ṗv(t) = −pr(t) (3)

ṗm(t) =
Tmax

m2(t)
(u(t)|pv(t)), (4)

(2) the transversality condition
pm(tf ) = 0,

(3) the minimization of the Hamiltonian

H(r, v,m, u, p0, pr, pv, pm) = Min|w|≤1H(r, v,m,w, p0, pr, pv, pm) a.e.

As in the case of the minimization of the final time [4], we have the following result.

Proposition 2.1. Under (H1), (H2) and (H3), pv has finitely many zeros.

Proof. If not, there exists a sequence (tk)k, tk ∈ [0, tf ], all distinct, such that pv(tk) = 0. But tf is fixed, so
there exists a subsequence, always noted (tk)k, which converges to t̄. As pv is continuous, pv(t̄) = 0. But the
adjoint equation (3) shows that pv is continuously differentiable, hence

pv(tk) − pv(t̄)
tk − t̄

= 0 −→ ṗv(t̄) = −pr(t̄).

So pv(t̄) = pr(t̄) = 0 and the solution of the linear differential system (2) and (3) is pr(t) = pv(t) = 0 for all
t ∈ [0, tf ]. Then pm(t) = 0 for all t, because ṗm(t) = 0 and pm(tf ) = 0, and p0 must be strictly positive. In this
case the minimization of the Hamiltonian, which is H(u) = p0|u|, gives u(t) = 0 a.e. This is impossible with
the assumption (H3). �

We can now prove that p0 is not zero, and normalize it (p0 = 1).

Proposition 2.2. Under (H1), (H2) and (H3) p0 �= 0.

Proof. If p0 = 0 the Hamiltonian is

H(r, v,m, u, p0, pr, pv, pm) = −βTmaxpm|u| + Tmax

m
(u|pv) + (v|pr) + (Γ(r)|pv).

The Proposition 2.1 implies that pv(t) �= 0 a.e. So, using the Cauchy-Schwarz inequality, it can be stated that

H(r, v, u, p0, pr, pv, pm) ≥
(
−Tmax

m(t)
|pv| − βTmaxpm

)
|u| + terms without u, (5)
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with an equality in the case u(t) = −αpv(t), α ≥ 0, so that the solution of the minimization of the Hamiltonian
can be written u(t) = −α(y(t))pv(t)/|pv(t)| a.e. with

y(t) = (r(t), v(t),m(t), pr(t), pv(t), pm(t)) and α(y(t)) ∈ [0, 1].

This implies that ṗm(t) = −α(y(t))Tmax|pv(t)|/m(t)2 ≤ 0 and, because pm(tf ) = 0, pm(t) ≥ 0 for all t.
Thus, to minimize the second member of (5), it is necessary to have |u(t)| = 1 a.e., and in this case the

criterion J(u) =
∫ tf
0 |u(t)|dt is equal to tf which is then the minimum time, but this is in contradiction with

the assumption (H2). �

Noting y = (x, p) = (r, v,m, pr, pv, pm) and defining the switching function

ψ(y) = ψ(r, v,m, pr, pv, pm) = 1 − βTmaxpm − Tmax

m
|pv|, (6)

the minimization of the Hamiltonian can be solved.

Proposition 2.3. Under (H1), (H2) and (H3) and if |pv| �= 0 then the solution of the minimization of the
Hamiltonian is

u(y) =

⎧⎨
⎩

− pv

|pv | if ψ(y) < 0
−α pv

|pv| with α ∈ [0, 1] if ψ(y) = 0
0 if ψ(y) > 0.

(7)

Remark 2.4. It is possible to study the case |pv| = 0 in the proposition as in [4], but this case was never
encountered in our numerical experimentations and was not investigated.

3. Existence of solution

Under the assumption (H2) the set of admissible control is not empty and under the assumption (H1)

|v̇(t)| ≤ µ

ρ2
0

+
Tmax

χ0
,

then the set of admissible states is in a fixed compact of Rn. So the only assumption not verified to apply the
Filippov existence theorem, see for example Theorem (9.3.i) of [5], is the convexity assumption of f(t, x, U),
because of the state equation in the mass ṁ(t) = −βTmax|u(t)|. To prove the existence of a solution the control
can be rewritten, as in [10], in spherical coordinates, but we prefer to keep the original formulation. For this,
generalized solutions (Gamkrelidze, Young), as define in [5] (pp. 18–22), are considered

(P )G

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Min JG(ν1, . . . , νn+2, u
(1), . . . , u(n+2)) =

∫ tf
0

∑n+2
j=1 νj(t)|u(j)(t)|dt

ṙ(t) = v(t)

v̇(t) = Γ(r(t)) +
Tmax

m(t)
∑n+2

j=1 νj(t)u
(j)(t)

ṁ(t) = −βTmax

∑n+2
j=1 νj(t)|u(j)(t)|

(r(t), v(t),m(t)) ∈ A

|u(j)(t)| ≤ 1
νj(t) ≥ 0 and

∑n+2
j=1 νj(t) = 1

r(0), v(0),m(0) fixed
r(tf ), v(tf ) fixed.

