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REGULARITY PROPERTIES OF THE DISTANCE FUNCTIONS
TO CONJUGATE AND CUT LOCI FOR VISCOSITY SOLUTIONS

OF HAMILTON-JACOBI EQUATIONS AND APPLICATIONS
IN RIEMANNIAN GEOMETRY
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and Ludovic Rifford
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Abstract. Given a continuous viscosity solution of a Dirichlet-type Hamilton-Jacobi equation, we
show that the distance function to the conjugate locus which is associated to this problem is locally
semiconcave on its domain. It allows us to provide a simple proof of the fact that the distance function
to the cut locus associated to this problem is locally Lipschitz on its domain. This result, which was
already an improvement of a previous one by Itoh and Tanaka [Trans. Amer. Math. Soc. 353 (2001)
21–40], is due to Li and Nirenberg [Comm. Pure Appl. Math. 58 (2005) 85–146]. Finally, we give
applications of our results in Riemannian geometry. Namely, we show that the distance function to the
conjugate locus on a Riemannian manifold is locally semiconcave. Then, we show that if a Riemannian
manifold is a C4-deformation of the round sphere, then all its tangent nonfocal domains are strictly
uniformly convex.
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1. Introduction

1.1.

Let H : Rn × Rn → R (with n ≥ 2) be an Hamiltonian of class Ck,1 (with k ≥ 2) which satisfies the three
following conditions:

(H1) (Uniform superlinearity.) For every K ≥ 0, there is C(K) <∞ such that

H(x, p) ≥ K|p| − C(K) ∀(x, p) ∈ R
n × R

n.

(H2) (Strict convexity in the adjoint variable.) For every (x, p) ∈ Rn × Rn, the second derivative ∂2H
∂p2 (x, p)

is positive definite.
(H3) For every x ∈ Rn, H(x, 0) < 0.
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Let Ω be an open set in Rn with compact boundary, denoted by S = ∂Ω, of class Ck,1. We are interested in
the viscosity solution of the following Dirichlet-type Hamilton-Jacobi equation{

H(x, du(x)) = 0, ∀x ∈ Ω,
u(x) = 0, ∀x ∈ ∂Ω. (1.1)

We recall that if u : Ω → R is a continuous function, its viscosity subdifferential at x ∈ Ω is the convex subset
of Rn defined by

D−u(x) :=
{
dψ(x) | ψ ∈ C1(Ω) and u− ψ attains a global minimum at x

}
,

while its viscosity superdifferential at x is the convex subset of Rn defined by

D+u(x) :=
{
dφ(x) | φ ∈ C1(Ω) and u− φ attains a global maximum at x

}
·

Note that if u is differentiable at x ∈ Ω, then D−u(x) = D+u(x) = {du(x)}. A continuous function u : Ω → R

is said to be a viscosity subsolution of H(x, du(x)) on Ω if the following property is satisfied:

H(x, p) ≤ 0 ∀x ∈ U, ∀p ∈ D+u(x).

Similarly, a continuous function u : Ω → R is a said to be a viscosity supersolution of H(x, du(x)) on Ω if

H(x, p) ≥ 0 ∀x ∈ U, ∀p ∈ D−u(x).

A continuous function u : Ω̄ → R is called a viscosity solution of (1.1) if it satisfies the boundary condition
u = 0 on S, and if it is both a viscosity subsolution and a viscosity supersolution of H(x, du(x)) = 0 on Ω. The
purpose of the present paper is first to study the distance functions to the cut and conjugate loci associated
with the (unique) viscosity solution of (1.1).

1.2.

The Lagrangian L : Rn × Rn → R which is associated to H by Legendre-Fenchel duality is defined by

L(x, v) := max
p∈Rn

{〈p, v〉 −H(x, p)} ∀(x, v) ∈ R
n × R

n.

It is of class Ck,1 (see [6], Cor. A.2.7, p. 287) and satisfies the properties of uniform superlinearity and strict
convexity in v. For every x, y ∈ Ω and T ≥ 0, denote by ΩT (x, y) the set of locally Lipschitz curves γ : [0, T ] → Ω
satisfying γ(0) = x and γ(T ) = y. Then, set

l(x, y) := inf

{∫ T

0

L(γ(t), γ̇(t))dt | T ≥ 0, γ ∈ ΩT (x, y)

}
·

The viscosity solution of (1.1) is unique and can be characterized as follows:

Proposition 1.1. The function u : Ω → R given by

u(x) := inf {l(y, x) | y ∈ ∂Ω} , ∀x ∈ Ω, (1.2)

is well-defined and continuous on Ω. Moreover, it is the unique viscosity solution of (1.1).

The fact that u is well-defined and continuous is easy and left to the reader. The fact that the function u
given by (1.2) is a viscosity solution of (1.1) is a standard result in viscosity theory (see [18], Thm. 5.4, p. 134).
The proof of the fact that, thanks to (H3), u is indeed the unique viscosity solution of (1.1) may be found
in [4,5,15].
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1.3.

Before giving in the next paragraph a list of properties satisfied by the viscosity solution of (1.1), we recall
some notions of nonsmooth analysis.

A function u : Ω → R is called locally semiconcave on Ω if for every x̄ ∈ Ω, there exist C, δ > 0 such that

μu(x) + (1 − μ)u(y) − u(μx+ (1 − μ)y) ≤ μ(1 − μ)C|x− y|2,

for all x, y in the open ball B(x̄, δ) ⊂ Ω and every μ ∈ [0, 1]. Note that every locally semiconcave function is
locally Lipschitz on its domain, and thus, by Rademacher’s Theorem, is differentiable almost everywhere on its
domain. A way to prove that a given function u : Ω → R is locally semiconcave on Ω is to show that, for every
x̄ ∈ Ω, there exist σ, δ > 0 such that, for every x ∈ B(x̄, δ) ⊂ Ω, there is px ∈ Rn such that

u(y) ≤ u(x) + 〈px, y − x〉 + σ|y − x|2 ∀y ∈ B(x̄, δ).

We refer the reader to [22,23] for the proof of this fact.
If u : Ω → R is a continuous function, its limiting subdifferential at x ∈ Ω is the subset of Rn defined by

∂Lu(x) :=
{

lim
k→∞

pk | pk ∈ D−u(xk), xk → x

}
·

By construction, the graph of the limiting subdifferential is closed in Rn × Rn. Moreover, the function u is
locally Lipschitz on Ω if and only if the graph of the limiting subdifferential of u is locally bounded (see [9,23]).

Let u : Ω → R be a locally Lipschitz function. The Clarke generalized differential (or simply generalized
gradient) of u at the point x ∈ Ω is the nonempty compact convex subset of Rn defined by

∂u(x) := conv (∂Lu(x)),

that is, the convex hull of the limiting subdifferential of u at x. Notice that, for every x ∈ Ω,

D−u(x) ⊂ ∂Lu(x) ⊂ ∂u(x) and D+u(x) ⊂ ∂u(x).

It can be shown that, if ∂u(x) is a singleton, then u is differentiable at x and ∂u(x) = {du(x)}. The converse
result is false.

Let u : Ω → R be a function which is locally semiconcave on Ω. It can be shown (see [6,23]) that for every
x ∈ Ω and every p ∈ D+u(x), there are C, δ > 0 such that

u(y) ≤ u(x) + 〈p, y − x〉 +
C

2
|y − x|2 ∀y ∈ B(x, δ) ⊂ Ω.

