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CONFORMAL MAPPING AND INVERSE CONDUCTIVITY PROBLEM WITH
ONE MEASUREMENT

Marc Dambrine and Djalil Kateb1

Abstract. This work deals with a two-dimensional inverse problem in the field of tomography. The
geometry of an unknown inclusion has to be reconstructed from boundary measurements. In this paper,
we extend previous results of R. Kress and his coauthors: the leading idea is to use the conformal
mapping function as unknown. We establish an integrodifferential equation that the trace of the
Riemann map solves. We write it as a fixed point equation and give conditions for contraction. We
conclude with a series of numerical examples illustrating the performance of the method.
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1. Introduction

In this paper we address the inverse conductivity problem with one measurement: given a bounded, simply-
connected domain Ω ⊂ R

2, with a smooth boundary and constant conductivity σ1, we determine from boundary
measurements on ∂Ω an unknown inclusion ω ⊂⊂ Ω whose constant conductivity σ2 is such that σ2 �= σ1. More
precisely, we determine the unknown object ω in the following Dirichlet problem⎧⎪⎪⎨

⎪⎪⎩
−div (σ∇u) = 0 in Ω,

u = f on ∂Ω,
〈σ1∇u, ν〉 = g on ∂Ω,

σ = σ1 + (σ2 − σ1)χω in Ω.

(1)

Here ν stands for the unit outer normal to the boundary ∂Ω. We assume in this work that the inclusion
ω is simply-connected. The known data in (1) is the Cauchy pair (f, g). Hereafter, we shall refer to f as
Dirichlet data and to g as Neumann data. In practice, it is the inverse problem which determines the inclusion
ω: a voltage f is imposed, and the flux g = 〈σ1∇u, ν〉 through an accessible outer boundary ∂Ω is measured.
Mathematically, this amounts to knowing the Dirichlet-Neumann map Λω : H

1
2 (∂Ω) �→ H− 1

2 (∂Ω) defined by
u|∂Ω �→ 〈σ1∇u, ν〉|∂Ω.

The inverse conductivity problem has attracted much attention because of the large variety of its applications,
which include medical imaging and geophysical prospection. In recent years a great deal of attention has been
devoted to the uniqueness and stability aspects of the inverse problem from one measurement. Several partial
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answers have been given for particular inclusions, such as small perturbations of disks, but a general result for
uniqueness is still lacking.

The two main difficulties facing any numerical reconstruction method are, first, that this kind of inverse
problem is severely ill-posed and, secondly, its nonlinearity. A number of reconstruction algorithms have been
proposed, most of which are based on least-square methods or Newton-type iterative schemes. However, the
success of these methods depends crucially on a good initial guess. Without this, or without a priori information
regarding the inclusion, the method requires considerable additional computational effort : in general this means
significantly more iterations. Unfortunately, few numerical algorithms have been proposed in the literature for
making a good initial guess.

This work focuses on a numerical algorithm for determining the location and estimating the size of the disk to
be used as an initial guess. Our location algorithm, inspired by the work of Kress et al., is based essentially on
the theory of conformal mappings and on the special properties of Möbius transforms. Once we have established
the initial guess, a standard Newton-type optimization algorithm can be used for reconstructing the shape of
the original inclusion.

The paper is organized as follows. In Section 2 we introduce the different objects and results needed for our
work. We then consider a first identification algorithm. In Section 3 we describe the motivation of our work
and present a rigorous justification of our algorithm in relation to disks. More precisely, we confine ourselves
to disks whose centers are not far from the origin. We transform the original problem into a nonlocal and
nonlinear integro-differential equation with boundary conditions. We express it as a fixed-point problem for an
operator K (see (11) for its precise definition). This fixed point generates an iterative resolution algorithm in
the spirit of Akdumann and Kress. In particular, we introduce an auxiliary problem that allows us to generate
virtual additional data and to avoid division by the vanishing outgoing flux

∫
∂Ω
g(s) ds. In Section 4 we study

the convergence of the process. We proceed by linearizing around annuli and carefully selecting the voltage
measurement f . In the final section we illustrate our theoretical results with some numerical experiments. We
show that our algorithm works satisfactorily on domains corresponding to certain ε− perturbations of a disk.
We conclude with some remarks on the limiting cases of our theoretical results.

2. Notations and definitions. Preliminary facts

Poisson equation in an annulus
We consider the unit disk B1 of boundary S1. For ρ ∈ (0, 1), let Bρ be the disk of radius ρ with boundary Sρ
and let A(ρ, 1) be the annulus B1 \Bρ. Let σ1 and σ2 be two nonnegative reals; let σ be the function defined
in B1 as σ(x) = σ2 if |x| < ρ and σ1 else. We consider the Dirichlet-to-Neumann operator Dρ for the operator
−div (σ∇.) in B1 from H1/2(S1) into H−1/2(S1); this depends on σ1, σ2, ρ. For a given function f ∈ H1/2(S1),
we have Dρf = σ1∂nU where U is the solution in H1(B1) of{ −div (σ∇u) = 0 in B1,

u = f on S1.
(2)

Owing to the specific geometry, we are able to solve this problem explicitly using Laurent series. We set
µ = (σ1 − σ2)/(σ1 + σ2) ∈ (−1, 1).