For this generalized problem and if (H1) and (H2) are true, the Filippov existence theorem can be applied.
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Lemma 3.1. Under (H1), (H2) and (H3)

(1) for the generalized problem (P )G, pv has finitely many zeros.
(2) Moreover,

u(t) =
n+2∑
j=1

ν̄j(t)ū(j)(t) (8)

is a solution of our problem (P ), where (ν̄j , ū(j))j is a solution of the generalized problem (P )G.

Proof.

(1) The proof is the same as in Proposition 2.1.
(2) The minimization of the Hamiltonian for the generalized problem (P )G implies that when |pv(t)| �= 0

and ν̄j(t) �= 0, we have ū(j)(t) = −αj(y(t))pv(t)/|pv(t)|. So, it can be shown that for u(t) defined as
in (8), we have |u(t)| =

∑n+2
j=1 ν̄j(t)|ū(j)(t)|. Hence u(t) is an admissible control for the problem (P )

and J(u) has the same value as JG(ν̄1, . . . , ν̄n+2, ū
(1), . . . , ū(n+2)). �

The existence of solution of (P ) readily follows.

Proposition 3.2. If (H1) and (H2) are true, then our optimal control problem (P ) have a solution.

Proof. If (H3) is false, then u(t) = 0 is trivially a solution, and if (H3) is true, then Lemma 3.1 gives the
result. �

4. Shooting method

According to the Pontryagin Maximum Principle, extremals are solutions of the Boundary Value Problem

(BV P )

⎧⎨
⎩

ẏ(t) = ϕ(y(t)) t ∈ [0, tf ] tf fixed
r(0) = r0, v(0) = v0,m(0) = m0

r(tf ) = rf , v(tf ) = vf , pm(tf ) = 0

with

ϕ(y) =
(
v,Γ(r) +

Tmax

m
u(y),−βTmax|u(y)|,−tΓ′(r)pv ,−pr, Tmax

m2
(u(y)|pv)

)
.

The shooting function is in this case defined as follows:

S : Rn −→ Rn

z �−→ S(z) = ((y(tf , z))If
− yf),

with y(., z) the solution of the Cauchy problem

(IV P )z

⎧⎨
⎩

ẏ(t) = ϕ(y(t)) t ∈ [0, tf ] t fixed
r(0) = r0, v(0) = v0,m(0) = m0

p(0) = z

and

(y(tf , z))If
= (r(tf ), v(tf ), pm(tf )),

yf = (rf , vf , 0).
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The Boundary Value Problem (BV P ) can be solved by computing a zero of the shooting equation S(z) = 0
using a Newton algorithm. This requires the differentiability of the shooting function which is not obvious here
because the second member in the Initial Value Problem (IV P )z is not continuous. But with the definitions of

Ω = {z ∈ Rn|x(t, z) ∈ A ∀t,
pv(t, z) �= 0 ∀t,
ψ2(y(t, z)) + (pr(t, z)|pv(t, z))2 �= 0 ∀t,
ψ(y(0, z)) �= 0 and ψ(y(tf , z)) �= 0}

and
ψz(t) = ψ(y(t, z)),

the regularity of the shooting function can be proved.

Proposition 4.1.
(1) For z ∈ Ω, ψz(t) is continuously differentiable and finitely many switching times exist such that

ψ(y(t, z)) = 0;
(2) Ω is an open subset of Rn and S is C∞ in Ω.

Proof.
(1) Let z ∈ Ω, then pv(t, z) �= 0 for all t and the discontinuities of the control arrive only if ψ(y(t, z)) = 0,

where y(t, z) is an absolutely continuous function solution of

(IV P )z

⎧⎪⎪⎨
⎪⎪⎩

ẏ(t) = ϕ1(y(t)) if ψ(y(t)) < 0
ẏ(t) = ϕ2(y(t)) if ψ(y(t)) > 0
r(0) = r0, v(0) = v0, m(0) = m0

p(0) = z,

ϕ1(y(t)) = ϕ(y(t)) with u(t) = − pv(t)
|pv(t)| and ϕ2(y(t)) = ϕ(y(t)) with u(t) = 0. However, here

ψ̇z(t) = − Tmax

m(t, z)
(pv(t, z)|pr(t, z))

|pv(t, z)| , (9)

and the right member of (9) is continuous, thus ψz(t) is absolutely continuous and ψz(t) is C1. The
definition of Ω implies that ψz(t) = 0 and ψ̇z(t) = 0 cannot be true simultaneously, so the times when
ψz(t) = 0 are isolated in the compact [0, tf ] and ψz(t) has a finite number of many zeros.