In particular, D+u(x) = ∂u(x) for every x ∈ Ω. The singular set of u is the subset of Ω defined by

Σ(u) := {x ∈ Ω | u is not differentiable at x}
= {x ∈ Ω | ∂u(x) is not a singleton}
= {x ∈ Ω | ∂Lu(x) is not a singleton} ·

From Rademacher’s theorem, Σ(u) has Lebesgue measure zero. In fact, the following result holds (see [3,6,23,26]):

Theorem 1.2. Let Ω be an open subset of M . The singular set of a locally semiconcave function u : Ω → R is
countably (n− 1)-rectifiable, i.e., is contained in a countable union of locally Lipschitz hypersurfaces of Ω.

As we shall see, the Li-Nirenberg theorem (see Thm. 1.10) allows to prove that Σ(u) has indeed finite
(n− 1)-dimensional Hausdorff measure.



698 M. CASTELPIETRA AND L. RIFFORD

1.4.

From now on, u : Ω → R denotes the unique viscosity solution of (1.1). Let us collect some properties
satisfied by u:

(P1) The function u is locally semiconcave on Ω.
(P2) The function u is Ck,1 in a neighborhood of S (in Ω).
(P3) The function u is Ck,1 on the open set Ω \ Σ(u).
(P4) For every x ∈ Ω and every p ∈ ∂Lu(x), there are Tx,p > 0 and a curve γx,p : [−Tx,p, 0] → Ω such that

γx,p(−Tx,p) ∈ S and, if (x, p) : [−Tx,p, 0] → Rn × Rn denotes the solution to the Hamiltonian system{
ẋ(t) = ∂H

∂p (x(t), p(t))
ṗ(t) = −∂H

∂x (x(t), p(t))

with initial conditions x(0) = x, p(0) = p, then we have

γx,p(t) = x(t) and du(γx,p(t)) = p(t), ∀t ∈ [−Tx,p, 0],

which implies that

u(x) − u(γx,p(t)) =
∫ 0

t

L (γx,p(s), γ̇x,p(s)) ds, ∀t ∈ [−Tx,p, 0].

(P5) For every T > 0 and every locally Lipschitz curve γ : [−T, 0] → Ω satisfying γ(0) = x,

u(x) − u(γ(−T )) ≤
∫ 0

−T

L (γ(s), γ̇(s)) ds.

(P6) As a consequence, we have for every x ∈ Ω, every p ∈ ∂Lu(x), every T > 0, and every locally Lipschitz
curve γ : [−T, 0] → Ω satisfying γ(0) = x and γ(−T ) ∈ ∂Ω,∫ 0

−Tx,p

L (γx,p(t), γ̇x,p(t)) dt ≤
∫ 0

−T

L (γ(s), γ̇(s)) ds.

(P7) If x ∈ Ω is such that u is C1,1 in a neighborhood of x, then for every t < 0, the function u is C1,1 in a
neighborhood of γx,p(t) (with p = du(x)).

The proof of (P1) can be found in [22]. Properties (P2)–(P3) are straightforward consequences of the method
of characteristics (see [6]). Properties (P4)–(P6) taken together give indeed a characterization of the fact that
u is a viscosity solution of (1.1) (see for instance [10,23]). Finally the proof of (P7) can be found in [22].

1.5.

We proceed now to define the exponential mapping associated to our Dirichlet problem. Let us denote by φH
t

the Hamiltonian flow acting on Rn × Rn. That is, for every x, p ∈ Rn × Rn, the function t �→ φH
t (x, p) denotes

the solution to {
ẋ(t) = ∂H

∂p (x(t), p(t))
ṗ(t) = −∂H

∂x (x(t), p(t))
(1.3)

satisfying the initial condition φH
0 (x, p) = (x, p). Denote by π : Rn × Rn → Rn the projection on the first

coordinate (x, p) �→ x. The exponential from x ∈ S in time t ≥ 0 is defined as

exp(x, t) := π
(
φH

t (x, du(x))
)
.
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Note that, due to blow-up phenomena, exp(x, t) is not necessarily defined for any t ≥ 0. For every x ∈ S, we
denote by T (x) ∈ (0,+∞) the maximal positive time such that exp(x, t) is defined on [0, T (x)). The function
(x, t) �→ exp(x, t) is of class Ck−1 on its domain.

Definition 1.3. For every x ∈ S, we denote by tconj(x), the first time t ∈ (0, T (x)) such that d exp(x, t) is
singular (that is, such that the differential of exp in the (x, t) variable at (x, t) is not surjective). The function
tconj : S → (0,+∞) ∪ {+∞} is called the distance function to the conjugate locus. The set of x ∈ S such that
tconj(x) <∞ is called the domain of tconj.

Note that, if d exp(x, t) is nonsingular for every t ∈ (0, T (x)), then tconj(x) = +∞. The exponential may in-
deed be extended into an open neighborhood S of S. In that case, thanks to (H3) (which implies ∂

∂t exp(x, t) 
= 0),
for every x ∈ S, the first conjugate time is the first time t > 0 such that d exp(x, t) is singular in the x variable.

Theorem 1.4. Assume that H and S = ∂Ω are of class C2,1. Then, the domain of tconj is open and the
function x �→ tconj(x) is locally Lipschitz on its domain.

If M is a submanifold of Rn of class at least C2, a function u : M → R is called locally semiconcave on M if
for every x ∈M there exist a neighborhood Vx of x and a diffeomorphism ϕx : Vx → ϕx(Vx) ⊂ R

n of class C2

such that f ◦ ϕ−1
x is locally semiconcave on the open set ϕx(Vx) ⊂ Rn.

Theorem 1.5. Assume that H and S = ∂Ω are of class C3,1. Then, the function x �→ tconj(x) is locally
semiconcave on its domain.

The proofs of Theorems 1.4 and 1.5 are postponed to Section 2. Applications of these results in Riemannian
geometry are given in Section 4. The strategy that we will develop to prove the above theorems will allow us to
show that any tangent nonfocal domain of a C4-deformation of the round sphere (Sn, gcan) is strictly uniformly
convex, see Section 4.

1.6.

The cut-locus of u is defined as the closure of its singular set, that is

Cut(u) = Σ(u).

Definition 1.6. For every x ∈ S, we denote by tcut(x) > 0, the first time t ∈ (0, T (x)) such that exp(x, t) ∈
Cut(u). The function tcut : S → (0,+∞) is called the distance function to the cut locus.

Note that the following result holds.

Lemma 1.7. For every x ∈ S, tcut(x) is finite and tcut(x) ≤ tconj(x).

Proof of Lemma 1.7. Let x ∈ S be fixed; let us prove that tcut(x) is finite. Suppose that exp(x, t) /∈ Cut(u)
for all t ∈ (0, T (x)). Two cases may appear. If there is t ∈ (0, T (x)) such that exp(x, t) /∈ Ω, then this means
that there is t̄ ∈ (0, T (x)) such that exp(x, t̄) ∈ S. So, thanks to (P3), u is Ck,1 along the curve γ(·) defined as
γ(t) := exp(x, t) for t ∈ [0, t̄]. Thanks to (P4), we have

0 = u(γ(t̄)) − u(γ(0)) =
∫ t̄

0

L(γ(s), γ̇(s))ds.

But by definition and (H3), the Lagrangian L satisfies for every (x, v) ∈ R
n × R

n,

L(x, v) := max
p∈Rn

{〈p, v〉 −H(x, p)}

≥ −H(x, 0) > 0,
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which yields ∫ t̄

0

L(γ(s), γ̇(s))ds > 0.

So, we obtain a contradiction. If exp(x, t) belongs to Ω for all t ∈ (0, T (x)), this means, by compactness of Ω,
that T (x) = +∞. So, thanks to (P3) and (P4), setting γ(t) := exp(x, t) for any t ≥ 0, we obtain

u(γ(t)) = u(γ(t)) − u(γ(0)) =
∫ t

0

L(γ(s), γ̇(s))ds ∀t ≥ 0.

