REGULARITY AND VARIATIONALITY OF SOLUTIONS TO HAMILTON-JACOBI EQUATIONS.
PART I: REGULARITY
(ERRATA)

ANDREA C. G. MENNucci

Abstract. This errata corrects one error in the 2004 version of this paper [Mennucci, ESAIM: COCV 10 (2004) 426–451].

Mathematics Subject Classification. 49L25, 53C22, 53C60.

Received October 24, 2006.

After the publication of [7] in 2004, it became clear that the regularity of the form α in Lemma 4.4 had to be related to the regularity of K and of u_0; this influences the minimal regularity of K, u_0, as needed in hypotheses in Lemma 4.4, in Theorem 4.1, and in many following relevant discussions. This errata corrects that error; to keep the matter short, all material that is unaffected by the error is omitted; whereas care was taken so that results and discussions that are here corrected retain the original numbering as in [7].

4.1. Regularity of conjugate points

We will prove in this section results regarding the set of focal points; each following result extends to the set Γ of conjugate points that is a subset of the focal points.

Theorem 4.1. Assume (CC0,H1,H2). If u_0, K, H are regular enough, then, by Lemma 4.4, there is a (at most) countable number of $n - 1$ dimensional submanifolds of $\mathbb{R} \times O$ that cover all the sets G^i; these submanifolds are graphs of functions $\lambda_{i,h} : A_{i,h} \to \mathbb{R}$ (for $h = 1, \ldots$) where $A_{i,h} \subset O$ are open sets. The least regular case is $i = n - 1$, and the regularity of the λ functions is related to the regularity of u_0, K, H, and to the dimension $\dim(M) = n$ as in the following table:

<table>
<thead>
<tr>
<th>$\dim(M)$</th>
<th>u_0, K</th>
<th>H</th>
<th>λ</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n = 2$</td>
<td>$C^{(R+2,\theta)}$</td>
<td>$C^{(R+2,\theta)}$</td>
<td>$C^{(R,\theta)}$</td>
</tr>
<tr>
<td>$n \geq 3$</td>
<td>$C^{(R+2,\theta)}$</td>
<td>$C^{(R+n-1,\theta)} \cap C^n$</td>
<td>$C^{(R,\theta)}$</td>
</tr>
</tbody>
</table>

where $R \in \mathbb{N}, \theta \in [0, 1]$.

Keywords and phrases. Hamilton-Jacobi equations, cutlocus, conjugate points.

1 Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy; a.mennucci@sns.it

© EDP Sciences, SMAI 2007
We now infer some explanatory results on the regularity of the focal points \(X(\bigcup_i G^i) \) from the above theorem.

At the lowest regularity, when \(u_0, K \in C^2, H \in C^n \), we know that \(X \in C^1 \) and that the sets \(G^i \) are graphs; we conclude that the set of focal points has measure zero. When \(u_0, K \in C^{(2,\theta)}, H \in C^n \cap C^{(2,\theta)} \), we know that the dimension of the sets \(G^i \) does not exceed \(n - \theta \); so again we conclude that the set of focal points has dimension at most \(n - \theta \). In the case \(\theta = 1 \), we can obtain the set of all focal points is rectifiable; that is, if \(u_0, K \in C^{(2,1)}, H \in C^n \cap C^{(2,1)} \), then the sets \(G^i \) are covered by Lipschitz graphs, so (by known results in [2]) the set of focal points may be covered by \((n-1)\)-dimensional \(C^1 \) regular submanifolds of \(M \), but for a set of Hausdorff \(H^{n-1} \) measure zero.

When we further raise the regularity, we may suppose that \(u_0, K \in C^{s+3}, H \in C^{s+n} \) (with \(s \in \mathbb{N} \))^1; then the sets \(G^i \) are covered by graphs \((\lambda(y), y)\) inside \(\mathbb{R} \times O \) of regularity \(C^{1+s} \); while \(X \in C^{2+s} \) (at least), and we restrict it to those graphs; we can then apply Theorem A.4 to state that the focal points are covered by \(C^{1+s} \) regular submanifolds of \(M \) but for a set of \(H^s \) measure zero, where \(s = n - 2 + 1/(1+s) \).