(2) Let z ∈ Ω. When there is no time such that |pv(t, z)| = 0 and ψ(y(t, z)) = 0 the (IV P )z is a Cauchy
problem with C∞ second member and the result is obvious.

Suppose now there is only one switching time t̄ ∈]0, tf [ where ψz(t̄) = 0. It can be assumed, without
loss of generality that in [0, t̄[, y(t, z) is the solution of

(IV P1)z

⎧⎨
⎩

ẏ(t) = ϕ1(y(t)) t ∈ [0, t̄[
r(0) = r0, v(0) = v0, m(0) = m0

p(0) = z.

In this case one can prove that the function z �→ t̄(z) is well defined in a neighborhood of z and is C∞.
For this the following function is considered:

F : [0, t̄+ η[×B(z, η) −→ R

(t, w) �−→ F (t, w) = ψ(y1(t, w)).
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This function is well defined for an η > 0 and is C∞ because ϕ1 is C∞ in (IV P1)z . However

∂F

∂t
(t̄, z) = ψ̇z(t) �= 0 in Ω,

so the implicit function theorem can be applied and the function t̄(z) is C∞ in a neighborhood of z.
We see now that the curve solution y(t, z) is y1(t, z) in [0, t̄] and y2(t, z) in [t̄, tf ], where y2(t, z) is

the solution of the initial value problem

(IV P2)z

{
ẏ(t) = ϕ2(y(t))
y(t̄) = y1(t̄, z).

This solution is transverse to the commutation surface ψ(y) = 0 at y(t̄, z), i.e. that ẏ1(t̄, z) and ẏ2(t̄, z)
are in the same side from the tangent plan of the commutation surface at y1(t̄, z), because

ψ̇z(t) =
∂ψ

∂y
· ẏ1(t̄, z) =

∂ψ

∂y
· ẏ2(t̄, z) = − Tmax

m(t̄, z)
(pv(t̄, z)|pr(t̄, z))

|pv(t̄, z)|

is different from 0 for z ∈ Ω. Therefore the solution will be well defined in a neighborhood of z, and by
composition the shooting function will also be C∞. For the general case where there is a finite number
of switching times, the argument is repeated.

�

Remark 4.2. To say that z ∈ Ω implies that there is in [0, tf ] no time where a thrust arc appears or disappears
when z changes locally and that there is no singular arc.

To illustrate this result the simple problem (Q) is considered where the acceleration of a material point
ẍ(t) = u(t) is controlled, with the constraint on the control |u(t)| ≤ 1, fixed final time, fixed initial and final
states (in position and velocity) and a minimum cost

∫ tf
0

|u(t)|dt is required. When applied to this problem, the
Pontryagin Maximum Principle gives a Boundary Value Problem (BV Q), ẋ1(t) = x2(t), ẋ2(t) = u(t), ṗ1(t) =
0, ṗ2(t) = −p1(t), the same two points conditions than the problem (Q) and the relation between the control
and the adjoint state

u(t) =

⎧⎪⎨
⎪⎩

0 if |p2(t)| < 1
−α p2(t)

|p2(t)| with α ∈ [0, 1] if |p2(t)| = 1

− p2(t)
|p2(t)| if |p2(t)| > 1.

For this simple problem, it is easy to see that the set Ω where the shooting function is C∞ is the union of 9
open sets of R2 defined by the structure of the control (see Fig. 1).

The numerical difficulties for solving the shooting equation S(z) = 0 by a Newton algorithm are now analyzed.
In fact, for our simple problem (Q), it can be seen that:

(1) the shooting function is constant in D−1,D0 and D+1;
(2) the shooting function is not defined at z = (0,−1) and z = (0, 1);
(3) the shooting function is not differentiable on the boundary of Ω.