But, by compactness of Ω, on the one hand there is ρ > 0 such that L(γ(s), γ̇(s)) ≥ ρ for any t ≥ 0 and on
the other hand u is bounded from above. We obtain a contradiction. Consequently, we deduce that there is
necessarily t ∈ (0, T (x)) such that exp(x, t) ∈ Cut(u), which proves that tcut(x) is well-defined.

Let us now show that tcut(x) ≤ tconj(x). We argue by contradiction. Suppose that tconj(x) < tcut(x). Thanks
to (P3), this means that the function u is at least C1,1 in an open neighborhood V of ȳ := exp(x, tconj(x)) in Ω.
Set for every y ∈ V ,

T (y) := inf
{
t ≥ 0 | φH

−t(y, du(y)) ∈ S
}
·

By construction, one has T (ȳ) = tconj(x). Moreover since the curve t �→ exp(x, t) is transversal to S at t = 0,
taking V smaller if necessary, we may assume that T is of class Ck−1,1 on V . Define F : V → S by

F (y) := π
(
φH
−T (y)(y, du(y))

)
∀y ∈ V .

The function F is Lipschitz on V and satisfies exp(F (y), T (y)) = y for every y ∈ V . This shows that the
function exp has a Lipschitz inverse in a neighborhood of the point (x, tconj(x)). This contradicts the fact that
d exp(x, tconj(x)) is singular. �

Actually, the distance function to the cut locus at x ∈ S can be seen as the time after which the “geodesic”
starting at x ceases to be minimizing.

Lemma 1.8. For every x ∈ S, the time tcut(x) is the maximum of times t ≥ 0 satisfying the following property:

u(exp(x, t)) =
∫ t

0

L

(
exp(x, s),

∂ exp
∂t

(x, s)
)

ds. (1.4)

Since it uses concepts that will be defined in Section 2.1, we postpone the proof of Lemma 1.8 to Appendix B.
Define the set Γ(u) ⊂ Cut(u) as

Γ(u) := {exp(x, t) | x ∈ S, t > 0 s.t. t = tconj(x) = tcut(x)} ·

The two above lemmas yields the following result.

Lemma 1.9. One has
Cut(u) = Σ(u) ∪ Γ(u).

The following theorem is due to Li and Nirenberg [17]; we provide a new proof of it in Section 3.

Theorem 1.10. Assume that H and S = ∂Ω are of class C2,1. Then the function x �→ tcut(x) is locally
Lipschitz on its domain.

As a corollary, as it is done in [17], since

Cut(u) = {exp(x, tcut(x)) | x ∈ S},
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we deduce that the cut-locus of u has a finite (n− 1)-dimensional Hausdorff measure. Note that it can also be
shown (see [6,14,20]) that, if H and S = ∂Ω are of class C∞, then the set Γ(u) has Hausdorff dimension less or
equal than n− 2.

2. Proofs of Theorems 1.4 and 1.5

2.1. Proof of Theorem 1.4

Before giving the proof of the theorem, we recall basic facts in symplectic geometry. We refer the reader
to [1,7] for more details.

The symplectic canonical form σ on Rn × Rn is given by

σ

((
h1

v1

)
,

(
h2

v2

))
=
〈(

h1

v1

)
, J

(
h2

v2

)〉
,

where J is the 2n× 2n matrix defined as

J =
(

0n In
−In 0n

)
.

It is worth noticing that any Hamiltonian flow in R
n ×R

n preserves the symplectic form. That is, if (x(·), p(·))
is a trajectory of (1.3) on the interval [0, T ], then for every (h1, v1), (h2, v2) ∈ Rn × Rn and every t ∈ [0, T ], we
have

σ

((
h1

v1

)
,

(
h2

v2

))
= σ

((
h1(t)
v1(t)

)
,

(
h2(t)
v2(t)

))
,

where (hi(·), vi(·)) (with i = 1, 2) denotes the solution on [0, T ] to the linearized Hamiltonian system along
(x(·), p(·)), which is given by {

ḣi(t) = B(x, t)∗hi(t) +Q(x, t)vi(t)
v̇i(t) = −A(x, t)hi(t) −B(x, t)vi(t),

with initial condition (hi, vi) at t = 0.
We recall that a vector space J ⊂ R

n × R
n is called Lagrangian if it is a n-dimensional vector space where

the symplectic form σ vanishes. If a n-dimensional vector subspace J of Rn × Rn is transversal to the vertical
subspace, that is J ∩ {0} × Rn = {0}, then there is a n× n matrix K such that

J =
{(

h
Kh

)
| h ∈ R

n

}
·

It can be checked that J is Lagrangian if and only if K is a symmetric matrix.
Let x ∈ S be fixed. Denote by (x(·), p(·)) the solution to the Hamiltonian system (1.3) on [0, T (x)) satisfying

(x(0), p(0)) = (x, du(x)). The linearized Hamiltonian system along (x(·), p(·)) is given by{
ḣ(t) = B(x, t)∗h(t) +Q(x, t)v(t)
v̇(t) = −A(x, t)h(t) −B(x, t)v(t),

(2.1)

where the matrices A(x, t), B(x, t) and Q(x, t) are respectively given by

∂2H

∂x2
(x(t), p(t)),

∂2H

∂x∂p
(x(t), p(t)),

∂2H

∂p2
(x(t), p(t)),

and where B(x, t)∗ denotes the transpose of B(x, t). Define the matrix

M(x, t) :=
(

B(x, t)∗ Q(x, t)
−A(x, t) −B(x, t)

)
,
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and denote by R(x, t) the 2n× 2n matrix solution of⎧⎨
⎩
∂R

∂t
(x, t) = M(x, t)R(x, t)

R(x, 0) = I2n.

Finally, let us set the following spaces (for every t ∈ [0, T (x))):

J(x, t) :=
{
R(x, t)−1

(
0
w

)
| w ∈ R

n

}
,

U(x) :=
{(

h
D2u(x)h

)
| h ∈ R

n

}
·

The following result is the key tool in the proofs of Theorems 1.4 and 1.5.

Lemma 2.1. The following properties hold:
(i) The spaces J(x, t) (for all t ∈ (0, T (x))) and U(x) are Lagrangian subspaces of R

n ×R
n; moreover, one

has
tconj(x) = min {t ≥ 0 | J(x, t) ∩ U(x) 
= {0}} ·

(ii) For every t ∈ (0, tconj(x)], the space J(x, t) is transversal to the vertical subspace, that is

J(x, t) ∩ ({0} × R
n) = {0} ∀t ∈ (0, tconj(x)].

(iii) If we denote for every t ∈ (0, tconj(x)], by K(x, t) the symmetric matrix such that

J(x, t) =
{(

h
K(x, t)h

)
| h ∈ R

n

}
,

then the mapping t ∈ [0, T (x)) �→ K(x, t) is of class Ck−1,1. Moreover there is a continuous function
δ > 0 which is defined on the domain of the exponential mapping such that

K̇(x, t) :=
∂

∂t
K(x, t) ≥ δ(x, t)In ∀t ∈ (0, T (x)).

Proof. Let us prove assertion (i). The fact that J(t, x) and U(x) are Lagrangian subspaces of Rn × Rn is easy,
its proof is left to the reader. Suppose that there exists

0 
=
(
h
v

)
∈ J(x, t) ∩ U(x).

