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A CARLEMAN ESTIMATES BASED APPROACH FOR THE STABILIZATION
OF SOME LOCALLY DAMPED SEMILINEAR HYPERBOLIC EQUATIONS

Louis Tebou1

Abstract. First, we consider a semilinear hyperbolic equation with a locally distributed damping in
a bounded domain. The damping is located on a neighborhood of a suitable portion of the boundary.
Using a Carleman estimate [Duyckaerts, Zhang and Zuazua, Ann. Inst. H. Poincaré Anal. Non
Linéaire (to appear); Fu, Yong and Zhang, SIAM J. Contr. Opt. 46 (2007) 1578–1614], we prove that
the energy of this system decays exponentially to zero as the time variable goes to infinity. Second,
relying on another Carleman estimate [Ruiz, J. Math. Pures Appl. 71 (1992) 455–467], we address the
same type of problem in an exterior domain for a locally damped semilinear wave equation. For both
problems, our method of proof is constructive, and much simpler than those found in the literature.
In particular, we improve in some way on earlier results by Dafermos, Haraux, Nakao, Slemrod and
Zuazua.
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1. Problem formulation and statements of main results

Let Ω be a bounded open subset of R
N , N ≥ 1, with boundary of class C2. Let f : R −→ R be a differentiable

function with

f(0) = 0, sf(s) ≥ 0, ∀s ∈ R,

∃C0 > 0 : |f ′(s)| ≤ C0 (1 + |s|q) , ∀s ∈ R, (1.1)

where q ≥ 0, (N − 2)q ≤ 2. Let a ∈ L∞(Ω) be a nonnegative function satisfying

∃a0 > 0 : a(x) ≥ a0, ∀x ∈ ω, (1.2)

the subset ω being a neighbourhood of Γ0, that is to say, the intersection of Ω and a neighborhood of Γ0, where
Γ0 is a suitable portion of the boundary that will be defined later. Throughout the paper ∂i stands for ∂/∂xi,

Keywords and phrases. Hyperbolic equation, exponential decay, localized damping, Carleman estimates.

1 Department of Mathematics, Florida International University, Miami FL 33199, USA; teboul@fiu.edu

Article published by EDP Sciences c© EDP Sciences, SMAI 2007

http://dx.doi.org/10.1051/cocv:2007066
http://www.esaim-cocv.org
http://www.edpsciences.org


562 L. TEBOU

and we use the Einstein summation convention on repeated indices. Consider the damped hyperbolic equation

⎧⎪⎪⎨
⎪⎪⎩

ytt − ∂i(bij(x)∂jy) + p(x)y + f(y) + ag(yt,∇y) = 0 in Ω × (0,∞)
y = 0 on Σ = ∂Ω × (0,∞)
y(0) = y0 in Ω
yt(0) = y1 in Ω,

(1.3)

where p ∈ Lm
+ (Ω), (m = 2 for N = 1, m > 2 for N = 2, and m ≥ N for N ≥ 3), and g : R

N+1 → R is a globally
Lipschitz function satisfying

g(0, q) = 0, ∀q ∈ R
N ,

∃L > 0 : |g(r, w) − g(r′, w′)| ≤ L (|r − r′| + |w − w′|) , ∀w, w′ ∈ R
N , ∀r, r′ ∈ R,

∃b > 0 : g(r, w)r ≥ br2, ∀w ∈ R
N , ∀r ∈ R. (1.4)

It follows from (1.4.1), and (1.4.2) that

|g(r, w)| ≤ L|r|, ∀w ∈ R
N , ∀r ∈ R. (1.5)

As for the coefficients (bij)i,j , they satisfy:

bij ∈ C1(Ω̄); bij = bji, ∀i, j = 1, 2, ..., N, (1.6)

and

∃b0 > 0 : bij(x)zizj ≥ b0zizi, ∀(x, z) ∈ Ω̄ × R
N . (1.7)

Now let {y0, y1} ∈ H1
0 (Ω) × L2(Ω). System (1.3) is then well-posed in the space H1

0 (Ω) × L2(Ω); this result
is well-known in the case where either g is independent of q [3,13,20] or f = 0 [35,43]. To our knowledge, the
well-posedness of the general system (1.3) is yet to be established. Therefore our main purpose in this paper is
twofold:

(i) to prove that under the above hypotheses on the data, system (1.3) has a unique weak solution

y ∈ C([0,∞); H1
0 (Ω)) ∩ C1([0,∞); L2(Ω)); (1.8)

(ii) to prove that for every weak solution, the energy given by

E(t) =
1
2

∫
Ω

{|yt(x, t)|2 + bij(x)∂jy(x, t)∂iy(x, t) + p(x)|y(x, t)|2} dx +
∫

Ω

F (y(x, t)) dx, (1.9)

where F (s) =
∫ s

0 f(r)dr, decays exponentially to zero as the time t → ∞. The energy E is a nonincreasing
function of the time variable t, as we have the dissipation law:

E(t) +
∫

Ω

ag(yt,∇y)yt dx = E(s), ∀0 ≤ s < t < ∞. (1.10)

Our well-posedness result states as follows:

Theorem 1.1 (well-posedness). Let {y0, y1} ∈ H1
0 (Ω) × L2(Ω), and assume that the functions bij, a, f , p,

and g satisfy the hypotheses given above. Then system (1.3) has a unique weak solution satisfying (1.8).
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Before stating the stabilization result, some additional notations are needed. Following [10,11], we introduce
a function d ∈ C2(Ω̄) satisfying for some m0 ≥ 4:

(i) (2bil(bkjdxk
)xl

− bij,xl
bkldxk

) zizj ≥ m0bijzizj , ∀(x, z) ∈ Ω̄ × R
N .

(ii) min
{|∇d(x)|; x ∈ Ω̄

}
> 0.

(iii)
1
4
bij(x)dxi(x)dxj (x) ≥ R2

1 ≥ R2
0 > 0, ∀x ∈ Ω̄, (1.11)

where R0 = min
{√

d(x); x ∈ Ω̄
}

, and R1 = max
{√

d(x); x ∈ Ω̄
}
. We now define Γ0; let ν be the unit normal

pointing into the exterior of Ω, and set

Γ0 =
{
x ∈ ∂Ω; bijνidxj (x) > 0

}
. (1.12)

It is easy to check that if bij = γδij, (δ denotes the Kronecker symbol), setting d(x) = |x − x0|2 for any
x0 ∈ R

N \ Ω̄, then eventually modifying d as in [11], we see that (1.11) is satisfied; in this case,

Γ0 = {x ∈ ∂Ω; (x − x0) · ν > 0} , (1.13)

which is the usual portion of the boundary that arises in the framework of the multiplier method [17,21,34].
We also note that the constraints on the coefficients bij are almost necessary in order to establish the Carleman

estimates needed in the development of our proof method; without these constraints, establishing those estimates
would in most cases be impossible as shown in [24]. Indeed in [24], the authors, using a Gaussian beam approach,
show that observability estimates, which are weaker than Carleman estimates, may fail in the absence of such
constraints.

Our stabilization result reads:

Theorem 1.2 (stabilization). Let {y0, y1} ∈ H1
0 (Ω) × L2(Ω). Let ω be a neighborhood of Γ0. Assume that the

functions (bij), d, a, f , p, and g satisfy the hypotheses given above. Then there exist positive constants M and
α, possibly depending on E(0) such that the energy E of each solution of (1.3) satisfies:

E(t) ≤ M [exp(−αt)]E(0), ∀t ≥ 0. (1.14)

Remark 1.1. The possible dependence on E(0) of the constants M and α will be given explicitly as part of
the proof of Theorem 1.2.

Remark 1.2. It will follow from our proof that the constants M and α do not depend on the initial data when
f is globally Lipschitz. Thus, in this case, it will be proven that the exponential decay of the energy is uniform
in the energy space. However, in general, our method leads to a decay estimate that is uniform only on every
ball in the energy space.

Literature. The stability of the wave equation with locally distributed damping has a history of about three
decades that begins with a result of Dafermos [6]. In [6], the author considers the wave equation

⎧⎨
⎩

ytt − Δy + ag(yt) = 0 in Ω × (0,∞)
y = 0 on Σ = ∂Ω × (0,∞)
y(0) = y0; yt(0) = y1 in Ω,

(1.15)

where a ∈ L∞(Ω), a ≥ 0 almost everywhere in Ω. Assuming that meas(suppa) > 0, and g : R −→ R is
continuously differentiable and strictly increasing, Dafermos shows that for any weak solution of (1.11), one has

(y, yt) → (0, 0) strongly in H1
0 (Ω) × L2(Ω), as t → ∞. (1.16)
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Then Haraux [12] generalized Dafermos’ result to include functions g that have a monotone graph but are
neither strictly increasing nor smooth. Later on Slemrod [35] got rid of the monotonicity hypothesis while
allowing g to have its graph in the first and third quadrants, weakened the smoothness assumption by taking
only globally Lipschitz functions g, and he proved that

(y, yt) → (0, 0) weakly in H1
0 (Ω) × L2(Ω), as t → ∞. (1.17)

In the same paper [35], the author also studied for the first time the stability of a system like (1.3) with bij = δij ,
p ≡ 0, and f ≡ 0; he proved (1.17) for this new system by assuming that g(r, q) is globally Lipschitz, and satisfies
“g(r, q)r ≥ 0, ∀r, q”. Slemrod’s results were later generalized to allow for more general nonlinearities g, and
other distributed systems (e.g. Petrowski, coupled systems, hybrid systems) by Vancostenoble [42,43]. It is also
worth mentioning Haraux’s paper [15] where the author proposes a simplified approach to the weak stability
of (1.3) and (1.15). In all of the aforementioned works, the authors are interested in finding a class of feedback
controls as large as possible that would yield a strong or weak stability of the system considered. Under
the mild conditions on the nonlinearity g in those earlier works [6,12,15,35,42,43], no decay rates are known.
Another approach to the stability problem for locally damped semilinear wave equations is to prescribe sufficient
conditions on g and the damping location, that allow to obtain decay rates; in this direction Zuazua [45,46] was
a pioneer. In [45], the author considers system (1.3) with bij = δij and “g(s, q) = g(s) = s”, and provides two
different proofs of the exponential decay of its energy:

– one for globally Lipschitz nonlinearities f satisfying either lims→−∞ f ′(s) and lims→∞ f ′(s) both ex-
ist, or lim|s|→∞

f(s)
s exists; it is easy to check that this condition excludes functions such as f(s) =

βs sin2
(
ln(1 + s2)

)
, (β > 0), that are globally Lipschitz but for which none of the aforementioned limits

exist;
– one for superlinear functions f that further satisfy sf(s) ≥ (2 + δ)F (s) for some δ > 0.

All the proofs in [45,46] are based on the unique continuation property of Ruiz [33], and they lead to uniform
exponential decay estimates of the energy. Later on, Dehman [7] reduced the two proofs in [45] to a single proof,
but for initial data that are bounded in the energy space. Subsequently, using Strichartz dispersive inequalities,
the results of [7,45,46] were improved to include all the subcritical nonlinearities f in the three dimensional
setting, meaning that q < 4 in (1.1), by Dehman, Lebeau and Zuazua in [8]. It is also of interest to mention
Nakao’s papers [29,30], where the authors discuss the same type of questions for systems involving nonlinearities
of the form f(x, s) – that are bounded in x – and nonlinear damping locally distributed on a neighborhood of
a suitable subset of the boundary; they establish polynomial and exponential energy decay estimates for small
enough initial data. All the proofs in [7,8,29,30,45,46] are based on a compactness-uniqueness argument which
relies on the unique continuation property of either [33] or [36], and consequently do not lead to explicit decay
rates. Our constructive approach, to be developed below, enables us to provide, in a single proof, uniform
exponential decay estimates of the energy for globally Lipschitz nonlinearities f and local stabilization for all
other functions f satisfying (1.1), and it leads to explicit decay rates.

Concerning “linear” problems (f(s) = ms, m ≥ 0, g(r, q) = g(r)) with linear or nonlinear dissipations, we
refer the reader to e.g. [1,5,14,18,23,25–27,37–40].

The rest of the paper is organized as follows: Section 2 is devoted to the proofs of Theorem 1.1, and
Theorem 1.2, while in Section 3, we discuss a similar problem in an exterior domain. Section 4 wraps up the
paper with a few open problems.
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2. Proofs of Theorems 1.1 and 1.2

2.1. Proof of Theorem 1.1

We may rewrite the first equation of (1.3) in the form
{

yt − z = 0 in Ω × (0,∞),
zt − ∂i(bij(x)∂jy) + py = −f(y) − ag(z,∇y) in Ω × (0,∞). (2.1)

Setting Z =
(

y
z

)
, (2.1) becomes Z ′ + AZ = G(Z), so that (1.3) is equivalent to

⎧⎨
⎩

Z ′ + AZ = G(Z) in (0,∞),

Z(0) =
(

y0

y1

)
,

(2.2)

where the unbounded operator A is given by

A =
(

0 −I
−∂i(bij(x)∂j) + pI 0

)
(2.3)

with D(A) = H2(Ω)∩H1
0 (Ω)×H1

0 (Ω). Set H = H1
0 (Ω)×L2(Ω). The nonlinear operator G : H −→ H, is given

by G(Z) =
(

0
−f(y)− ag(z,∇y)

)
.

We now equip the Hilbert space H with the norm

||Z||2H =
∫

Ω

{
bij(x)∂jy∂iy + p|y|2} dx +

∫
Ω

|z|2dx. (2.4)

Let us show that the operator A is maximal monotone. This amounts to proving that:

(i) (AZ, Z) ≥ 0, ∀Z =
(

y
z

)
∈ D(A),

(ii) A + I is surjective, (I is the identity operator)
where in (i), (., .) denotes the scalar product induced by the norm defined in (2.4).

Proof of (i). Since for all Z ∈ D(A), we have

AZ =
( −z
−∂i(bij(x)∂jy) + py

)
,

it follows that

(AZ, Z) = −
∫

Ω

bij(x)∂jy∂iz dx −
∫

Ω

pzy dx +
∫

Ω

bij(x)∂jz∂iy dx +
∫

Ω

pzy dx = 0, as (2.5)

which establishes (i). �

Proof of (ii). We shall prove that for all
(

u
v

)
in H, there exists Z in D(A) such that

AZ + Z =
(

u
v

)
. (2.6)
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We may rewrite equation (2.6) as { −z + y = u in Ω,
−∂i(bij(x)∂jy) + py = v in Ω.