It is therefore evident for this simple example that if the initial point z0 for solving the equation S(z) = 0
is not in the correct domain, that is in the domain where the structure of the control is the same as the
structure of the optimal control, then the Newton algorithm diverges. For the orbital transfer problem, if it is
supposed that pv(t; z) �= 0 everywhere, the situation is similar. In fact, ψ(y(t̄, z)) = 0 and (pr(t̄, z)|pv(t̄, z)) = 0
means that at t̄, y(t, z) is tangent to the commutation surface and thus that the structure of the control changes
in z or that we have a singular arc. However in practice the structure of the optimal control is not known,
and the goal is to find the solution without this information. Another difficulty using Newton algorithm is to
compute the Jacobian of the shooting function. In fact the second member of the Initial Value Problem (IV P )
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Figure 1. Stucture of the control with respect to z for the problem (Q); equations of lines are
z2 = −1, z2 = +1,−2z1 + z2 = −1,−2z1 + z2 = +1.

which defines the shooting function is discontinuous. Therefore, it is necessary to compute the Jacobian by
finite differences. For this, there must be an accurate adequation between the step used to compute the finite
differences and the local error used for controlling the step in the integrator subroutine. If the step of finite
differences is too small, then the Jacobian becomes numerically singular.

5. Homotopy method

The principal idea of the method we propose is to define a family of problems which depend on a parameter
λ ∈ [0, 1] and which connect the orbital transfer problem with the minimization of the energy for λ = 0 to the
problem with the minimization of the consumption for λ = 1 [6]. To this end, we only change the criterion to
minimize

(P )λ : Min
∫ tf

0

λ|u(t)| + (1 − λ)|u(t)|2dt.
Similar results, with same proofs, as those obtained in Sections 2 and 3 for the initial optimal control problem (P )
are proved for this family of problem.

Proposition 5.1. If (H1), (H2) and (H3) are true then
(1) pλv has finitely many zero and p0 �= 0;
(2) (P )λ has a solution for all λ ∈ [0, 1].

When the Pontryagin Maximum Principle is applied to this family of problems, a family of Boundary Value
Problems (BV P )λ is obtained which is identical to (BV P ) except in the relation between the control and the
adjoint state given by the minimization of the Hamiltonian.

Proposition 5.2. Under (H1), (H2) and (H3), the solution of the minimization of the Hamiltonian associated
to the problem (P )λ in the case where |pv| �= 0 is for λ ∈ [0, 1[

u(y, λ) =

⎧⎪⎨
⎪⎩

− pv

|pv | if ψ(y) < −(1 − λ)(
ψ

2(1−λ) − 1
2

)
pv

|pv | if |ψ(y)| ≤ (1 − λ)
0 if ψ(y) > (1 − λ).

(10)

For λ = 1 the relation is given by (7).
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Let us now define y(t, z, λ) the solution of the initial value problem (IV P )(z,λ) associated to the boundary
value problem (BV P )λ

(IV P )(z,λ)

⎧⎨
⎩

ẏ(t) = ϕ(y(t), λ)
r(0) = r0, v(0) = v0,m(0) = m0

p(0) = z,

where

ϕ(y, λ) =
(
v, Γ(r) + Tmax

m u(y, λ), −βTmax|u(y, λ)|, −tΓ′(r)pv , −pr, Tmax
m2 (u(y, λ)|pv)

)
,

the shooting homotopy S(z, λ) = (y(t, z, λ)If
− yf ), that is the shooting function associated to the Boundary

Value Problem (BV P )λ, and the sets

Ω0 = {(z, λ) ∈ Rn × [0, 1[|x(t, z, λ) ∈ A ∀t, pv(t, z, λ) �= 0 ∀t},
Ω1 = {(z, λ) ∈ Rn × [0, 1]|x(t, z, λ) ∈ A ∀t, pv(t, z, λ) �= 0 ∀t},

and

Ω′
0 = {z ∈ Ω0|(ψ(y(t, z, λ)) − (1 − λ))2 + (pr(t, z, λ)|pv(t, z, λ))2 �= 0 ∀t,

(ψ(y(t, z, λ)) + (1 − λ))2 + (pr(t, z, λ)|pv(t, z, λ))2 �= 0 ∀t,
|ψ(y(0, z, λ))| �= 1 − λ and |ψ(y(tf , z, λ))| �= 1 − λ}.

It is now possible to prove regularity results of our shooting homotopy.

Proposition 5.3.
(1) S(z, λ) is a continuous function in Ω0 and an upper semi-continuous set valued map in Ω1.
(2) The shooting homotopy S(z, λ) is C∞ in Ω′

0.

Proof.
(1) For (z, λ) ∈ Ω0, the function ϕ(y, λ) is, by Proposition 5.2, Lipschitz in (y, λ). Thus S(z, λ) is continuous

in Ω0. For the case (z, 1) ∈ Ω1, the result is less obvious because, in this case the second member of
the initial value problem (IV P )(z,λ) is in fact a differential inclusion. However, it can be seen that the
second member of this differential inclusion has convex compact values and is upper semi-continuous.
Then, known theorem of differential inclusion (see Th. 1 of Chap. 2 of [2]) gives the result.