On the one hand, for a solution of (2.1) with initial data (h, v), we have that h(t) = 0, since (h, v) is in J(x, t). On
the other hand, since (h, v) ∈ U(x), d exp(x, t)h = h(t) = 0 with h 
= 0, i.e. d exp(x, t) is singular. Conversely,
if d exp(x, t) is singular for some t ∈ (0, T (x)), then there is h 
= 0 such that d exp(x, t)h = 0. Then there exists
v(t) ∈ Rn such that

R(x, t)
(

h
D2u(x)h

)
=
(
d exp(x, t)h

v(t)

)
=
(

0
v(t)

)
,

that is, (h,D2u(x)h) ∈ J(x, t) ∩ U(x).
Let us prove assertion (ii). We argue by contradiction and assume that there is t ∈ (0, tconj(x)] such that

J(x, t) ∩ ({0} × Rn) 
= {0}. By definition of tconj(x), we deduce that

J(x, s) ∩ U(x) = {0} ∀s ∈ [0, t). (2.2)
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Doing a change of coordinates if necessary, we may assume that D2u(x) = 0, that is

U(x) = R
n × {0}·

By (2.2), we know that, for every s ∈ [0, t), J(x, s) is a Lagrangian subspace which is transversal to U(x). Hence
there is, for every s ∈ [0, t), a symmetric n× n matrix K(s) such that

J(x, s) =
{(

K(s)v
v

)
| v ∈ R

n

}
· (2.3)

Let us use the following notation: we split any matrix R of the form 2n× 2n in four matrices n× n so that

R =
(
R1 R2

R3 R4

)
.

Indeed, for any fixed w ∈ Rn and any s ∈ [0, t),

R(x, s)−1

(
0
w

)
=
(
hw,s

vw,s

)
=
(

K(s)vw,s

vw,s

)
,

where hw,s =
(
R(x, s)−1

)
2
w and vw,s =

(
R(x, s)−1

)
4
w. Thanks to (2.2), the matrix

(
R(x, t)−1

)
4

is non-singular
for every s ∈ (0, t), then we have

K(s) =
(
R(x, s)−1

)
2

(
R(x, s)−1

)−1

4
.

This shows that the function s ∈ [0, t) �→ K(s) is of class Ck−1,1. We now proceed to compute the derivative
of K at some s̄ ∈ (0, t), that we shall denote by K̇(s̄). Let v 
= 0 ∈ Rn be fixed, set hs̄ := K(s̄)v and consider
the unique ws̄ ∈ Rn satisfying

R(x, s̄)
(
hs̄

v

)
=
(

0
ws̄

)
∀s ∈ (0, t).

Define the C1 curve φ : (0, t) → Rn ××Rn by

φ(s) =
(
hs

vs

)
:= R(x, s)−1

(
0
ws̄

)
∀s ∈ (0, t).

The derivative of φ at s̄ is given by

φ̇(s̄) =
∂

∂s

[
R(x, s)−1

] ( 0
ws̄

)
= −R(x, s)−1M(x, s)

(
0
ws̄

)
.

Thus, since the Hamiltonian flow preserves the symplectic form, we have

σ(φ(s̄), φ̇(s̄)) = σ

(
R(x, s̄)−1

(
0
ws̄

)
,−R(x, s̄)−1M(x, s̄)

(
0
ws̄

))

= σ

((
0
ws̄

)
,−M(x, s̄)

(
0
ws̄

))
= 〈Q(x, s̄)ws̄, ws̄〉·

By construction, the vector φ(s) belongs to J(x, s) for any s ∈ (0, t). Hence, it can be written as

φ(s) =
(
hs

vs

)
=
(

K(s)vs

vs

)
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which means that

φ̇(s) =
(

K̇(s)vs + K(s)v̇s

v̇s

)
.

Thus, we have (using that vs̄ = v)

σ(φ(s̄), φ̇(s̄)) = σ

((
K(s̄)v
v

)
,

(
K̇(s̄)v
v̇s̄

))
+ σ

((
K(s̄)v
v

)
,

(
K(s̄)v̇s̄

0

))

=
〈(

K(s̄)v
v

)
,

(
v̇s̄

−K̇(s̄)v

)〉
+
〈(

K(s̄)v
v

)
,

(
0

−K(s̄)v̇s̄

)〉
= 〈K(s̄)v, v̇s̄〉 − 〈v, K̇(s̄)v〉 − 〈v,K(s̄)v̇s̄〉
= −〈v, K̇(s̄)v〉,

since K(s̄) is symmetric. Finally, we deduce that

〈v, K̇(s̄)v〉 = −〈ws̄, Q(x, s̄)ws̄〉 < 0. (2.4)

By assumption, we know that J(x, t) ∩ ({0} × Rn) 
= {0}, which can also be written as

J(x, t) ∩ J(x, 0) 
= {0}·

This means that there is v 
= 0 and a sequence
{(

hk

vk

)}
in Rn × Rn such that

lim
k→∞

(
hk

vk

)
=
(

0
v

)
and

(
hk

vk

)
∈ J(x, t− 1/k) ∀k large enough in N.

But we have for any large k ∈ N, hk = K(t − 1/k)vk. Hence we deduce that limk→∞ K(t − 1/k)vk = 0. But,
thanks to (2.4) we have for k large enough

〈vk,K(t− 1/k)vk〉 =
∫ t−1/k

0

〈vk, K̇(s)vk〉ds ≤
∫ t/2

0

〈vk, K̇(s)vk〉ds.

But

lim
k→∞

∫ t/2

0

〈vk, K̇(s)vk〉ds =
∫ t/2

0

〈v, K̇(s)v〉ds < 0.

This contradicts the fact that limk→∞ K(t− 1/k)vk = 0 and concludes the proof of assertion (ii). We note that
another way to prove (ii) would have been to use the theory of Maslov index, see [2].

It remains to prove (iii). By (ii), for every t ∈ (0, tconj(x)], the matrix
(
R(x, t)−1

)
2

is nonsingular and the
matrix K(x, t) is given by

K(x, t) =
(
R(x, t)−1

)
4

(
R(x, t)−1

)−1

2
.

This shows that the function t ∈ (0, tconj(x)] �→ K(x, t) is of class Ck−1,1. Let us compute K̇(x, t) for some
t ∈ (0, tconj(x)]. Let h ∈ Rn be fixed, set vt := K(x, t)h and consider the unique wt ∈ Rn satisfying

R(x, t)
(

h
vt

)
=
(

0
wt

)
,

that is
wt = [R(x, t)3 +R(x, t)4]h.
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Define the C1 curve ϕ : (0, tconj] → Rn × Rn by

ϕ(s) =
(
hs

vs

)
:= R(x, s)−1

(
h
vt

)
, ∀s ∈ (0, tconj(x)].

As above, on the one hand we have

σ(ϕ(t), ϕ̇(t)) = σ

(
R(x, t)−1

(
0
wt

)
,−R(x, t)−1M(x, t)

(
0
wt

))

= σ

((
0
wt

)
,−M(x, t)

(
0
wt

))
= 〈Q(x, t)wt, wt〉·

On the other hand, using the fact that ϕ(s) ∈ J(x, s) for any s, we also have

σ(ϕ(t), ϕ̇(t)) = 〈K(x, t)h, h〉·

For every t ∈ (0, tconj(x)], the linear operator : Ψ(x, t) : h �→ wt := [R(x, t)3 +R(x, t)4]h is invertible. If we
denote, for every t ∈ (0, tconj(x)], by λ(x, t) > 0, the smallest eigenvalue of the symmetric matrix Q(x, t), then
we have for any h ∈ Rn

〈K(x, t)h, h〉 = 〈Q(x, t)wt, wt〉 ≥ λ(x, t)|wt|2

≥ λ(x, t)‖Ψ(x, t)−1‖−2|h|2.

The function δ defined as

δ(x, t) := λ(x, t)‖Ψ(x, t)−1‖−2 ∀x ∈ S, ∀t ∈ (0, tconj(x)],

depends continuously on (x, t). This concludes the proof of Lemma 2.1. �

We are now ready to prove Theorems 1.4.