Lemma 1. The operator Dρ is diagonal on the Fourier basis. More precisely, we have the spectral decomposition

Dρ
(

1√
π

[
cos kθ
sinkθ

])
= λk

(
1√
π

[
cos kθ
sinkθ

])
with λk(ρ) = σ1 k

1 − µρ2k

1 + µρ2k
· (3)

Furthermore, the radius ρ can be recovered from the eigenvalues λk by the formula

∀k �= 0, ρ =

∣∣∣∣∣ σ1k − λk

µ (σ1k + λk)

∣∣∣∣∣
1
2k

. (4)
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The following upper bound on the spectral gap of the operator is needed in Section 3.3.

Lemma 2. Assume µ < 0 then 0 < λk+1(ρ) − λk−1(ρ) < λ2(ρ).

Proof of Lemma 2. From (3), we have

λk+1(ρ) − λk−1(ρ) = 2σ1

(
1 − 2µ

ρ2k+2

1 + µρ2k+2

)
− 2σ1µ(k − 1)

[
ρ2k+2

1 + µρ2k+2
− ρ2k−2

1 + µρ2k−2

]
.

Since x �→ x/(1 + µx) is strictly increasing on (0,1) and µ < 0, we have

λk+1(ρ) − λk−1(ρ) < 2σ1

(
1 − 2µ

ρ2k+2

1 + µρ2k+2

)
≤ 2σ1

(
1 − 2µ

ρ4

1 + µρ4

)
≤ λ2(ρ). �

Conformal mapping of doubly-connected domains
According to the theory of conformal mapping of doubly-connected regions, there exist ρ > 0 and a map Ψe

that maps conformally the domain Ω \ ω onto the annulus A(ρ, 1) (see [6], [4], [7] and [8]). Once ρ is fixed,
there exists Ψi that maps conformally the domain ω onto the disk Bρ. However, in general, Ψe and Ψi do
not coincide on ∂ω and the conformal mapping Ψe cannot be extended into a conformal map defined on the
whole Ω. This has an important consequence regarding the application of conformal mapping techniques to
the transmission problem. Conformal mappings have the well-known property of preserving harmonicity. In
the general case, where two conformal maps coexist for the interior and the exterior, jump conditions on the
interface for the transported problem are modified to compensate the change of diffeomorphisms (see [2]), and
no simplifications appear with transport. This is why we focus our attention on a class of conformal mappings
– Möbius transforms – that transport both Ω and ω onto B1 and Bρ. A Möbius transform is any mapping of
the form

T : z �→ w =
az + b

cz + d
(5)

where a, b, c, d are complex numbers such that ad−bc �= 0. Circles and straight lines are transformed into circles
and straight lines. We recall the following well-known result on Möbius transforms.

Lemma 3. A Möbius transform T maps the unit circle onto itself if and only if T is of form

T : z �→ w = eiα
z − a

1 − az
(6)

where a = a1 + ia2 satisfies | a |< 1 and where α is an arbitrary real number.

Transformation of the Dirichlet-to-Neumann operator
We now turn our attention to changes in the Dirichlet-to-Neumann map after domain deformations by Möbius
transforms. A conformal mapping defined on the whole domain Ω will transform the Dirichlet-to-Neuman map
for the transmission problem into an operator connected to the Dirichlet-to-Neumann on the model geometry.
If L denotes the length of ∂Ω, we introduce Γ = {Γ(t), t ∈ [0, L)} an L-periodic parameterization of ∂Ω by the
arc length.

From now on we consider Φ = Ψ−1, the conformal mapping transforming the concentric circles onto ∂Ω and
∂ω. We normalize the mapping Φ by setting Φ(1) = Γ(0). If the circle S1 is parameterized by S1 = {θ(t) =
eit, t ∈ [0, 2π]}, then we can find a strictly monotonous and smooth bijection φ such that Φ ◦ θ = Γ ◦ φ; φ is
the main determination of the argument of Φ(eit). The link between the Dirichlet-to-Neumann map Dρ and
the original Dirichlet map Λω is given by the following lemma proved in [1]. We change the letter denoting the
Dirichlet-to-Neumann map from Λ to D, in order to emphasize that the geometry is now an annulus.
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Lemma 4. Let u be a harmonic function in Ω \ ω, and let us set v = u ◦ Φ. Then, the chain rule writes

∂v

∂n
=
∂u

∂ν

dφ
dt

on C1. (7)

3. Location search for disks

In this section we present two methods, based on the theory of conformal mapping, for identifying a circular
inclusion ω.

3.1. A first algorithm dedicated to circular inclusions

From now on, we assume for simplicity that Ω is the unit disk. This is not a restriction: since Ω is a
simply-connected bounded domain, we know from the Riemann mapping theorem that there exists a conformal
mapping Θ mapping Ω on the unit disk.