(2) To prove that the shooting homotopy is C∞ in Ω′
0 we build a new initial value problem, which can also

be defined in the case λ0 < 0 with the same relation (10) for the control without difficulties

(IV P ′)(z,λ)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẏ(t) = ϕ(y(t), λ)
λ̇(t) = 0
r(0) = r0, v(0) = v0,m(0) = m0

p(0) = z
λ(0) = λ0.

Then, as in Proposition 4.1 we have to prove that the trajectory y(t, z, λ) is transverse in the surfaces
ψ(y) = 1 − λ and ψ(y) = −(1 − λ). This comes immediately from the fact that

∂ψ

∂y
(y(t, z, λ)) · ẏ(t, z, λ) = − 1

2(1 − λ)
Tmax

m(t, z, λ)
(pv(t, z, λ)|pr(t, z, λ))

|pv(t, z, λ)|

is not zero when |ψ(y(t, z, λ))| = 1 − λ and (z, λ) is in Ω′
0. �
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Remark 5.4. The smoothness of the shooting homotopy at (z, 1) is a more delicate problem. In fact, it is also
possible to define the problem (IV P ′)(z,λ) for λ > 1 , but the minimization of the Hamiltonian gives in this
case, always for |pv| �= 0,

u(y, λ) =

⎧⎨
⎩

− pv

|pv| if ψ(y) < 0
0 or − pv

|pv | if ψ(y) = 0
0 if ψ(y) > 0.

(11)

So, when λ ≥ 1, the shooting homotopy is constant with respect to λ for z fixed in Ω. It is then not obvious
that the partial derivative with respect to λ of the shooting homotopy at point (z, 1) is zero. However, For a
numerical point of view, this is not a problem because we will not have to compute partial derivatives with
respect to λ at such points (z, 1).

Corollary 5.5. For (z, λ) ∈ Ω0, the control u(t, z, λ) is piecewise C1 in t.

Moreover an interesting property can be indicated.

Proposition 5.6. Under assumptions (H1),(H2) and (H3) and if (xλ, uλ) is a solution of (P )λ, then for
0 ≤ λ ≤ λ′ ≤ 1 there are:

(1) Jλ(uλ) ≤ Jλ′(uλ′) ≤ J1(u1) ≤ J1(uλ);
(2) |J1(uλ) − Jλ(uλ)| → 0 when λ→ 1;
(3) Jλ(uλ) → J1(u1) and J1(uλ) → J1(u1) when λ→ 1.

Proof.

(1) For all u ∈ B(0, 1) and 0 ≤ λ ≤ λ′ ≤ 1

λ′|u| + (1 − λ′)|u|2 = λ|u| + (1 − λ)|u|2 + (λ′ − λ)(|u| − |u|2)
≥ λ|u| + (1 − λ)|u|2.

This implies that Jλ(u) ≤ Jλ′(u) for all admissible control. As the sets of admissible control are the
same for all λ ∈ [0, 1] the following inequality is obtained

Jλ(uλ) ≤ Jλ(uλ′) ≤ Jλ′(uλ′).

(2) The function l(u, λ) = λ|u| + (1 − λ)|u|2 is continuous on the compact B(0, 1) × [0, 1]. So it is uni-
formly continuous. Thus for all ε > 0, there exists η > 0, such that for all λ, |λ−1| < η and u ∈ B(0, 1)

|l(u, λ) − l(u, 1)| < ε.

Hence

|Jλ(uλ) − J1(uλ)| ≤
∫ tf

0

|l(uλ(t), λ) − l(uλ(t), 1)|dt
≤ εtf .

(3) The result is obvious. �

It is of course interesting to study the convergence of a sequence of solution of problems (P )λk
, noted (xk, uk)k,

when (λk)k converges to 1.
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Proposition 5.7. If (H1) and (H2) are true, (λk)k is a sequence of [0, 1] which converges to 1 when k converges
to +∞ and (xk, uk)k is for all k an optimal pair of (P )λk

, then there exists a subsequence, always noted (xk, uk)k,
which converges to a solution (x̄, ū) of the problem (P ) in the following sense:

(1) xk → x̄ uniformly on [0, tf ];
(2) uk → ū weakly-∗ in L∞

m ([0, tf ]).