Proof of Theorem 1.4. Let x̄ ∈ S such that t̄ := tconj(x̄) < ∞ be fixed. By Lemma 2.1, there is h ∈ Rn with
|h| = 1 such that K(x̄, t̄)h = D2u(x̄)h. There is ρ > 0 such that the function Ψ : (S ∩B(x̄, ρ))×(t̄−ρ, t̄+ρ) → R

defined by

Ψ(x, t) :=
〈 [
K(x, t) −D2u(x)

]
h, h
〉

(2.5)

is well-defined (note that Ψ(x̄, t̄) = 0). The function Ψ is locally Lipschitz in the x variable and of class Ck−1,1

in the t variable. Moreover, restricting ρ if necessary, we may assume that

∂Ψ
∂t

(x, t) = 〈K̇(x, t)h, h〉 ≥ δ(x, t) ≥ 1
2
δ(x̄, t̄) > 0 ∀x ∈ S ∩B(x̄, ρ), ∀t ∈ (t̄− ρ, t̄+ ρ).

Thanks to the Clarke Implicit Function Theorem (see [8], Cor., p. 256), there are an open neighborhood V of
x̄ in S and a Lipschitz function τ : V → R such that

Ψ(x, τ(x)) = 0 ∀x ∈ V .

This shows that for every x ∈ V , tconj(x) is finite. To prove that tconj is locally Lipschitz on its domain, it
suffices to show that for every x̄ in the domain of tconj, there is a constant K > 0 and an open neighborhood V
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of x̄ such that for every x ∈ V , there is a neighborhood Vx of x in S and a function τx : Vx → R which is
K-Lipschitz and which satisfies

τx(x) = tconj(x) and tconj(y) ≤ τx(y) ∀y ∈ Vx.

Derivating Ψ(x, τ(x)) = 0 yields

∇τ(x) = −
∂Ψ
∂x (x, τ(x))
∂Ψ
∂t (x, τ(x))

∀x ∈ V .

This shows that the Lipschitz constant of τ depends only on the Lipschitz constant of Ψ and on a lower bound
on δ(x̄, t̄). The result follows. �

2.2. Proof of Theorem 1.5

Let x̄ ∈ S in the domain of tconj(x) be fixed. By Lemma 2.1, there is h ∈ R
n with |h| = 1 such that

K(x̄, t̄)h = D2u(x̄)h. There is ρ > 0 such that the function Ψ : (S ∩B(x̄, ρ))×(t̄−ρ, t̄+ρ) → R defined by (2.5)
is well-defined. Since k ≥ 3, Ψ is at least of class C1,1. Moreover, Ψ(x̄, t̄) = 0 and

∂Ψ
∂t

(x̄, t̄) = 〈K̇(x̄, t̄)h, h〉 ≥ δ(x̄, t̄) > 0.

By the usual Implicit Function Theorem, there exist an open ball B of x̄ and a C1,1 function τ : S ∩ B → R

such that
Ψ(x, τ(x)) = 0 ∀x ∈ S ∩ B.

This means that we have

τ(x̄) = tconj(x̄) and tconj(x) ≤ τ(x) ∀x ∈ S ∩ B.

Moreover, derivating Ψ(x, τ(x)) = 0 two times (thanks to Rademacher’s theorem, this can be done almost
everywhere) yields

∇τ(x) = −
∂Ψ
∂x (x, τ(x))
∂Ψ
∂t (x, τ(x))

∀x ∈ S ∩ B

and

D2τ(x) = − −1
∂Ψ
∂t (x, τ(x))

[
∂2Ψ
∂x2

(x, τ(x))h +
∂2Ψ
∂t∂x

(x, τ(x))〈∇τ(x), h〉 +
〈
∂2Ψ
∂t∂x

(x, τ(x)), h
〉
∇τ(x)

]
.

This shows that the Lipschitz constant of ∇τ is controlled by the local C1,1 and C3 norms of the functions K
and u. The radius of B being controlled as well when we apply the Implicit Function Theorem, this proves that
tconj(x) is locally semiconcave on its domain. �

3. Proof of Theorem 1.10

We have to show that there is L > 0 such that the following property holds:
(PL) For every x ∈ S, there are a neighborhood Vx of x ∈ S and a L-Lipschitz function τx : Vx → R satisfying

τx(x) = tcut(x) and tcut(y) ≤ τx(y) ∀y ∈ Vx.

First, we claim that tcut is continuous on S. Let x ∈ S be fixed and {xk} be a sequence of points in S
converging to x such that tcut(xk) tends to T as k tends to ∞. Since the limit (for the C1 topology) of a
sequence of “minimizing curves” is still minimizing, we know by Lemma 1.8 that tcut(x) ≥ T . But each point
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exp(xk, tcut(xk)) belongs to Cut(u). So, since Cut(u) is closed, the point exp(x, T ) belongs to Cut(u). This
proves the continuity of tcut.

Let Ŝ ⊂ S be the set defined by

Ŝ := {x ∈ S | tconj(x) = tcut(x)} ·

Since by continuity tcut is bounded, the set Ŝ is included in the domain of tconj. Therefore, by Theorem 1.4, Ŝ
is compact and there is L1 > 0 such that tcut = tconj is L1-Lipschitz on Ŝ (in the sense of (PL)).

Let x̄ ∈ S \ Ŝ be fixed. Set t̄ := tcut(x̄), ȳ := exp(x̄, t̄), and (ȳ, p̄) := φH
t̄ (x̄, du(x̄)). Since exp is not singular

at (x̄, t̄), one has
diam (∂u(ȳ)) =: μ > 0.

This means that there is x′ ∈ S such that exp(x′, t′) = ȳ (with t′ := tcut(x′)) and

|p̄− p′| > μ

2
,

where p′ is defined by (ȳ, p′) = φH
t′ (x

′, du(x′)). Since p′ ∈ ∂u(ȳ) = D+u(ȳ), by semiconcavity of u, there are
δ, C > 0 such that

u(y) ≤ u(ȳ) + 〈p′, y − ȳ〉 +
C

2
|y − ȳ|2 ∀y ∈ B(ȳ, δ).

Set g(y) := u(ȳ) + 〈p′, y − ȳ〉 + C|y − ȳ|2 for every y ∈ B(ȳ, δ) and define the C1 function Ψ : S × R → R by

Ψ(x, t) := g(exp(x, t)) −
∫ t

0

L

(
exp(x, s),

∂ exp
∂s

(x, s)
)

ds.

Note that Ψ(x̄, t̄) = 0. Moreover if x 
= x̄ is such that exp(x, t) ∈ B(ȳ, δ) and Ψ(x, t) = 0 for some t > 0, then
we have

u(exp(x, t)) −
∫ t

0

L

(
exp(x, s),

∂ exp
∂s

(x, s)
)

ds < g(exp(x, t)) −
∫ t

0

L

(
exp(x, s),

∂ exp
∂s

(x, s)
)

ds = 0,

which means that tcut(x) ≤ t. Set for every t ∈ [0, t̄], γ̄(t) := exp(x̄, t). We have

∂Ψ
∂t

(x̄, t̄) = 〈p′, ˙̄γ(t̄)〉 − L(γ̄(t̄), ˙̄γ(t̄))

= 〈p′ − p̄, ˙̄γ(t̄)〉 +H(ȳ, p̄) = 〈p′ − p̄, ˙̄γ(t̄)〉·

Two cases may appear:

First case. There is ρ > 0 such that μ ≥ ρ. Since the set {p | H(ȳ, p) ≤ 0) is uniformly convex, we deduce
that the quantity

∂Ψ
∂t

(x̄, t̄) = 〈p′ − p̄, ˙̄γ(t̄)〉 =
〈
p′ − p̄,

∂H

∂p
(ȳ, p̄)

〉
is bounded from below by some constant ε(ρ) > 0. By the Implicit Function Theorem, there are an open ball B
of x̄ and a C1 function τ : B ∩ S → R such that

Ψ(x, τ(x)) = 0 ∀x ∈ B ∩ S,
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where the Lipschitz constant of τ is bounded from above by M/ε(ρ), where M denotes the Lipschitz constant
of Ψ. This shows that there is L2 > 0 such that tcut is L2-Lipschitz (in the sense of (PL)) on the set

Sρ := {x ∈ S | diam (∂u(exp(tcut(x), x))) ≥ ρ} ·

Second case. μ is small enough. Without loss of generality, doing a global change of coordinates if necessary,
we may assume that S is an hyperplane in a neighborhood of x̄ and that D2u(x̄) = 0. Set for every s ∈ [0, t̄],

Lx(s) :=
∂L

∂x
(γ̄(s), ˙̄γ(s)), Lv(s) :=

∂L

∂v
(γ̄(s), ˙̄γ(s)),

and
hν(s) := d exp(x̄, s)(ν) ∀ν ∈ Tx̄S ⊂ R

n.