(2.7)

Since v belongs to L2(Ω), the application of the theory of elliptic problems [4,22] gives the existence and
uniqueness of y in H2(Ω) ∩ H1

0 (Ω). The existence of z follows immediately, and (ii) is proven.
On the other hand, one easily checks that the nonlinear operator G is locally Lipschitz on H, and we have

the dissipation law (1.10). The application of [31], Theorem 1.4, p. 185, shows that (3.2) has a unique weak
solution

Z ∈ C([0,∞);H), (2.8)
and Theorem 1.1 is proven. �

2.2. Proof of Theorem 1.2

For the sequel we need the following notations: let d be given as above, and let T > 2R1, where R1 =
max

{√
d(x); x ∈ Ω̄

}
. Choose a constant μ ∈ (0, 1) such that

(2R1/T )2 < μ < 2R1/T. (2.9)

Set ϕ(x, t) = d(x) − μ(t − T/2)2. Define a differential operator P by Pu = utt − (bij(x)uxj )xi . Also set
Q = Ω × (0, T ). The proof of Theorem 1.2 is based on the following Carleman estimate due to Duyckaerts,
Zhang and Zuazua [10], Theorem 2.4 (see also [11], Th. 7.1, for the special case V ≡ 0):

Lemma 2.1. Let bij satisfy (1.6)–(1.7), and V ∈ L∞(0, T ; Lm(Ω)) with m ∈ [N,∞]. Assume that (1.11) holds,
and that there exists some δ > 0 such that ω = Oδ(Γ0) ∩ Ω, where Oδ(Γ0) =

{
x ∈ R

N ; |x − x′| < δ , for some
x′ ∈ Γ0}. Then there exists λ0 > 1 and a positive constant C = C(Ω, T ), such that for all λ ≥ λ0 and any
u ∈ C([0, T ]; L2(Ω)) satisfying u(x, 0) = u(x, T ) = 0 for x ∈ Ω, Pu ∈ H−1(Q), and

(u,Pη) = 〈Pu, η〉H−1(Q),H1
0 (Q), ∀η ∈ H1

0 (Q) with Pη ∈ L2(Q), (2.10)

it holds

λ||eλϕu||2L2(Q) ≤ C

(
||eλϕ(Pu − V u)||2H−1(Q) +

1
λ(2−2N/m)

||eλϕV u||2L2(0,T ;H−N/m(Ω)) + λ2||eλϕu||2L2(0,T ;L2(ω))

)
.

(2.11)

In order to prove Theorem 1.2, it suffices to show that there exists C0 > 0 such that

E(T ) ≤ C0

∫ T

0

∫
Ω

ag(yt,∇y)yt dxdt. (2.12)

The possible dependence of C0 on the initial data will be given as part of the proof of (2.12). After proving
(2.12), we will use the semigroup property to derive the claimed exponential decay estimate. We now proceed
to prove (2.12).

For the sequel, we need some additional notations. Set

Ti = (T/2) − εiT, T ′
i = (T/2) + εiT, i = 0, 1

R0 = min
{√

d(x); x ∈ Ω̄
}

, Q̃ = Ω × [(0, T1) ∪ (T ′
1, T )], Q0 = Ω × (T0, T

′
0) (2.13)

where 0 < ε0 < ε1 < 1/2 will be specified later on. Now, we proceed as in [10,11]. Thanks to (2.9), and the
definition of ϕ, we have

ϕ(x, 0) = ϕ(x, T ) = d(x) − μ(T 2/4) ≤ R2
1 − μ(T 2/4) < 0, ∀x ∈ Ω̄. (2.14)
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Therefore there exists ε1 ∈ (0, 1/2), close to 1/2 such that

ϕ(x, t) ≤ (R2
1 − μ(T 2/4))/2 < 0, ∀(x, t) ∈ Q̃. (2.15)

Similarly, we have
ϕ(x, T/2) = d(x) ≥ R2

0 > 0, ∀x ∈ Ω̄. (2.16)
Consequently, there exists some ε0 ∈ (0, 1/2), close to zero, such that

ϕ(x, t) ≥ R2
0/2, ∀(x, t) ∈ Q̄0. (2.17)

We now have all the ingredients necessary for a clear proof of (2.12). From now on, C denotes various positive
constants independent of the initial data, and λ.