Lemma 4 provides a nonstandard differential equation satisfied by the function φ. Applying Lemma 4 to u
solution of (1), we get

Dρ (f ◦ φ) =
dφ
dt

g ◦ φ on C1. (8)

Equation (8) is an equation with respect to the unknowns function φ and real ρ ∈ (0, 1). The boundary
condition φ(0) = φ(2π) + L has to be added since ∂Ω is a closed curve of length L. This equation is not
a classical differential equation: the right-hand side is nonlocal. This is an equation of type L(x, ∂x)u = 0
with boundary conditions, L being a pseudo-differential operator. For such an equation, a solution cannot be
obtained using classical tools. Very few results are known regarding the existence and uniqueness of solutions,
especially when boundary conditions have to be satisfied. However, in our case, the unknown φ is the trace of
a Möbius transform on S1. From Lemma 3, it is the main determination of the argument of eiα(z− a)/(1− āz)
where a = a1 + ia2. For convenience, we denote it φα,a1,a2 . Plugging this generic form of the trace of a Möbius
transform, we are led to solve the equation (8) in the least-square sense. For numerical convenience, we use the
L2 norm instead of the H−1/2 norm. In practice, we look for (ρ, α, a2, a3) that minimizes

J(ρ, α, a1, a2) =
∥∥∥∥Dρ (f ◦ φα,a1,a2) −

d
dt
φα,a1,a2 g ◦ φα,a1,a2

∥∥∥∥
2

L2(0,2π)

.

We assume that f ∈ H1(0, 2π) and g ∈ L2(0, 2π) in order to make sense of the L2 norm arising in J . Numerical
results will be presented in the last section of this work.

We now introduce another method. We follow the outline of Kress et al. [1] and [5] in deriving the integro-
differential equation satisfied by the trace of the conformal mapping on the exterior boundary. The mapping is
then sought as the fixed point of an equation.

3.2. Transformation of the inverse problem into an integro-differential equation

In their work [1], Akdumen and Kress solve a equation derived from (8) with a fixed-point method in
a convenient functional space incorporating the periodicity condition. This strategy naturally provides an
iterative and constructive algorithm to solve (8). They do not restrict themselves to circular inclusions. We
shall follow the same strategy to obtain a more robust algorithm. We work in the variational spaces for f and
g : in order to incorporate the boundary conditions, we perform the change of unknown

ψ(t) = φ(t) − L

2π
t = φ(t) − t so that ψ(0) = ψ(2π) = 0.

We use the operator V : H1(0, 2π) → H1(0, 2π) defined as

V : ψ �→ ψ(t) + t.
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In [1], equation (8) is written in the integral form

ψ(t) =
∫ t

0

[
Dρ∗ (f ◦ V ψ)

g ◦ V ψ (τ) − 1
2π

∫ 2π

0

Dρ∗ (f ◦ V ψ)
g ◦ V ψ (χ)dχ

]
dτ. (9)

In the case considered here, the no-flux condition holds and Neumann data g vanishes. To overcome the division
by zero, we relax the problem by introducing one couple of virtual additional measurements. We apply Lemma 4
to an adjoint couple of Dirichlet-Neumann data (F,G) satisfying the following compatibility condition: there
exists a function G with mean value 0 in L2(∂Ω) such that g2 + G2 ≥ γ holds for some γ > 0 on ∂Ω. The
function F is then taken as the trace on ∂Ω of a solution to the Neumann problem −∆w = 0 in Ω with ∂nw = G
on ∂Ω.

To ensure the existence of G, we assume that the measured Neumann data g �= 0 is a smooth 2π-periodic
function with mean value 0 and with a finite number of zeros. Search G as G(x) = sinx− α for some α ∈ (0, π).
The function G vanishes only in α and π+α on (0, 2π). Since {x, g(x) = 0} is finite, then one can find α such that
α and π+α are not in this set. Let us note the difference in relation to the situation of Lemma 4: the function
G is the normal derivative of a harmonic function in the whole domain Ω and not only in a neighborhood of the
boundary. The couple (F,G) does not represent additional measured data, since F and G are not the traces
of a function u satisfying (1). However, they can be seen as simulated data for the reference problem without
inclusion.

Using Lemma 4, we get

Dρ[f ◦ φ] =
dφ
dt

g ◦ φ and D0[F ◦ φ] =
dφ
dt

G ◦ φ

and then the relaxed equation

dφ
dt

=
(g ◦ φ)Dρ[f ◦ φ] + (G ◦ φ)D0[F ◦ φ]

(g2 +G2) ◦ φ · (10)

Let us introduce the operators U and K defined as

U : H1(0, 2π) → L2(0, 2π)

ψ �→ (g ◦ V ψ)Dρ[f ◦ V ψ] + (G ◦ V ψ)D0[F ◦ V ψ]
(g2 +G2) ◦ V ψ ·

K : H1(0, 2π) → H1(0, 2π)

ψ �→
∫ t

0

(
Uψ(x) − 1

2π

∫ 2π

0

Uψ(τ)dτ
)

dx.