Then 〈
∂Ψ
∂x

(x̄, t̄), ν
〉

=
〈
p′,

∂ exp
∂x

(x̄, t̄)(ν)
〉
−
∫ t̄

0

〈Lx(s), hν(s)〉 + 〈Lv(s), ḣν(s)〉ds

=
〈
p′,

∂ exp
∂x

(x̄, t̄)(ν)
〉

+
∫ t̄

0

〈Lx(s) − d
ds
Lv(s), hν(s)〉ds −

[
〈Lv(·), hν(·)〉

]t̄
0

=
〈
p′,

∂ exp
∂x

(x̄, t̄)(ν)
〉
− 〈Lv(t̄), hν(t̄)〉

= 〈p′ − p̄, hν(t̄)〉·

Recall that (hν(t), v̄ν(t)) is the solution of the linearized Hamiltonian system (2.1) along γ̄ starting at hν(0) = ν
and vν(0) = D2u(x̄)ν = 0. Let us denote by (h′(t), v′(t)) the solution of (2.1) along γ̄ such that h′(0) = x′ − x̄
and v′(0) = D2u(x̄)(x′ − x) = 0. Then, if p′ − p̄ is small, p′ − p̄ equals v′(t̄) up to a quadratic term. But since
the Hamiltonian flow preserves the symplectic form, there is D > 0 such that we have for any ν ∈ Tx̄S of norm
one ∣∣〈hν(t̄), v′(t̄)〉

∣∣ = |〈h′(t̄), vν(t̄)〉| ≤ D|x′ − x̄|2,
because2 we know that exp(x̄, t̄) = exp(x′, t′). In conclusion, we have that ∂Ψ

∂x (x̄, t̄) is bounded from above by
D′|x′ − x̄|2 for some D′ > 0. Besides, since H(ȳ, p̄) = H(ȳ, p′) = 0, we have, by Taylor’s formula,

0 =
〈
∂H

∂p
(ȳ, p̄), p′ − p̄

〉
+

1
2

〈
∂2H

∂p2
(ȳ, p)(p′ − p̄), p′ − p̄

〉

for some p on the segment [p̄, p′]. Therefore we deduce that, for some c > 0,∣∣∣∣∂Ψ
∂t

(z̄, t̄)
∣∣∣∣ ≥ c|p′ − p̄|2,

where we also have a positive constant k such that |p′− p̄| ≥ k|x′− x̄|. Then, by the Implicit Function Theorem,
the function τx̄(·) is well defined as the function such that Ψ(x, τx̄(x)) = 0, and its gradient is bounded from
above. This yields that if μ is taken small enough, then there there is L3 such that tcut is L3-Lipschitz on the
set

S′
ρ := {x ∈ S | 0 < diam (∂u(exp(tcut(x), x))) < ρ} ·

This concludes the proof of Theorem 1.10.

2Just use Taylor’s formula together with the fact that 〈h′(t̄), ˙̄γ(t̄)〉 = 0.
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4. Applications in Riemannian geometry

4.1.

Let (M, g) be a smooth compact Riemannian manifold and x ∈ M be fixed. The cut locus of x, denoted
by Cut(x) is defined as the closure of the set of points y such that there are at least two distinct minimizing
geodesics between x and y. The Riemannian distance to x, denoted by dg(x, ·), is locally semiconcave onM \{x}.
Then we have

Cut(x) = Σ(dg(x, ·).
For every v ∈ TxM , we denote by γv the geodesic curve starting from x with speed v. For every v ∈ TxM , we
set ‖v‖x = gx(v, v) and we denote by Sx

1 the set of v ∈ TxM such that ‖v‖x = 1. The distance function to the
cut locus (from x) txcut : Sx

1 → R is defined by

txcut(v) := min {t ≥ 0 | γv(t) ∈ Cut(x)} ·

We prove easily that txcut is continuous on Sx
1 (see [24]).

4.2.

Let T ∗M denote the cotangent bundle and g be the cometric on T ∗M , the Hamiltonian associated with g is
given by

H(x, p) =
1
2
‖p‖2.

For every x ∈M , the Riemannian distance to x which we denote from now by dx
g is a viscosity solution to the

Eikonal equation

H(x, du(x)) =
1
2

∀x ∈M \ {x}·
The following result, due to Itoh and Tanaka [16], can be seen (see [21]) as a consequence of Theorem 1.10.

Theorem 4.1. The function txcut is Lipschitz on Sx
1 .

We denote by expx : TxM → R the Riemannian exponential mapping from x. Since M is assumed to be
compact, it is well-defined and smooth on TxM . We recall that expx is said to be singular at w ∈ TxM if
d expx(w) is singular. The distance function to the conjugate locus (from x) txconj : Sx

1 → R is defined by

txconj(v) := min {t ≥ 0 | expx(t) is singular} ·

The following result, which is new, is an easy consequence of Theorem 1.5.

Theorem 4.2. The function txconj is locally semiconcave on its domain which is an open subset of Sx
1 .

We mention that Itoh and Tanaka proved in [16] the locally Lipschitz regularity of the distance function to
the conjugate locus from a point.

4.3.

Let (M, g) be a complete smooth Riemannian manifold. For every x ∈ M , we call tangent nonfocal domain
of x the subset of TxM defined by

NF(x) :=
{
tv | ‖v‖x = 1, 0 ≤ t < txconj(v)

}
·

By Theorem 4.2, we know that for every x ∈ M , the set NF(x) is an open subset of TxM whose boundary is
given by the “graph” of the function txconj which is locally semiconcave on its domain. We call C4-deformation
of the round sphere (Sn, gcan) any Riemannian manifold of the form (M, gε) with M = Sn and gε close to g in
C4-topology. The strategy that we develop to prove Theorem 1.5 allows to prove the following result.
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Theorem 4.3. If (M, g) is a C4-deformation of the round sphere (Sn, gcan), then for every x ∈ M , the set
NF(x) is strictly uniformly convex.

We provide the proof of this result in the next section.

4.4. Proof of Theorem 4.3

Consider the stereographic projection of the sphere Sn ⊂ Rn+1 centered at the origin and of radius 1 from
the north pole onto the space R

n � R
n × {0} ⊂ R

n+1. This is the map σ : S
n \ {N} → R

n that sends a point
X ∈ Sn \ {N} ⊂ Rn+1, written X = (x, λ) with x = (x1, . . . , xn) ∈ Rn and λ ∈ R, to y ∈ Rn, where Y := (y, 0)
is the point where the line through N and P intersects the hyperplane {λ = 0} in Rn+1. That is,

σ(X) =
x

1 − λ
∀X = (x, λ) ∈ S

n \ {N} ⊂ R
n+1.