Let r ∈ C2([0, T ]) be a nonnegative function such that

r(0) = r(T ) = 0,

r ≡ 1 in [T1, T
′
1]. (2.18)

If we set u(x, t) = r(t)yt(x, t) for (x, t) ∈ Ω × (0, T ), then u satisfies all the requirements of Lemma 2.1 with
V = 0, and

Pu = r′′yt + 2r′ytt − f ′(y)u − p(x)u − ra(g(yt,∇y))t. (2.19)
Accordingly,

λ||eλϕu||2L2(Q) ≤ C

(
||eλϕPu||2H−1(Q) + λ2||eλϕu||2L2(0,T ;L2(ω))

)
. (2.20)

Now using Hahn-Banach theorem, Hölder inequality, and possibly Sobolev embedding theorem, we find

||eλϕr′′yt||H−1(Q) ≤ C||eλϕyt||L2(Q̃),

||2eλϕr′ytt||H−1(Q) ≤ C(1 + λ)||eλϕyt||L2(Q̃),

||eλϕpu||H−1(Q) ≤ C||eλϕu||L2(Q),

||eλϕf ′(y)u||H−1(Q) ≤ C||eλϕu||L2(Q) (1 + E(0)q) ,

||eλϕra(g(yt,∇y))t||H−1(Q) ≤ C(1 + λ)||eλϕa(g(yt,∇y))||L2(Q). (2.21)

It should be noted that in order to obtain the second and last inequality in (2.21), one has to perform an inte-
gration by parts after the application of the Hahn-Banach theorem before proceeding to use Hölder inequality,
and Sobolev embedding theorem.

Combining (2.21) and (2.19), and reporting the result in (2.20), we get

λ||eλϕu||2L2(Q) ≤ Cλ2||eλϕyt||2L2(Q̃)
+ C(1 + E(0)q)||eλϕu||2L2(Q)

+ Cλ2||eλϕa(g(yt,∇y))||2L2(Q) + Cλ2||eλϕu||2L2(0,T ;L2(ω)). (2.22)

Choosing λ ≥ λ1 = 2C(1 + E(0)q), where C is the constant in (2.22), we derive from (2.22) that

λ||eλϕu||2L2(Q) ≤ C(1 + λ2)||eλϕyt||2L2(Q̃)
+ C(1 + λ2)

∫ T

0

∫
Ω

e2λϕag(yt,∇y)yt dxdt. (2.23)

We note that in order to obtain (2.23), we also made use of (1.4), (1.5), (1.2) and the fact that u = ryt.
Now by (2.18), we have

||eλϕu||2L2(Q) ≥
∫ T ′

1

T1

∫
Ω

e2λϕy2
t dxdt, (2.24)
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so that
||eλϕyt||2L2(Q) ≤ ||eλϕu||2L2(Q) + ||eλϕyt||2L2(Q̃)

. (2.25)

Combining (2.23) and (2.25), we find

λ||eλϕyt||2L2(Q) ≤ Cλ(1 + λ2)||eλϕyt||2L2(Q̃)
+ Cλ(1 + λ2)

∫ T

0

∫
Ω

e2λϕag(yt,∇y)yt dxdt. (2.26)

Thanks to (2.17), we have
||eλϕyt||2L2(Q) ≥ eλR2

0 ||yt||2L2(Q0). (2.27)
Reporting (2.27) in (2.26), using (2.14), and simplifying, we get

||yt||2L2(Q0) ≤ C(1 + λ2)eλ(R2
1−R2

0−μ(T 2/4))||yt||2L2(Q̃)
+ C(1 + λ2)e2λR2

1

∫ T

0

∫
Ω

ag(yt,∇y)yt dxdt. (2.28)

Since the energy E is nonincreasing, we have

||yt||2L2(Q̃)
≤ 2TE(0) = 2TE(T ) + 2T

∫ T

0

∫
Ω

ag(yt,∇y)yt dxdt. (2.29)

Hence

||yt||2L2(Q0)
≤ C(1 + λ2)eλ(R2

1−R2
0−μ(T 2/4))E(T ) + C(1 + λ2)e2λR2

1

∫ T

0

∫
Ω

ag(yt,∇y)yt dxdt. (2.30)

At this stage, we note that we will be done with the proof of (2.12) once we have proven that

E(T ) ≤ C0

∫
Q0

|yt|2 dxdt + C0

∫ T

0

∫
Ω

ag(yt,∇y)yt dxdt, (2.31)

for some C0 that may depend on the initial data. To this end, let h ∈ C1([T0, T
′
0]) with h(T0) = h(T ′

0) = 0.
Multiplying the first equation in (1.3) by hy and integrating by parts over Q0, we get

2
∫ T ′

0

T0

h(t)E(t) dt +
∫

Q0

hyf(y) dxdt = 2
∫

Q0

h|yt|2 dxdt +
∫

Q0

h′yty dxdt −
∫

Q0

hag(yt,∇y)y dxdt, (2.32)

where
E(t) =

1
2

∫
Ω

{|yt(x, t)|2 + bij(x)∂jy(x, t)∂iy(x, t) + p(x)|y(x, t)|2} dx. (2.33)

We note that the energies E and E satisfy the estimates

E(t) ≤ E(t) ≤ C
(
1 + E(0)

q
2

)
E(t). (2.34)