(11)

Equation (10) can be written in integral form as the fixed-point problem: find ψ a fixed point of K in H1(0, 2π).

3.3. Contraction properties of K

In this section we address the question: is K a contraction? We are not able to answer this question in its full
generality. However, by linearizing around the explicit solution found in Section 2 in the case of the annulus,
we obtain stability results around annuli.
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Linearization of the fixed-point operator
We first perform a linearization of the operator U . Hereafter, the letter D denotes a differential. Around the
function ψ, in the direction of a function h, we have, by straightforward computations:

DU(ψ).h =
(g′ ◦ V ψ)Dρ [f ◦ V ψ]h+ (g ◦ V ψ)

[
DDρ [f ◦ V ψ] (∂ψρ)h+ Dρ[h(f ′ ◦ V ψ)]

]
(g2 +G2) ◦ V ψ

+
(G′ ◦ V ψ)D0 [F ◦ V ψ]h+ (G ◦ V ψ)D0 [h(F ◦ V ψ)]

(g2 +G2) ◦ V ψ

− 2

[
(g′ ◦ V ψ)(g ◦ V ψ) + (G′ ◦ V ψ)(G ◦ V ψ)

][
(g ◦ V ψ)Dρ[f ◦ V ψ] + (G ◦ V ψ)D0[F ◦ V ψ]

]
h

(g2 +G2)2 ◦ V ψ · (12)

In our case, the conformal mapping which maps the annulus onto itself can be chosen as the identity. Therefore,
by the definition of φ, the function ψ corresponding to the solution of (10) is simply 0 (see Sect. 3.2).

One cannot derive precise estimates of this complicated operator for general couples of given data (f, g). The
derivative ∂ψρ is in general not easy to deal with. However, we can make a judicious choice of measurements (f, g)
such that the derivative ∂ψρ vanishes. From a mathematical point of view, this is a tight restriction. However,
one can deal with it in the light of particular applications: it corresponds to deciding which measurements
should be made in order to be able to reconstruct inclusions.

Lemma 5. If the Dirichlet data f is an eigenfunction of the Dirichlet-to-Neumann operator Dρ then(
∂ψρ

)
|ψ=0

= 0.

Proof of Lemma 5. Taking from Lemma 1, f(t) = sinnt/λn(ρ) and g(t) = sinnt we get the expression of the
reconstructed radius (4) as

ρ(φ) =
∣∣∣ 1
µ

a(φ) − b(φ)
a(φ) + b(φ)

∣∣∣ 1
2n

where

a(φ) = σ1

∫ 2π

0

g[φ(t)]φ′(t) sin (nt)dt and b(φ) =
∫ 2π

0

f [φ(t)] sin (nt)dt.

By differentiation, we obtain

Dρ(φ).h =
∣∣∣∣ 1µ
∣∣∣∣

1
n 1

[a(φ) + b(φ)]2

∣∣∣a(φ) − b(φ)
a(φ) + b(φ)

∣∣∣ 1−2n
2n

[a(φ)Db(φ).h − b(φ)Da(φ).h] ,

Da(φ).h = σ1

∫ 2π

0

[g′[φ(t)]h(t)φ′(t) sin (nt) + g[φ(t)]h′(t) sin (nt)] dt,

Db(φ).h =
∫ 2π

0

f ′[φ(t)]h(t) sin (nt)dt.

The linearization point ψ = 0 corresponds to φ = Id[0,2π]. From the choice of the couple (f, g) and for
φ = Id[0,2π] , we obtain, following an integration by parts

a(φ)Db(φ).h − b(φ)Da(φ).h = 0, ∀h.
Moreover, it is verified that a(φ)+b(φ) �= 0. Hence,Dρ(φ).h = 0 for all h. �

To simplify, we perform the analysis with

f(t) =
sin t
λ1(ρ)

and g(t) = sin t. (13)
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This choice of low-frequency data is justified by Lemma 1. Hence we can choose the virtual measure as

F (t) =
cos t
λ1(0)

and G(t) = cos t.

Note that λ1(0) = 1. Therefore, after straightforward computations, equation (12) reduces to

DU(0).h =
sin t
λ1(ρ)

Dρ[h(t) cos(t)] − cos t D0[h(t) sin(t)]. (14)

We need to evaluate the term Dρ[h(t) cos(t)]. Making use of the diagonal structure of Dρ in the Fourier basis,
we compute this term for h taken among all the individual elements of the Hilbertian basis. For convenience in
the following computations, we introduce the Hilbert basis (Ck,Sk)k>0 of H1(0, 2π) defined as

Ck(t) =
cos kt
k
√
π

and Sk(t) =
sin kt
k
√
π
· (15)

Any h ∈ H1(0, 2π) writes h =
∑
n>0

cnCn +
∑
n>0

snSn and ‖h‖2
H1 =

∑
n>0

(c2n + s2n). We obtain (we give the main

lines of the computations) for k > 2:

DU(0). cos kt =
sin t
λ1(ρ)

Dρ[cos kt cos t] − cos t
λ1(0)

D0[cos kt sin t],

=

[
λk+1(ρ)
4λ1(ρ)

− λk+1(0)
4λ1(0)

]
sin (k + 2)t+

[
λk−1(ρ) − λk+1(ρ)

4λ1(ρ)
+
λk−1(0) − λk+1(0)

4λ1(0)

]
sin kt

+

[
λk−1(0)
4λ1(0)

− λk−1(ρ)
4λ1(ρ)

]
sin (k − 2)t.