[... unchanged material deleted ...]

The main tool is this lemma; the complete proof of the lemma is in Section 6.

Lemma 4.4. We assume that the hypotheses (CC0,H1,H2) hold.

We set the regularity of the data \(u_0, K, H \) by defining parameters \(R, R' \in \mathbb{N}, \theta, \theta' \in [0,1] \), and assuming that

\[
u_0 \in C^{(R+2,\theta')}, \quad K \in C^{(R+2,\theta')}, \quad H \in C^{(R+2,\theta')}
\]

by Proposition 3.7, the flow \(\Phi = (X, P) \) is \(C^{(R+1,\theta)} \) regular; and \(O \) is a \(C^{(R+1,\theta')} \cup C^{(R+2,\theta')} \) manifold (that is, the least regular of the two).

Let \(i \geq 1 \), \(i \leq n-1 \), and fix a point \((s', y') \in \mathbb{R} \times O\), such that \((s', y') \in G^i \).

Let \(U \) be a neighborhood of \(0 \) in \(\mathbb{R}^{n-1} \) and let \(\phi : U \to O \) be a local chart to the neighborhood \(\phi(U) \) of \(y' = \phi(0) \). The map \(\phi \) has regularity \(C^{(R+1,\theta')} \cup C^{(R+2,\theta')} \). In the following, \(y \) will be a point in \(\phi(U) \).

To study \(G^i \), we should study the rank of the Jacobian of the map \((t, x) \mapsto (t, \phi(x))\); since the regularity of \(X \) is related only to the regularity of \(H \), it will be useful to decouple this Jacobian in two parts. To this end, we define a \(n \)-form \(\alpha \) on \(\mathbb{R} \times O \), with requirement that \(\alpha(t, y) = \alpha(y) \) (that is, \(\alpha \) does not depend on \(t \)).

Writing \(X(t, y) \) for \((t, y) \), let

\[
X(t, y)^* \alpha
\]

be the push-forward of \(\alpha \) along \(X \); \(X(t, y)^* \alpha \) is then a tangent form defined on \(T_{X(t, y)} M \); it will be precisely defined in equation (6.2). We remark that \(X(t, y)^* \alpha = 0 \) if \((t, y) \in \bigcup_i G^i \). Note that the pushforward \(X(t, y)^* \alpha \) is \(C^{(R,\theta)} \) regular, while the form \(\alpha \) is as regular as \(TO \); that is, \(\alpha \) is \(C^{(R',\theta')} \cup C^{(R+1,\theta')} \).

Note that, since \(X \) solves an O.D.E., then \(X \) and \(\frac{\partial}{\partial t} X \) have the same regularity; note moreover that

\[
\frac{\partial}{\partial t} \left(X(s', y')^* \alpha \right) = \left(\frac{\partial}{\partial t} X \right)(s', y')^* \alpha
\]

since \(\alpha \) does not depend on \(t \). So, by hypotheses and by the definition (6.2) of \(X(t, y)^* \alpha \), the forms \(X(t, y)^* \alpha \) and \(\frac{\partial}{\partial t} X(t, y)^* \alpha \) have regularity \(C^{(R,\theta)} \cap C^{(R',\theta')} \) (see also Eq. (6.3)); the derivatives \(\frac{\partial}{\partial t^j} X(s', y')^* \alpha \) with \(j \geq 1 \) have regularity \(C^{(R-j+1,\theta)} \cup C^{(R',\theta')} \).