Some simple calculations in (2.32) show that

∫ T ′
0

T0

h(t)E(t) dt ≤ C

∫
Q0

|yt|2 dxdt + C

∫
Q0

ag(yt,∇y)yt dxdt, (2.35)

from which one first derive, thanks to (2.34),

∫ T ′
0

T0

h(t)E(t) dt ≤ C
(
1 + E(0)

q
2

) [∫
Q0

|yt|2 dxdt +
∫

Q0

ag(yt,∇y)yt dxdt

]
, (2.36)
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then

E(T ) ≤ C
(
1 + E(0)

q
2

)[∫
Q0

|yt|2 dxdt +
∫

Q0

ag(yt,∇y)yt dxdt

]
, (2.37)

as E is nonincreasing.
Combining (2.30) and (2.37), we find

E(T ) ≤ C
(
1 + E(0)

q
2

)
eλ(R2

1−R2
0−μ(T 2/4))E(T )+C

(
1 + E(0)

q
2

)
(1+λ)e2λR2

1

∫ T

0

∫
Ω

ag(yt,∇y)yt dxdt. (2.38)

We may choose λ so large that

C
(
1 + E(0)

q
2

)
eλ(R2

1−R2
0−μ(T 2/4)) ≤ 1/2. (2.39)

In this case, (2.38) becomes

E(T ) ≤ C
(
1 + E(0)

q
2

)
(1 + λ)e2λR2

1

∫ T

0

∫
Ω

ag(yt,∇y)yt dxdt, (2.40)

from which one easily derives

E(T ) ≤ C1eC2(1+E(0)q)

∫ T

0

∫
Ω

ag(yt,∇y)yt dxdt, (2.41)

where C1 and C2 are positive constants that are independent of the initial data.
Using (1.10) in (2.40) we get

E(T ) ≤ C1eC2(1+E(0)q)

1 + C1eC2(1+E(0)q)
E(0). (2.42)

If we set
γ = C1eC2(1+E(0)q)/(1 + C1eC2(1+E(0)q)),

and we apply the semigroup property combined with one of the techniques devised in [2,32], we get

E(t) ≤ 1
γ

e(−t log(1/γ))/T E(0) ≤ 2e(−t log(1/γ))/T E(0), ∀t ≥ 0, (2.43)

which completes the proof Theorem 1.2.

Remark 2.1. As one can see, the advantage of our method is that it provides a much simpler proof than those
found in the literature [7,8,29,45,46]. Our constructive approach is much more interesting for globally Lipschitz
nonlinearities f because in this case, it enables us to improve in some way on all the earlier results. One of
the drawbacks of this method though, is that it does not enable us to obtain uniform exponential decay for
nonlinearities f that are not globally Lipschitz; we are able to obtain uniform exponential decay on every ball
in the energy space only. Also, it does not seem to work for more general nonlinear dampings such as those
found in, say, [19,25,28,29,39]. However we note that one may allow the product sf(s) to be negative; namely
“f(s)s > −λ1s

2, ∀s �= 0”, where λ1 is the first eigenvalue for the negative Laplace operator with Dirichlet
boundary conditions.

Remark 2.2. The constructive method that we have developed for the proof of Theorem 1.2 critically relies
on the Carleman estimate in [10,11] (see Lem. 2.1 above). The merit of this Carleman estimate[10] in the
study of control problems is that it applies to general hyperbolic operators, and it allows for more flexibility on
the location of the control as compared to the Carleman estimate in [33], which applies to the ordinary wave
equation, and for which the control shall be located on a neighborhood of the whole boundary (cf. [41,45,46]).
We are going to use the Carleman estimate in [33] to prove a result similar to Theorem 1.2 for the wave equation
in exterior domains. The reason why we make this choice may be found in Remark 3.4 following this proof.
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3. The wave equation in an exterior domain

In this section we consider the damped wave equation
⎧⎨
⎩

ytt − Δy + p(x)y + f(y) + ayt = 0 in Ω × (0,∞)
y = 0 on ∂Ω × (0,∞)
y(0) = y0, yt(0) = y1 in Ω

(3.1)

where Ω = R
N \ D, the set D being compact with a smooth boundary, and y0 ∈ H1

0 (Ω), y1 ∈ L2(Ω). The
functions f and a are given as above while now the function p satisfies

p ∈ Lm
+ (Ω),

p ∈ L1
+(Ω) ∩ L2

+(Ω) for N = 1, m > 2 for N = 2, and m ≥ N for N ≥ 3,

∃b0 > 0 : p(x) ≥ b0, a.e. x ∈ VL = {x ∈ Ω; |x| > L}, (3.2)

for some L > 0, and the location of the feedback control, ω, is the union of VL and a neighborhood of the
boundary of Ω. By neighborhood of ∂Ω, we actually mean the intersection of Ω and a a neighborhood of ∂Ω.
Condition (3.2) on the function p ensures the coerciveness of the energy given by

Ẽ(t) =
1
2

∫
Ω

{|yt(x, t)|2 + |∇y(x, t)|2 + p(x)|y(x, t)|2} dx +
∫

Ω

F (y(x, t)) dx. (3.3)

This energy is also a nonincreasing function of the time variable. More precisely, we have:

Theorem 3.1. Let y0 ∈ H1
0 (Ω) and y1 ∈ L2(Ω). Suppose that ω is the union of VL and a neighborhood of ∂Ω.