Therefore, after integration we have for k > 2

DK(0). coskt =
1

4(k + 2)

[
λk+1(0)
λ1(0)

− λk+1(ρ)
λ1(ρ)

]
cos (k + 2)t+

1
4(k − 2)

[
λk−1(ρ)
λ1(ρ)

− λk−1(0)
λ1(0)

]
cos (k − 2)t

+
1
4k

[
λk+1(ρ) − λk−1(ρ)

λ1(ρ)
+
λk+1(0) − λk−1(0)

λ1(0)

]
cos kt.

We introduce the notation:

αk(ρ) =
λk(ρ)
λ1(ρ)

− λk(0)
λ1(0)

· (16)

We can easily check the useful formulae

αk(ρ) =
λk(ρ)
λ1(ρ)

− k =
2kµρ2(1 − ρ2(k−1))
(1 + µρ2k)(1 − µρ2)

,

2 + αk+1(ρ) − αk−1(ρ) =
λk+1(ρ) − λk−1(ρ)

λ1(ρ)
· (17)

We perform the same computation for h = Sk. Using (17), we get

DK(0).
[

Ck

Sk

]
=
αk−1(ρ)

4k

[
Ck−2

Sk−2

]
+

4 + αk+1(ρ) − αk−1(ρ)
4k

[
Ck

Sk

]
− αk+1

4k

[
Ck+2

Sk+2

]
, (18)
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with the initialization:

DK(0).
[

C1

S1

]
=

4 + α2(ρ)
4

[
C1

S1

]
− α2(ρ)

4

[
C3

S3

]
,

DK(0).
[

C2

S2

]
=

4 + α3(ρ)
4

[
C2

S2

]
− α3(ρ)

4

[
C4

S4

]
. (19)

As easily seen in equation (18), the operator DK(0) is almost diagonalized by the Fourier basis. Let us show
that it is a contraction.

The contraction property
We compute ‖DK(0).h‖H1 for an arbitrary h ∈ H1(0, 2π) and compare it with the norm of h. To improve
readability, we drop the dependency of α with respect to ρ, since no confusion is possible.

First of all, we remark that if µ > 0 then ‖DK(0).C1‖H1 > 1 = ‖C1‖H1 . That is why, from now on, we
assume that µ < 0. This assumption means σ2 > σ1 : the conductivity is greater inside the inclusion than
outside.

We introduce some reduced parameters:

τ = −µρ2 and θ =
τ

1 + τ
· (20)

Since µ < 0, we have τ ∈ (0, 1) and θ ∈ (0, 1
2 ). We emphasize the fact that τ �= 1. In the rest of this section,

we use the convention that any coefficient with a negative index is 0. The study of the contraction properties
of DK(0) requires a precise study of the (αk) defined in (16). From the expression of the eigenvalues λk given
in (3), we get:

αk(ρ) = 2k
− τ

(1 + τ)
1 − ρ2(k−1)

1 − τρ2(k−1)
= −2kθ+ 2k(1 − τ)θ

ρ2k−2

1 − τρ2k−2
· (21)

In particular, we have the rough estimate

∀k > 0, 0 > αk(ρ) > −2k θ. (22)

Proposition 1. For h =
∑
n>0

cnCn +
∑
n>0

snSn, one has

‖DK(0).h‖2
H1 = A(h) +B(h) + C(h), (23)

where we set

A(h) =
1
16

∑
k>0

[4 + αk+1 − αk−1]
2 + α2

k+1 + α2
k−1

k2
(c2k + s2k), (24)

B(h) =
1
8

∑
k>0

αk+1(αk−1 − 2αk+1 + αk+3)
k(k + 2)

(ck+2 ck + sk+2 sk), (25)

C(h) = −1
8

∑
k>0

αk+3αk+1

k(k + 4)
(ckck+4 + sksk+4). (26)
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Proof of Proposition 1. We apply (18), to h =
∑
k>0

ckCk + skSk. After collecting all the terms of order k, we

obtain, from Parseval’s formula :

‖DK(0).h‖2
H1 =

1
16

∑
k>0

[
4 + αk+1 − αk−1

k
ck −

αk+1

k + 2
ck+2 +

αk−1

k − 2
ck−2

]2

+
1
16

∑
k>0

[
4 + αk+1 − αk−1

k
sk −

αk+1

k + 2
sk+2 +

αk−1

k − 2
sk−2

]2

.