Proof.
(1) The proof follows the lines of the classical Filippov theorem. First, because of the proposition 5.6,

uk is a minimized sequence of (P ). Secondly the assumptions ensure that (xk)k is absolutely continu-
ous and equibounded and that ||ẋk||∞ ≤ l ∀k. The Theorem 4 page 13 of [2] says that there exists
a subsequence, always noted (xk)k, which converges uniformly to x̄ absolutely continuous and (ẋk)k
converges weakly-∗ to ˙̄x in L∞

n ([0, tf ]). From the lower closure Theorem (8.8.i) of [5], ˙̄x(t) belongs to
Q̃G(x̄(t)) almost everywhere. The set Q̃G(x(t)) is here, as defined at page 313 of [5], the set associ-
ated to the generalized problem (P )G of all (x̃0, x̃) ∈ Rn+1 with x̃0 ≥ l0(ν1, . . . , νn+2, u

(1), . . . , u(n+2))
and x̃ = fG(x, ν1, . . . , νn+2, u

(1), . . . , u(n+2)) for some generalized control (lG and fG are the func-
tions which define respectively the cost and the state equation of the generalized problem). Finally,
x̄ is an optimal trajectory of the generalized problem (P )G. By measurable selection, a general-
ized control (ν̄1, . . . , ν̄n+2, ū

(1), . . . , ū(n+2)) associated to x̄ can be chosen. Now, as in Section 3, if
ū(t) =

∑n+2
j=1 ν̄j(t)u

(i)(t), then ū is an admissible control of the problem (P ) associated to x̄.
(2) From the state equation it can be observed that

uk(t) =
mk(t)
Tmax

(v̇k(t) − Γ(rk(t))).

However (vk)k and (mk)k converge uniformly to v̄ and m̄ and (v̇k)k converges weakly-∗ to ˙̄v, and the
result is obtained.

�

Remark 5.8. The proposition is also true if the optimal solution of the initial optimal control problem has a
singular arc. The singular arc in our numerical experimentation was not encountered, however the existence of
such arcs for particular initial and terminal orbits is an open question.

6. Algorithm

The computation of the zero path of our homotopy S(z, λ) is now considered. The simplest way to follow
this zero path is basically to try to solve a sequence of equations of the form S(z, λ) = 0, with λ growing from
0 to 1, by taking the previously obtained solution as an initial guess for the next try. This algorithm converges
easily for the simple problem (Q), unfortunately an appropriate sequence of (λk)k for our optimal transfer
problem could not be found. As values approaching λ = 0.8 are used, the Newton algorithm diverges. So we
use a Predictor-Corrector (PC) method or continuation method which dynamically computes the λ values. In
order to have a self-contained article and to insist on numerical implementation difficulties, the basic idea of
this algorithm is recalled. For more detailed explanation of the PC method, see [1, 11, 12].

Assume that the considered homotopy S(z, λ) is regular enough (C2), and that the zero path which comes
from (z0, 0) is a differentiable curve C. In that case it is possible to parameterize this curve with respect to the
arclength s. Now, if it is supposed that S′(z(s), λ(s)) is of full rank on the curve S(z(s), λ(s)) = 0, then the
two unit tangent vectors to C at s are the two elements of the kernel of S′(z(s), λ(s)) of norm 1. To determine
the direction, the augmented Jacobian matrix is introduced

A(s) =

(
∂z
∂s (s)

∂λ
∂s (s)

∂S
∂z (z(s), λ(s)) ∂S

∂λ (z(s), λ(s))

)
.
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Because S′(z(s), λ(s)) is supposed of full rank, this matrix is non singular and so the sign of its determinant is
constant

sgn(det(A(s))) = sgn(det(A(0))). (12)

Hence, by setting the first direction of the tangent vector (we take ∂λ/∂s(0) > 0), the unique unit tangent
vector to C verifying (12) can be computed. We note φ(S′(z, λ)) this tangent vector.

Now, following the zero path of S is equivalent to the integration of the initial value problem (IV P )

(IV P )
{

(ż(s), λ̇(s)) = φ(S′(z(s), λ(s)))
(z(0), λ(0)) = (z0, 0).

The HOMPACK90 software [12] has been implemented to integrate the (IV P ) problem. The algorithm devel-
oped in this software uses the fact that S(z(s), λ(s)) = 0. An integration step is decomposed into two main
phases: a prediction and a correction. The prediction step consists of a simple scheme, for instance the Euler
scheme:

wn+1 = (zn, λn) + hφ(S′(zn, λn))(h is the steplength).

The correction phase consists in getting back onto the zero path which should not be too far:

(zn+1, λn+1) = argmin
S(ω)=0

1
2
‖ω − wn+1‖2.