Assume that f satisfies (1.1), p satisfies (3.2), and that for a, condition (1.2) holds. Then there exist positive
constants M and α, possibly depending on Ẽ(0) such that the energy Ẽ of each solution of (3.1) satisfies:

Ẽ(t) ≤ M [exp(−αt)]Ẽ(0), ∀t ≥ 0. (3.4)

Remark 3.1. As was the case for Theorem 1.2, when f is globally Lipschitz, the exponential decay will be
proven to be uniform in the energy space while for other functions the exponential decay will be proven to be
uniform only on every ball in the energy space. The possible dependence of M and α on Ẽ(0) will be given as
part of the proof of Theorem 3.1.

Remark 3.2. We note that the condition imposed on p in the lower line of (3.2) is essential in the proof of
the exponential decay of the energy Ẽ (no such condition is needed for bounded sets Ω); in fact, this condition
enables us to estimate the quantity

∫
Ω
|y|2 dx in terms of the energy. It was observed in (e.g. [28]) that when

there is no potential, the decay of Ẽ is polynomial. Whether exponential decay could hold without that condition
is, to the best of our knowledge, unknown.

For the sequel we need the following notations: let μ > 0, η > 1, and for (x, t) ∈ R
N+1, set ϕ(x, t) = η2t2−|x|2,

and Dμ =
{
(x, t) ∈ R

N+1; ϕ(x, t) > μ
}
. The proof of Theorem 3.1 will be based on the following Carleman

estimate due to Ruiz [33], Proposition 1:

Lemma 3.1. Let K be a compact subset of Dμ, then there exists a λ0 > 0 and a constant C = C(K, μ),
independent of u and λ such that for any λ > λ0 and u ∈ C∞

0 (K) we have

λ||e2λϕu||2L2(K) ≤ C||e2λϕ�u||2H−1(K), (3.5)

where �u = utt − Δu.
Furthermore estimate (3.5) holds for all u ∈ L2(K) such that �u ∈ H−1(K).
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Proof of Theorem 3.1. Set T0 = diam(Ω \ ω) + inf {|x|; x ∈ Ω \ ω}. Let T1 > T0. Then there exists μ > 0 such
that T 2

1 > T 2
0 + μ. Let η > 1. For every t ≥ T1, and every x ∈ Ω \ ω, we have η2t2 − |x|2 > μ, so that for each

T > T1, the set K = Ω \ ω × [T1, T ] is a compact subset of Dμ. Further, if we set u = yt, then u ∈ L2(K), and
�u ∈ H−1(K), since �u = −pu − f ′(y)u − aut. Applying Lemma 3.1, we obtain

λ||e2λϕu||2L2(K) ≤ C||e2λϕ(−pu − f ′(y)u − aut)||2H−1(K). (3.6)

Now by Hahn-Banach theorem, Sobolev embedding theorem, and Hölder inequality we find

||e2λϕpu||H−1(K) ≤ C||e2λϕu||L2(K),

||e2λϕf ′(y)u||H−1(K) ≤ C||e2λϕu||L2(K)

(
1 + Ẽ(0)q

)
. (3.7)

On the other hand, applying Hahn-Banach theorem, and integration by parts over K, we get

||e2λϕaut||H−1(K) ≤ C(1 + λ)||e2λϕau||L2(K). (3.8)

When f is globally Lipschitz and λ is large enough, a combination of (3.6)–(3.8), and (1.2) yields

||yt||2L2(Ω×(T1,T )) ≤ C(λ)
∫ T

T1

∫
Ω

a|yt|2 dxdt. (3.9)

For other functions f , we have instead

||yt||2L2(Ω×(T1,T )) ≤ C
(
λ, Ẽ(0)q

) ∫ T

T1

∫
Ω

a|yt|2 dxdt. (3.10)

At this stage, we note that we will be done once we have proven that

Ẽ(T ) ≤ C0(Ẽ(0)q)
∫ T

T1

∫
Ω

|yt|2 dxdt, (3.11)

for some positive constant C0 which may or may not depend on the initial data, depending on the values of q.
Indeed once (3.11) is proven, the combination of (3.11) and (3.10) yields