Expanding this expression, we obtain (23) up to some changes of index left to the reader. �
Proposition 2. We have

|A(h)| ≤ 1
8

⎡
⎣4 +

(
λ2(ρ)
λ1(ρ)

)2
⎤
⎦ ‖h‖2

H1 . (27)

|B(h)| ≤ 4
3
θ2

1 − ρ4

1 − τ
‖h‖2

H1 . (28)

|C(h)| ≤ 4
5
θ2‖h‖2

H1 . (29)

Proof of Proposition 2. We prove (27). For all k > 0, we set

ak =
[4 + αk+1 + αk−1]

2 + α2
k+1 + α2

k−1

16k2
· (30)

For k = 1, we have

a1 =
(4 + α2)2 + α2

2

16
=

1
16

⎡
⎣
(
λ2(ρ)
λ1(ρ)

− 2

)2

+

(
λ2(ρ)
λ1(ρ)

+ 2

)2
⎤
⎦ =

1
8

⎡
⎣4 +

(
λ2(ρ)
λ1(ρ)

)2
⎤
⎦ .

It suffices to prove that ak < a1, ∀k > 1. First using (22) (a product of two αk is nonnegative), and then (17),
we notice that for any k ≥ 2

ak =
1

16k2

[
(4 + αk+1 − αk−1)

2 + (αk+1 − αk−1)
2 − 2αk−1αk+1

]
,

≤ 1
8k2

[
4 + (2 + αk+1 − αk−1)

2
]

=
1

8k2

⎡
⎣4 +

(
λk+1(ρ) − λk−1(ρ)

λ1(ρ)

)2
⎤
⎦ .

Using the spectral gap estimate stated in Lemma 2, we obtain the upper bound for k ≥ 2:

ak ≤ 1
8k2

⎡
⎣4 +

(
λ2(ρ)
λ1(ρ)

)2
⎤
⎦ < 1

8

⎡
⎣4 +

(
λ2(ρ)
λ1(ρ)

)2
⎤
⎦ = a1.

We turn to (28). First, we consider the case where k > 1, since we can make use of the structure of a second-order
difference. We use (21) to get

|αk+3 − 2αk+1 + αk−1| = 2θ(1 − τ)

[
(k − 1)

ρ2k−4

1 − τρ2k−4
− 2(k + 1)

ρ2k

1 − τρ2k
+ (k + 3)

ρ2k+4

1 − τρ2k+4

]
.
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We introduce the auxiliary function a(x) = x/(1 − τx) with derivative a′(x) = 1/(1 − τx)2 > 0. Hence, we
have for t ∈ (0, 1), a(t) ∈ (0, 1/(1 − τ)). We apply the mean value theorem: there exist xk ∈ [ρ2k+4, ρ2k] and
yk ∈ (ρ2k+4, ρ2k) such that

(k−1)a(ρ2k−4) − 2(k + 1)a(ρ2k) + (k + 3)a(ρ2k+4)

= [(k + 3) − 2(k + 1) + (k − 1)] a(ρ2k) − (k + 3)ρ2k(1 − ρ4)a′(xk) + (k − 1)ρ2k−4(1 − ρ4)a′(yk).

We get

∣∣∣(k − 1)a(ρ2k−4) − 2(k + 1)a(ρ2k) + (k + 3)a(ρ2k+4)
∣∣∣

≤ (k − 1)|ρ2k−4 − ρ2k| sup
t∈[ρ2k,ρ2k−4]

a′(t) + (k + 3)|ρ2k+4 − ρ2k| sup
t∈[ρ2k+4,ρ2k]

a′(t),

≤ (1 − ρ4)

[
(k − 1)

ρ2k−4

(1 − τρ2k−4)2
+ (k + 3)

ρ2k

(1 − τρ2k)2

]
,

≤ 2(k + 1)(1 − ρ4)
ρ2k−4

(1 − τρ2k−4)2
≤ 2(k + 1)(1 − ρ4)

(1 − τ)2
·

Hence, we obtain

|αk+3 − 2αk+1 + αk−1| ≤ 4(k + 1)
1 − ρ4

1 − τ
θ,

from which we deduce with the help of (22)

∣∣∣∣∣ (αk−1 − 2αk+1 + αk+3)αk+1

8k(k + 2)

∣∣∣∣∣ ≤ (k + 1)2

k(k + 2)
1 − ρ4

1 − τ
θ2 ≤ 4

3
1 − ρ4

1 − τ
θ2.

For k = 1, we check that

α4 − 2α2 = 8θ(ρ4 − 1)
ρ2

1 − τρ2

1 − τ

1 − τρ6
⇒

∣∣∣∣∣ (α4 − 2α2)α3

24

∣∣∣∣∣ ≤ 4
3

1 − ρ4

1 − τ
θ2.