Then, when \(R+1 \geq i \), we prove (in Sect. 6) that

\[
X(s', y')^* \alpha = 0, \quad \frac{\partial}{\partial t} X(s', y')^* \alpha = 0, \quad \cdots \quad \frac{\partial^{i-1}}{\partial t^{i-1}} X(s', y')^* \alpha = 0
\]

A similar result may be obtained when \(u_0, K \in C^{(s+3,\theta)}, H \in C^{(s+n,\theta)} \).
whereas
\[\frac{\partial^i}{\partial t^i} X(s', y')^* \alpha \neq 0. \]

We define eventually the map \(F : \mathbb{R} \times \mathbb{R}^{n-1} \to \mathbb{R} \) given by
\[F(t, x) = \frac{\partial^{i-1}}{\partial t^{i-1}} X(t, \phi(x))^* \alpha; \]

since
\[\frac{\partial}{\partial t} F(t, x) = \frac{\partial^i}{\partial t^i} X(t, \phi(x))^* \alpha \neq 0 \]

the above Dini lemma implies that the set \(G^{(i)} \) is locally covered by the graph of a function \(\lambda \), defined on an open subset of \(O \); \(\lambda \) has the same regularity of \(F \), so, if \(i = 1 \) then \(\lambda \) is in \(C^{R, \theta} \cup C^{(R, \theta') \cap C^{(R, \theta')}.} \)

The above directly implies Theorem 4.1.

[... all other results are unchanged ...]

5. APPLICATIONS

5.1. The Cauchy problem

We show now how the above theorems may be used for the Cauchy problem (1.2)
\[
\begin{cases}
\frac{\partial}{\partial t} w(t, x') + H'(t, x', \frac{\partial}{\partial x^2} w(t, x')) = 0 & \text{for } t > 0, x' \in M' \\
w(0, x') = w_0(x') & \forall x' \in M'.
\end{cases}
\]

[... the preliminary discussion is unchanged ...]

This improves the results of 4.10, 4.12 and 4.17 in [1]; to provide for an easy comparison, we summarize these results

- if \(n' = \dim(M') \), \(n = n' + 1 \), if \(H' \in C^s \) with \(s = n \vee 3 \) and \(w_0 \in C^2 \), then the set \(\Gamma \) has measure zero, so the set \(\Sigma_n = \Sigma \cup \Gamma \) has measure zero;
- if \(H, w_0 \in C^{(2,1)} \), then the set \(\Gamma \) is rectifiable, so the set \(\Sigma_n = \Sigma \cup \Gamma \) is rectifiable;
- and when \(H' \in C^{R+1, \theta} \), \(w_0 \in C^{R+1, \theta} \), \(R \geq 2 \), \(w \) is continuous, we prove that the Hausdorff dimension of \(\Gamma \setminus \Sigma \) is at most \(\beta \), and moreover \(H^3(\Gamma \setminus \Sigma) = 0 \) if \(\theta = 0 \), where \(\beta = n' - 1 + 2/(R + \theta) \).

In the counterexample in Section 4.4 in [1], \(w_0 \) is \(C^{1,1}(M') \) and not \(C^2(M') \); so our results close the gap between the counterexample, where \(w_0 \) is \(C^{1,1}(M') \), and the theorem, where \(w_0 \) is \(C^2(M') \); and actually, studying the counterexample, it is quite clear that, if \(w_0 \) is smoothed to become a \(C^2(M') \) function, then the counterexample would not work.

5.2. Eikonal equation and cut locus

As in Section 3.5, consider a smooth Riemannian manifold \(M \), and a closed set \(K \subset M \) and let \(d_K(x) = d(x, K) \) be the distance to \(K \). We set \(u_0 = 0 \): then \(O \) is the bundle of unit covectors that are normal to \(TK \), and \(d_K(x) \) coincides with the \(\min \) solution \(u(x) \).

We define
\[\Sigma_{d_K} \overset{\text{def}}{=} \{ x \mid \# \nabla d_K(x) \} \]

If \(K \) is \(C^1 \), then \(\Sigma_{d_K} \) coincides with \(\Sigma \) as defined in (4.1).