Ẽ(T ) ≤ C0(Ẽ(0)q)
∫ T

0

∫
Ω

a|yt|2 dxdt, (3.12)

from which one derives the claimed exponential decay with

M = 1 + (1/C0(Ẽ(0)q)), α = (log M)/T, (3.13)

thanks to the semigroup property, and one of the techniques devised in [2,32].
We now prove (3.11). To this end, let r ∈ C1([T1, T ]) with r(T ) = r(T1) = 0. Multiplying the first equation

in (3.1) by ry and integrating by parts over Ω × [T1, T ], we get

2
∫ T

T1

r(t)Ẽ(t) dt +
∫ T

T1

∫
Ω

ryf(y) dxdt = 2
∫ T

T1

∫
Ω

r|yt|2 dxdt +
∫ T

T1

∫
Ω

r′yty dxdt −
∫ T

T1

∫
Ω

rayty dxdt, (3.14)

where
Ẽ(t) =

1
2

∫
Ω

{|yt(x, t)|2 + |∇y(x, t)|2 + p(x)|y(x, t)|2} dx. (3.15)
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We observe that the energies Ẽ and Ẽ satisfy

Ẽ(t) ≤ Ẽ(t) ≤ C
(
1 + Ẽ(0)

q
2

)
Ẽ(t). (3.16)

One easily derives (3.11) from (3.14)–(3.16), (1.1) and the fact that the energy Ẽ is nonincreasing. This
completes the proof of Theorem 3.1. �

Remark 3.3. It should be noted that the constant C0 appearing in (3.11) has the form C1eC2(1+Ẽ(0)q), where
C1 and C2 are independent of the initial data.

Remark 3.4. The Carleman estimates in [10,11], which are provided for bounded domains, may be extended
to unbounded domains; this is, surprisingly, easily done using an appropriate cut-off function (see e.g. [44] for
the case of the plate equation) that transforms the Carleman estimate problem in the unbounded domain into
a Carleman estimate problem in a bounded domain. This estimate may then be used to prove Theorem 3.1.
Doing this would improve that theorem by allowing for a larger class of damping locations, and hyperbolic
equations as in the case of bounded domains. Let us note however that the proof of Theorem 3.1 provided
above, not only needs some different ideas, but also has the merit of being shorter than the one we would have
gotten if we had used the analogue for unbounded domains of the Carleman estimate in [10].

It is also known that using rotated multipliers [9], one can prove Carleman estimates for the ordinary wave
equation; these estimates may be generalized to second order hyperbolic operators where the coefficients of the
principal part satisfy conditions similar to (1.11); this can be carried out by combining ideas from [9–11]. Once
this is done, applying them to prove Theorem 1.2, or Theorem 3.1 would lead to a larger class of damping
locations than the Carleman estimate in [10] could allow.

4. Final remarks and open problems

As the decay rate provided by our approach is not uniform for functions f that are not globally Lipschitz,
it is of interest to know how the nonuniform decay rate depends explicitly on the initial data; having this
information would help understand how the decay rate is affected by a perturbation of the initial data. This
explains why we indicated in the proofs of Theorems 1.2 and 3.1, how to arrive at such an explicit estimate. To
our knowledge, the only paper in the literature that does the same is [32].

On a different note, we want to draw the reader’s attention on the restrictions on the growth of the nonlinear-
ity f (see (1.1)); these restrictions were critical in the development of our constructive method. It was observed
in [8] in the case of the wave equation in 3-D that one could allow for nonlinearities f behaving like s|s|p, with
0 ≤ p < 4 (p = 4 being the critical case for Strichartz inequality based methods); it should be noted that the
proof provided in [8] is based on Strichartz inequalities, and a compactness-uniqueness argument unlike our
proof which is constructive. Whether some of the ideas developed in [8] could be used to build a constructive
proof for more general nonlinearities, is to the best of our knowledge unknown.

The constructive method that we have devised above to solve stabilization problems for semilinear hyperbolic
equations with locally distributed damping is quite general. Indeed the method applies to a wide varieties of
second order evolution equations with locally distributed damping provided for such systems, one has an H−1-
type Carleman estimate similar to one of those stated in Lemma 2.1, and Lemma 3.1 above, or to the one
established in [16]. We point out that such Carleman estimates are yet to be proven:

– for the general elasticity system
⎧⎨
⎩

yi,tt − σij,j = h in Ω × (0, T )
yi = 0 on ∂Ω × (0, T )
yi(0) = 0, yi(T ) = 0, i = 1, 2, ..., N,

(4.1)

where h ∈ H−1(Ω × (0, T )).
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In (1.1) the elasticity stress tensor (σij) is given by

σij = σij(y) = aijklεkl

where (εkl) defined by

εkl = εkl(y) =
1
2
(yk,l + yl,k)

is the strain tensor. The aijkl are the elasticity coefficients. They satisfy the symmetry properties

aijkl = ajilk = aklij , ∀i, j, k, l.

The aijkl depend on the space variable x but not on time, and that they are continuously differentiable, and
satisfy the ellipticity condition

∃a0 > 0 : aijkluijukl ≥ a0uijukl (4.2)
for all second order symmetric tensors (uij);

– and for the Euler-Bernoulli equations
⎧⎨
⎩

ytt + Δ2y = h in Ω × (0, T )
y = ∂y

∂ν = 0 on ∂Ω × (0, T )
y(0) = y0, yt(0) = y1 in Ω.

(4.3)
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