Cauchy-Schwarz inequality brings us to our conclusion.
We now consider the estimation of C. For all k > 2, we deduce from (21)

∣∣∣∣∣ αk+1αk−1

8(k − 2)(k + 2)

∣∣∣∣∣ ≤ 1
2
k + 1
k + 2

k − 1
k − 2

θ2 ≤ 1
2
k2 − 1
k2 − 4

θ2 ≤ 4
5
θ2.

From this uniform upper bound and Cauchy-Schwarz inequality, we get the upper bound for C. �
We are now in a position to state the main result of this section.

Theorem 1. If the couple (ρ, µ) satisfies the condition:

− µρ2(1 − ρ2)2

(1 − µρ2)(1 + µρ4)2
− 4µρ2

1 − µρ2

[
1
5

+
1
3

1 − ρ2

1 + µρ2

]
<

1 − ρ2

1 + µρ4
, (31)

then the operator DK(0) is a contraction on H1(0, 2π).
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Figure 1. The values of L with respect to ρ and µ with the level set L = 1.

Proof of Theorem 1. Collecting the upper bounds on A,B and C, we get ‖DK(0).h‖2
H1 ≤ LDK(0)‖h‖2

H1 with

LDK(0) = 1 − 2θ
1 − ρ2

1 − τρ2
+ 2

[
θ

1 − ρ2

1 − τρ2

]2

+

(
4
5

+
4
3

1 − ρ4

1 − τ

)
θ2. (32)

Hence, the operatorDK(0) is a contraction if LDK(0) < 1. After simplification, this gives (31). �

The condition (31) can be checked for each couple (ρ, µ). For example, one can check that if ρ ≤ 0.5, then
DK(0) is a contraction. In Figure 1 we present a Matlab simulation of the constant LDK(0) in terms of ρ and
µ. This shows that DK(0) is a contraction for large radii, provided that the contrast µ of conductivities is
sufficiently small. We recover the intuitive fact that for ρ = 1, the method cannot converge since the problem
is devoid of meaning: the inclusion fills the whole domain Ω. By the same token, if µ = 0, then L = 1; this fact
corresponds to the case where the conductivities σ1 and σ2 are the same. One cannot hope to distinguish the
inclusion ω in this situation. However, for small inclusions, the iterations converge.

From its expression (12), we see that DK(0) depends continuously on ψ and on the measure (f, g). Since
the solution of (1) depends continuously on ∂ω, the continuity with respect to (f, g) also means continuity with
respect to the boundary ∂ω. Hence, from Theorem 1, we deduce the following result:

Theorem 2. Assume that Ω \ ω is close to an annulus bounded by concentric circles with an inner radius ρ
and that the pair of measures (f, g) are closed to a sine function. If σ2 > σ1 and (31), then the inclusion ω can
be reconstructed via iterative approximations ψn+1 = K(ψn).

3.4. Case of two measures

We conclude this section by considering the case of two measures. For convenience, we also denote this
second couple (F,G). Note that (F,G) are the traces of a solution to (1) and that (F,G) is chosen such that
g2 +G2 ≥ γ holds for some γ > 0. This leads to the fixed-point formulation (similar operators appear in [5]):

V : H1(0, 2π) → L2(0, 2π)

ψ �→ (g ◦ V ψ)Dρ[f ◦ V ψ] + (G ◦ V ψ)Dρ[F ◦ V ψ]
(g2 +G2) ◦ V ψ .

Z : H1(0, 2π) → H1(0, 2π)

ψ �→
∫ t

0

(
V ψ(x) − 1

2π

∫ 2π

0

V ψ(τ)dτ
)

dx.

(33)
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In this case, we obtain the contraction property without the restrictive condition (31). We linearize Z in the
neighborhood of 0 with the choice of measures made in (13) for (f, g) and F (t) = cos t/λ1(ρ) and G(t) = cos t.
We repeat the computations performed on K to get

DV (0).h =
sin t
λ1(ρ)

Dρ[h(t) cos(t)] − cos t
λ1(ρ)

Dρ[h(t) sin(t)]. (34)

When we make this explicit on the basis (Ck,Sk), we obtain only the diagonal term:

DZ(0).
[

C1

S1

]
=

λ2(ρ)
2λ1(ρ)

[
C1

S1

]
,

∀k > 1, DZ(0).
[

Ck

Sk

]
=
λk+1(ρ) − λk−1(ρ)

2kλ1(ρ)

[
Ck

Sk

]
. (35)

Notice that we still have to assume that σ2 > σ1, since from (35), the first eigenvalue of DZ(0) satisfies

λ2(ρ)
2λ1(ρ)

< 1 =⇒ µ < 0.

Using the spectral gap bound (2), we obtain

∀k > 1,
λk+1(ρ) − λk−1(ρ)

2kλ1(ρ)
<

λ2(ρ)
2λ1(ρ)

< 1.

Hence, DZ(0) is a contraction. This proves the following theorem for the two measures case.