This correction is performed with Newton steps, which is supposed not be too expensive as the solution is near.
The main advantage of this method is that the steplength of the prediction can take into account the

previous predictions so that if the zero path is regular, the software reaches λ = 1 very rapidly. However there is
a drawback as for each prediction and correction step, the Jacobian of the homotopy has to be evaluated. But,
because for λ = 1 the control is discontinuous, we can only approximate the Jacobian by finite differences (it
is not possible to use here variational equation or automatic differentiation). This requires a good adequation
between the integration step error for computing the shooting homotopy and the step of finite differences. This
is a crucial point for the numerical convergence. Of course, the step of finite differences must not be too large.
However it must not be also too small in comparison with the integration step error, otherwise we “differentiate”
numerical errors.

7. Numerical results

As in [4, 7, 9], because of the large number of revolutions and strong oscillations in Cartesian coordinates,
the Gauss coordinates system which describes the movement of the satellite in a more orbit-related point of
view is preferred. There we use the first five components of the state vector to characterize the osculating
orbit (the orbit the satellite would follow if no thrust was applied), while the sixth component indicates the
current position of the satellite on this orbit. As the orbit deformation is quite smooth, especially for low thrust
transfers, this guarantees a very good numerical stability for our state vector, which would not be the case with
the Cartesian expression. This particular choice of coordinates is illustrated by Figure 2.

The state variables (x,m) = (P, ex, ey, hx, hy, L,m) in R7 are now defined:

• semi-latus rectum P ;
• eccentricity vector (ex, ey), in the orbit plane, oriented towards perigee;
• rotation vector (hx, hy), in the equatorial plane, collinear to the intersection of orbit and equatorial

planes;
• cumulative longitude L;
• mass m;
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Z

Y
X

satellite

equatorial plane

orbit

perigee

w

Ω
ω

i

Figure 2. Orbital parameters: P is the semi-latus rectum, w is the true anomaly, Ω the
ascending node longitude, ω the argument of perigee and i the inclination with respect to
equatorial plane.

with
ex = e cos (Ω + ω) , ey = e sin (Ω + ω),
hx = tan(i/2) cosΩ , hy = tan(i/2) sinΩ,
L = Ω + ω + w.

The tridimensional control is expressed in the mobile referential attached to the satellite u = (q, s, w), where
q = r/|r| is the radial thrust, w = q × q̇/|q × q̇| the normal thrust and s = w × q the ortho-radial thrust.

If we note

f0(x) =
√
µ

P

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
W 2

P

⎞
⎟⎟⎟⎟⎟⎟⎠

and B(x) =

√
P

µ

⎛
⎜⎜⎜⎜⎜⎜⎝

0 2P/W 0
sinL cosL+ (ex + cosL)/W −Zey/W

− cosL sinL+ (ey + sinL)/W Zex/W
0 0 C

2 cosL/W
0 0 C

2 sinL/W
0 0 Z/W

⎞
⎟⎟⎟⎟⎟⎟⎠

with

W = 1 + ex cosL+ ey sinL
Z = hx sinL− hy cosL

C = 1 + h2
x + h2

y,

the maximal final mass (or minimum fuel consumption) orbital transfer problem can be written

(Pmf
)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Min
∫ tf
0 |u(t)|dt

ẋ(t) = f0(x(t)) + Tmax
m(t)B(x(t))u(t) a.e. in [0, tf ] tf fixed

ṁ(t) = −βTmax|u(t)|
|u(t)| ≤ 1
x(0),m(0) fixed
x(tf ) fixed
tf = tfmin . ctf .

The physical constants µ and β are respectively 398 600.47 km3 s−2 and 0.05112 km−1s. The initial and final
states are x(0) = (11 625, 0.75, 0, 0.0612, 0, π), m(0) = 1500 and x(tf ) = (42 165, 0, 0, 0, 0, Lf), Lf fixed. The
minimum transfer time tfmin is obtained via tfmin software [3], and ctf is a constant greater than 1.
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Figure 3. Path of zeros of S(z, λ); from the top to the bottom z1 = pP (0), . . . , z6 = pL(0), z7 =
pm(0) in abscissa.

Remark 7.1. This problem is slightly different from the problem (P ). In fact, Lf fixed means that the position
of the satellite on the final orbit and the number of revolutions are fixed. We can also easily see that:

(1) pv(t) = 0 ⇐⇒ tB(x(t))p(t) = 0, with p(t) the adjoint state associated to x(t);
(2) the expression of the switching function is here ψ(y) = 1 − βTmaxpm − (Tmax/m)|tB(x)p|.