The function σ is a smooth diffeomorphism from Sn \ {N} onto Rn. Its inverse is given by

σ−1(y) =
(

2y
1 + |y|2 ,

|y|2 − 1
1 + |y|2

)
∀ y ∈ R

n,

where | · | denotes the Euclidean norm on R
n. The pushforward of the round metric on S

n is given by

gy(v, v) =
4

(1 + |y|2)2 |v|
2 ∀ y, v ∈ R

n.

The metric g is conformal to the Euclidean metric geucl(·, ·) = 〈·, ·〉, that is it satisfies g = e2fgeucl with
f(y) = log(2) − log(1 + |y|2). Hence the Riemannian connection associated to g is given by

∇g
V W = ∇eucl

V W + df(V )W + df(W )V − geucl(V,W )∇f. (4.1)

Set X̄ := (ȳ, 0) ∈ Sn with ȳ := (−1, 0, . . . , 0) ∈ Rn and V̄ := (v̄,−1) with v̄ := 0 ∈ Rn. For each vector
V = (0, v) = (0, v1, . . . , vn) ∈ Rn+1 such that |V | = |v| = 1 and |V − V̄ | < 1, the minimizing geodesic on the
sphere starting from X̄ with initial speed V is given by

γV (t) = cos(t)X̄ + sin(t)V ∀t ∈ [0, π].

Its projection by stereographic projection is given by

θV (t) := σ (γV (t)) =
(

− cos(t)
1 − sin(t)vn

,
sin(t)v1

1 − sin(t)vn
, . . . ,

sin(t)vn−1

1 − sin(t)vn

)
·

Therefore, θV is the geodesic starting from σ(X̄) = ȳ with initial speed v = dσ(X̄)(V ) =: σ∗(V ) in R2 equipped
with the Riemannian metric g. For every V as above, one has

zV = (zV
1 , . . . , z

V
n ) := θV (π/2) =

(
0,

v1
1 − vn

, . . . ,
vn−1

1 − vn

)
·

They are contained in the hyperplane

S := {y = (y1, . . . , yn) ∈ R
n | y1 = 0} ·

Set V :=
{
V = (0, v) ∈ Rn+1 | |V | = 1, |V − V̄ | < 1

}
and define the mapping Z : V → S by,

Z(V ) := zV ∀V ∈ V .
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This mapping is one-to-one from V into its image S := Z(V) ⊂ S; its inverse is given by

Z−1(z) =
(

0,
2z2

1 + |z|2 , . . . ,
2zn

1 + |z|2 ,
|z|2 − 1
1 + |z|2

)
·

In particular, we note that for every V = (0, v1, . . . , vn) ∈ V , one has

1 +
∣∣zV
∣∣2 =

2
1 − vn

· (4.2)

Let H : Rn × Rn → R be the Hamiltonian canonically associated to the metric g, that is,

H(y, p) =
(1 + |y|2)2

8
|p|2 ∀y, p ∈ R

n.

The Hamiltonian system associated to H is given by

{
ẏ = ∂H

∂p (y, p) = (1+|y|2)2
4 p

ṗ = −∂H
∂y (y, p) = − (1+|y|2)|p|2

2 y.
(4.3)

For every V ∈ V the solution (yV , pV ) of (4.3) starting at
(
ȳ, pV (0) = (−vn, v1, . . . , vn−1)

)
is given by

{
yV (t) = θV (t)

pV (t) = 4θ̇V (t)

(1+|θV (t)|2)2 =
(
sin(t) − vn, cos(t)v1, . . . , cos(t)vn−1

)
.

Set for every z = (0, zn−1) ∈ S,
exp(z, s) := π

(
φH

s (z, P (z))
)
,

where P (z) is defined by

P (z) := pZ
−1(z)(π/2) =

(
2

1 + |z|2 , 0, . . . , 0
)
.

We denote by tconj(z) the first time t ≥ 0 such that the mapping z �→ exp(z, t) is singular. The linearized
Hamiltonian system along a given solution (y(t), p(t)) of (4.3) is given by

{
ḣ = (1 + |y|2)〈y, h〉p+ (1+|y|2)2

4 q

q̇ = − (1+|y|2)2|p|2
2 h− |p|2〈y, h〉y − (1 + |y|2)(p · q)y.

We note that h is a Jacobi vector field along the geodesic t �→ y(t). As in Lemma 2.1, we set for every z ∈ S
and every s > 0,

J(z, s) :=
{(

h
q

)
| φH

s (h, q) ∈ {0} × R
n

}
,

and we denote by K(z, s) the n× n symmetric matrix such that

J(z, s) =
{(

h
K(z, s)h

)
| h ∈ R

n

}
·

Let us now compute the mapping (z, s) �→ J(z, s).
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Let z ∈ S be fixed and V = (0, v1, . . . , vn) ∈ V be such that Z(V ) = z. Set for every s ≥ 0,

Ez
1 (s) := θ̇V (s+ π/2)

=
(

sin(s+ π/2) − vn

(1 − sin(s+ π/2)vn)2
,

cos(s+ π/2)v1
(1 − sin(s+ π/2)vn)2

, . . . ,
cos(s+ π/2)vn−1

(1 − sin(s+ π/2)vn)2

)
·

Denote by {e1, . . . , en} the canonical basis of Rn. One check easily that

Ez
1 (0) =

1
1 − vn

e1. (4.4)

Let Ez
2 (s), . . . , Ez

n(s) be (n− 1) vectors along the curve θs : s �→ exp(z, s) satisfying

Ez
i (0) = ei ∀i = 2, . . . , n, (4.5)

and such that Ez
1 , . . . , E

z
n form a basis of parallel vector fields along θz. One has

Ėz
1 (0) =

(
0,

−v1
(1 − vn)2

, . . . ,
−vn−1

(1 − vn)2

)
· (4.6)

Moreover, thanks to (4.1), one has

Ėz
i (0) =

vi−1

1 − vn
e1 ∀i = 2, . . . , n. (4.7)

Let (h, q) be a solution of the linearized Hamiltonian system along θV such that h(t̄) = 0 for some t̄ > 0. Since
Ez

1 (t), . . . , Ez
n(t) form a basis of parallel vector fields along θV , there are n smooth functions u1, . . . , un such

that

h(t) =
n∑

i=1

ui(t)Ez
i (t) ∀t. (4.8)

Hence, since h is a Jacobi vector field along θV , its second covariant derivative along θV is given by

D2
t h(t) =

n∑
i=1

üi(t)Ez
i (t).

Therefore, since (Rn, g) has constant curvature, one has

0 = D2
th+R(h, θ̇V )θ̇V

= D2
th+ g

(
θ̇V , θ̇V

)
h− g

(
h, θ̇V

)
θ̇V

=
n∑

i=1

üi(t)Ez
i (t) +

n∑
i=1

ui(t)Ez
i (t) − u1(t)θ̇V (t)

= ü1(t)Ez
1 (t) +

n∑
i=2

[üi(t) + ui(t)]Ez
i (t).

We deduce that there are 2n constants λi
1, λ

i
2 with i = 1, . . . , n such that{

u1(t) = λ1
1 + λ1

2(t− π/2)
ui(t) = λi

1 cos(t) + λi
2 sin(t) ∀i = 2, . . . , n.
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Moreover, since h(t̄) = 0, one has ui(t̄) = 0 for all i, which yields

λ1
2 = − λ1

1

t̄− π/2
and λi

1 = −λi
2

sin(t̄)
cos(t̄)

∀i = 2, . . . , n.

By (4.4), (4.5), since Ez
1 (π/2) = 1

1−vn
e1 and Ez

i (π/2) = ei for any i = 2, . . . , n, (4.8) yields

h1(π/2) =
λ1

1

1 − vn
, hi(π/2) = λi

2 ∀i = 2, . . . , n.