Theorem 3 (the case of two measurements). Assume that Ω \ ω is close to an annulus bounded by concentric
circles, and that the pairs of measures (f, g) and (F,G) are closed to cosine and sine functions. If σ2 > σ1,
then the inclusion ω can be reconstructed via ψn+1 = K(ψn).

We should like to point out that this result is a direct generalization of Kress and Haddar’s result, already
proved in the perfectly insulating case in [5].

4. Numerical experiments

We present some numerical experiments involving the iterative methods presented in the previous sections.
We should point out that our numerical simulation is not a real experiment. The synthetic data were obtained
with the help of a forward solver providing output data. Furthermore, to avoid committing inverse crimes,
the number of collocation points needed to obtain the current g = σ1

∂u
∂µ must be different from the number of

discretization points within our location search method. All the numerical simulations were performed with the
Dirichlet boundary data f(t) = sin t, t ∈ [0, 2π[ and with a measured current gm which is obtained after adding
random noise to the current. Since the resulting current on ∂Ω can be detected only at the attached electrodes,
we assume that the measures gm are located at Mi equidistant points on the circle ∂Ω. In the following tests,
the conductivities are taken as σ1 = 1 and σ2 = 3.

Circular inclusions: comparison of the methods
In the following example we try to recover the disk of center (xc = 0.2, yc = 0) and radius 0.3. The algorithm
based on the fixed point is referred to as method 1. It has two steps:

(1) First determine the function ψ and the inner radius ρ∗. This is done by projecting ψ on the subspace
of trigonometric polynomials of degree N . The choice of N is for the moment arbitrary.

(2) Next, reconstruct the inner boundary, by attempting (via a least-square cost function) to identify the
coefficients defining the Möbius transform.
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Figure 2. Reconstruction of a circular inclusion, no noise.
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Figure 3. Reconstruction of a circular inclusion with respect to the noise level (in %).

We refer to the algorithm based on the least-square solution of the integro-differential equation as method 2.
The numerical results are presented in Figure 2.

Judging by these first results, there is little to choose between the two methods. The computational costs
are of the same order. Let us consider the error for noised data. For each level of uniform noise added to the
simulated Neumann data, 400 numerical experiments are performed. In order to make a fair comparison of the
methods, we used identical parameters (and the same routines) for the optimization part of both algorithms.
With method 2, this choice of parameters entails a frequent non-convergence of the optimization routine, so we
end up with a much smaller size for the results sample, and the deviation from the mean is not really significant.
Figure 3 presents the mean value, as well as an approximated confidence interval with bandwidth equal to three
times the deviation from the mean. We observe that the method derived in Section 3 is more resistant to noise
than the more elementary method introduced in Section 2.

Extension of the conformal map
This is the method used by Kress et al. [1, 5]. Once we have found φ and ρ, we reconstruct the conformal
transform Φ. The inner boundary – that is to say our goal – is reconstructed as the image of the circle whose
center is the origin, and whose radius is ρ, by the holomorphic extension Φ of φ. From a numerical point of
view, this requires the conformal mapping Φ to be determined. This problem, in Hadamard’s terminology, is
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Figure 4. Reconstruction of a kit-shaped inclusion: numerical extension and approximated circle.

not well-posed. A typical approximation of φ is obtained via truncated Fourier series :

φ(t) ≈
N∑
k=1

ak cos kt+ bk sin kt =
N∑
k=1

ak − ibk
2

eikt +
N∑
k=1

ak + ibk
2

e−ikt. (36)

Then Φ can be expressed

Φ
(
reit
) ≈ N∑

k=1

ak − ibk
2

rkeikt +
ak + ibk

2
r−ke−ikt.

The numerical instability appears in the negative powers of r: any error in the numerical approximation of the
Fourier coefficients is amplified by the exponential factor r−k. This fact is well-known, and to avoid instabilities
we need to regularize using a Tykhonov penalization. This means adding some regularization parameters εk
chosen by the discrepancy principle. Hence, we use the regularized conformal mapping Φr:

Φr
(
reit
) ≈ N∑

k=1

ak − ibk
2

rkeikt +
ak + ibk

2
rk

εk + r2k
e−ikt.

The shape of the inclusion is then recovered as ωr ≈ Φr(ρeiθ).
This way of constructing a conformal extension is not limited to Möbius transforms. We tested this way of

extending the function obtained after the first step of method 1 by applying it to noncircular inclusions. The
numerical results are presented in Figure 4. They show that the fixed-point-based method proposed in this
work can identify inclusions that are not circular. In [2] we shall be providing a theoretical explanation.

In the case of noncircular inclusions, our method gives a good circular approximation. The theoretical basis
for this is the notion of approximate identifiability, introduced in [3] by Fabes et al. In their paper they consider
two domains D0 and D1 belonging to C(ε), the class of ε perturbations of all disks contained in Ω0, an open
subset of Ω at some distance, say 2δ0, from ∂Ω. They prove the following important result: There exists a
positive constant C > 0 such that if ΛD(g) = ΛD0(g) = f then | D∆D0 |≤ Cε.
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