Since \(d_K \) is semiconcave in \(M \setminus K \), \(\Sigma_{d_K} \) is always rectifiable.

This primal problem is a good test bed to discuss the differences and synergies of the results in this paper and the results in Itoh and Tanaka [4] and Li and Nirenberg [5].
In the example in Section 3 in [6], there is a curve $K \subset \mathbb{R}^2$, $K \in C^{1,1}$ such that ΣdK has positive Lebesgue measure. Note that in this example $\Sigma dK \neq \text{Cut}(K) = \Sigma dK$, so the cutlocus $\text{Cut}(K)$ is rectifiable (but not closed).

We do not know if there is a curve $K \in C^{1,1}$ such that ΣdK has positive Lebesgue measure. Note that in this example $\Sigma dK \neq \text{Cut}(K) = \Sigma dK$, so the cutlocus $\text{Cut}(K)$ is rectifiable (but not closed).

We do not know if there is a curve $K \in C^{1,1}$ such that $\text{Cut}(K)$ is not rectifiable. (We recall that, by Prop. 14 in [3], $\text{Cut}(K)$ has always measure zero).

Theorem 4.1 states that if K is C^2, then Γ has measure zero, so by (1.4) and 4.11.4, we obtain that $\Sigma dK = \text{Cut}(K)$ has measure zero; so Theorem 4.1 closes the gap between the counterexample in Section 3 [6] and the previous available results.

In example in Remark 1.1 in [5], for all $\theta \in (0, 1)$ there is a compact curve $K \in C^{2, \theta}$ such that the distance to the cutlocus is not locally Lipschitz; by Theorem 4.1, the cutlocus has dimension at most $n - \theta$.

We do not know if there exists an example of a compact curve $K \in C^{2, \theta}$ such that $H^{n-1}(\text{Cut}(K)) = \infty$.

By the results in Itoh and Tanaka [4] and Li and Nirenberg [5], when $K \in C^3$, the distance to the cutlocus is locally Lipschitz and the cutlocus is rectifiable, and moreover (by Cor 1.1 in [5]), for any B bounded $H^{n-1}(\text{Cut}(K) \cap B) < \infty$. By Theorem 4.1, the set of (non optimal) focal points is rectifiable as well.

5.2.1. Improvements

[... the discussion is unchanged ...]

Corollary 5.1. Consider a 2-dimensional smooth Riemannian manifold M; suppose that K is a compact C^{3+s} embedded submanifold.

Then, for any open bounded set $A \subset M$, the set $A \cap \Gamma$ is $C^{s+1} - M^{1/(s+1)}$-rectifiable: that is, it can be covered by at most countably many C^{s+1} curves, but for a set E such that $M^{1/(s+1)}(E) = 0$.

6. Proof of 4.4

[... the two lemma are unchanged ...]

Now we prove Lemma 4.4.

We want to define the n form α so that α does not depend on t; and so that $\alpha = e_1 \wedge \cdots \wedge e_n$ where the vectors fields $e_{n-i+1} \ldots e_n$ span the kernel of $\frac{\partial}{\partial t}X$ at the point (s', y') (kernel that we will call V) while $\frac{\partial}{\partial t}X$ is full rank on $e_1 \ldots e_{n-1}$ (that generate the space W).

One possible way to this is to fix the local chart $\phi : U \subset \mathbb{R}^{n-1} \rightarrow O$, define

$$\hat{e}_1 \equiv \phi \frac{\partial}{\partial x_1}, \ldots \hat{e}_{n-1} \equiv \phi \frac{\partial}{\partial x_{n-1}}, \hat{e}_n \equiv \frac{\partial}{\partial t}$$

and then choose a $n \times n$ constant matrix A, so that

$$e_h \equiv \sum_k A_{h,k} \hat{e}_k$$

satisfy the requirements.

[... the rest of the proof is unchanged ...]

Acknowledgements. The author thanks Prof. Graziano Crasta for spotting the error that is corrected in this errata.
References