To apply our method, a solution of the problem with minimization of the energy must be found. In order to
solve this initialization problem, another homotopy is introduced where the homotopic parameter λIC is added
in the initial conditions:

(P )λIC

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
∫ tf
0 |u(t)|2dt

ẋ(t) = f0(x(t)) + Tmax
m(t)B(x(t))u(t) a.e. in [0, tf ] tf fixed

ṁ(t) = −βTmax|u(t)|
|u(t)| ≤ 1
x0, xf fixed
tf = tfmin . ctf
x(0) = (1 − λIC)xf + λICx0

m(0) fixed

with x0 = (11 625, 0.75, 0, 0.0612, 0, π), m(0) = 1500 and xf = (42 165, 0, 0, 0, 0, Lf), Lf fixed. It is easy to
see that for λIC = 0 the null control is a trivial and unique solution for the problem without rendez-vous (i.e.
with the final cumulative longitude Lf free). So the shooting function SIC(z, 0) associated with problem (P )λIC

for λIC = 0 can be numerically solved easily by Newton method with the initial point z0 = (0, 0, 0, 0, 0, 0, 0).
Then with a discrete continuation it is possible to find a zero of SIC(z, 1). Using this method, an initialization
for a thrust of 0.1 Newton can be found. This method requires no preliminary knowledge of the solution (such
as a solution for a greater thrust in the minimum time case).

The numerical results presented here have been obtained with the softwareMf max [8], based on the software
HOMPACK90 [11, 12] for computing the zero path of the homotopy S(z, λ). We first consider the case of
a thrust of 10N. Figure 3 plots the path of zeros of the homotopy S(z, λ). We can see the necessity of using
the PC method: the algorithm automatically controls the progress in the curvilinear abscissa and thus in the
homotopic parameter, and the predictor step gives an accurate initial estimate for the corrector step.
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Figure 4. The left hand figure shows the evolution of the norm of the control for λ = 0, 0.38
and 1, and the right hand figure the costs Jλ(uλ) and J1(uλ) with respect to λ.
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Figure 5. The left hand figure represents from the top to the bottom the three components
(q, s, w) and the norm of the optimal control, and the right hand figure represents the trajectory
and thrust at solution.

The left part of the Figure 4 shows norms of three optimal control of (P )λ for λ = 0, 0.38 and 1. This
illustrates the convergence of the control sequence to the “bang-bang” optimal control when λ converges to 1.
The right part of this figure is in relation with the properties in Jλ of Proposition 5.6.

We of course verify numerically that there is no time where tB(x(t))p(t) = 0 and that the trajectory y(t) is
always transverses to the surface of commutation at switching times. For example the minimum value of the

function
√
ψz(t)2 + ψ̇z(t)2 on [0, tf ] is 0.0086. So we can now analyze (cf. Fig. 5) the structure of the optimal

control we obtained. We can observe that there is thrust arcs at all the apogees and at the 2 last perigees.
The main thrust is ortho-radial and we have an inversion of the thrust between apogee and perigee ones. In
all our numerical experimentations we have observed that thrust arcs are present at all apogees, at the last
perigees (see for example the Figure 6 which represents the 3D trajectory for a thrust of 0.1 N and a final time
tf = 1.5 × tmin) and sometimes at the first perigees.

We finish by giving in Table 1 the final mass and the number of switching times for thrusts from 10 N to
0.1 N, final time tf 50% greater than the minimum time (which depends on the maximal thrust Tmax) and Lf
fixed. We can observe in this table that the final mass seems constant.
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Figure 6. 3D-trajectory and thrust arcs for 0.1 N.

Table 1. Optimal mass, number of revolutions (Lf − L0)/2π and number of switching times.

Tmax (Newton) Nb. of Mass Nb. of
revolutions switching times

10 7.3 1378.37 18
5 15.1 1378.29 36

2.5 30.1 1378.15 73
1 75.4 1377.94 179

0.5 150.7 1377.99 360
0.2 376.8 1377.97 915
0.1 753.7 1377.99 1786

8. Conclusion

In conclusion, It has been shown that the solution of the orbital transfer problem with the maximization of
the final mass can be computed without any information on that solution. In addition the numerical results
were more accurate than expected (thanks to HOMPACK90 and to RKF45). This method has also been
applied successfully to other initial states, with the final cumulative longitude free, and with the final time
free and the final cumulative longitude fixed [8, 9]. Although, even in all the numerical tests we considered, we
did not find any time for which tB(x(t))p(t) = 0 or any singular arcs, we do not know if it can happened in
some cases. Finally, it is clear that for free cumulative longitude and fixed final time the optimal mass m(tf )
is increasing with respect to the final time, however we do not know if there exists a solution for free final
cumulative longitude and free final time.

Acknowledgements. We thank the reviewers very much for their work and useful comments on this article, especially the
enlightening remarks which have improved the form.
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