Furthermore, differentiating h(t) =
∑n

i=1 ui(t)Ez
i (t) at t = π/2, we obtain

ḣ1(π/2) =
λ1

2

1 − vn
+

n∑
i=2

λi
2

vi−1

1 − vn

= − λ1
1

(t̄− π/2)(1 − vn)
+

n∑
i=2

vi−1

1 − vn
hi(π/2)

= − 1
t− π/2

h1(π/2) +
n∑

i=2

vi−1

1 − vn
hi(π/2),

and for every i = 2, . . . , n,

ḣi(π/2) = −λi
1 −

λ1
1vi−1

(1 − vn)2

=
sin(t)
cos(t)

λi
2 −

vi−1

1 − vn
h1(π/2)

=
sin(t)
cos(t)

hi(π/2) − vi−1

1 − vn
h1(π/2).

But one has

θV (π/2) =
(

0,
v1

1 − vn
, . . . ,

vn−1

1 − vn

)
,

and
PV (π/2) = (1 − vn)e1.

From the linearized Hamiltonian system, one has

q(π/2) =
4

(1 + |z|2)2 ḣ(π/2) − 4〈h(π/2), z〉
1 + |z|2 PV (π/2).

Thus we finally obtain that for every z ∈ S and any s ∈ [0, π), one has

K(z, s) =
−4

(1 + |z|2)2

⎛
⎜⎜⎜⎜⎜⎜⎝

1/s z2 . . . . . . zn

z2 − cos(s)
sin(s) 0 . . . 0

z3 0 − cos(s)
sin(s) . . . 0

...
...

. . .
...

zn 0 . . . . . . − cos(s)
sin(s)

⎞
⎟⎟⎟⎟⎟⎟⎠
.
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Let z ∈ S be fixed, let us compute U(z). One has P (z) = (2/(1 + |z|2), 0, . . . , 0). Hence one has

U(z) =
−4

(1 + |z|2)2

⎛
⎜⎜⎜⎝

0 z2 . . . zn

z2 0 . . . 0
...

...
. . .

...
zn 0 . . . 0

⎞
⎟⎟⎟⎠ .

Therefore we deduce that for any z ∈ S and s ∈ [0, π), the symmetric matrix K(z, s) − U(z) is given by

K(z, s) − U(z) =
4

(1 + |z|2)2

⎛
⎜⎜⎜⎜⎜⎜⎝

−1/s 0 . . . . . . 0
0 cos(s)

sin(s) 0 . . . 0

0 0 cos(s)
sin(s) . . . 0

...
...

. . .
...

0 0 . . . . . . cos(s)
sin(s)

⎞
⎟⎟⎟⎟⎟⎟⎠
. (4.9)

Moreover, recalling that tconj : S → R denotes the distance function to the conjugate locus associated with the
Dirichlet-type Hamilton-Jacobi equation{

H(x, du(x)) − 1/2 = 0, ∀x ∈ Ω,
u(x) = 0, ∀x ∈ ∂S

(where Ω is an open neighborhood along the geodesic θV̄ (· + π/2)), we have

tȳconj

(
σ∗(V )

)
= tconj

(
Z(v)

)
+
π

2
∀V ∈ V .

Let us now consider a smooth metric gε on the sphere Sn and x ∈ Sn. By symmetry, we may assume that
x = X̂. By Proposition A.3, there is a constant K > 0 such that, if for any v ∈ TxSn with ‖v‖ε

x = 1 (here
‖ · ‖ε

x denotes the norm in TxSn associated with gε), there is a function τv of class C2 defined on the unit sphere
in TxSn associated with gε such that

txconj(v) = τv(v), txconj ≤ τv and ‖D2τv‖∞ < K,

then the set NF(x) is strict uniformly convex. Let v ∈ TxSn with ‖v‖ε
x = 1, again by symmetry, we may assume

that v is close to V̄ . Using the stereographic projection as above, we can push the new metric g′ into a metric g̃
on R2 and v into a speed ṽ. Thus, we have to show that there is a C2 function τ : S̃1

ȳ → R (where S̃1
ȳ denotes

the unit sphere at ȳ with respect to g̃) such that

t̃ȳconj(ṽ) = τ(ṽ), t̃ȳconj ≤ τ and ‖D2τ̃‖∞ < K.

For every v ∈ S̃1
ȳ , we denote by θ̃v the geodesic (with respect to g̃) starting at ȳ with initial speed v. Let Ṽ be

an open neighborhood of ṽ in S̃1
ȳ , set

Z̃(v) := θ̃v(π/2) and S̃ :=
{
θ̃v(π/2) | v ∈ Ṽ

}
·

As above, if we denote by t̃conj the distance function to the conjugate locus associated with the Dirichlet-type
Hamilton-Jacobi equation {

H̃(x, du(x)) − 1/2 = 0, ∀x ∈ Ω,
u(x) = 0, ∀x ∈ ∂S̃ (4.10)
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(where H̃ denotes the Hamiltonian which is canonically associated with g̃), we have

t̃ȳconj(v) = t̃conj

(
Z̃(v)

)
+
π

2
∀v ∈ Ṽ .

Set z̃ := Z̃(ṽ). Therefore, we have to show that there is a function τ : S̃ → R of class C2 such that

t̃conj(z̃) = τ(z̃), t̃conj ≤ τ and ‖D2τ̃‖∞ small enough.

Denote by K̃ and Ũ the functions associated with (4.10) which have been defined in Section 2. Let s̃ > 0 and
h ∈ Rn with ‖h‖ = 1 be such that d exp(z̃, s̃)(h) = 0. By Lemma 2.1, this means that

〈
[
K̃(z̃, s̃) − U(z̃)

]
h, h〉 = 0.

As in the proof of Theorems 1.4 and 1.5, we define a function Ψ̃ in a neighborhood of (z̃, s̃) by

Ψ̃(z, s) := 〈
[
K̃(z, s) − U(z)

]
h, h〉·

As above, the Implicit Function Theorem will provide a function τ̃ defined in a neighborhood of z̃ such that

Ψ̃(z, τ̃(z)) = 0 ∀z.

Using (4.9), we define the function Ψ in a neighborhood of (z̄, π/2) by

Ψ(z, s) := 〈[K(z, s)− U(z)]h, h〉·

If the metric gε is close to the metric gcan on Sn for the C4 topology, then the function Ψ̃ (which depends
upon gε) will be C2 close (up to a change of variables between S and S̃) to the function Ψ. Using the fact that
the first and second derivatives in the z variable of Ψ vanish at time π/2, we leave it to the reader to conclude
that the function τ̃ provided by the Implicit Function Theorem is flat enough. This concludes the proof of
Theorem 4.3.

5. Comments

5.1.

In dimension 2, the mapping tconj can be shown to be of class Ck−2,1 on its domain.

5.2.

The proof of Theorem 1.10 (see first case in its proof) shows that, if the data are of class at least C3,1, then
the function tcut is locally semiconcave on any open set S ⊂ Sx

1 satisfying

diam
(
∂dx

g(expx(txcut(v)v))
)
> 0 ∀v ∈ S.

This kind of result has been used by Loeper and Villani [19] in the context of optimal transportation theory.
We mention that, given a general smooth compact Riemannian manifold, we do not know if the functions txcut

are locally semiconcave on S1
x (see [12] for a partial answer in dimension 2).

5.3.

Our result concerning the strict uniform convexity of nonfocal domains for small deformation of the round
spheres is motivated by regularity issues in optimal transportation theory, see [11,13,14].
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5.4.

In the present paper, we deduce Theorem 4.3 as a corollary of our results concerning viscosity solutions of
Hamiltonian-Jacobi equations. In other terms, we used the symplectic viewpoint. We mention that Theorem 4.3
could as well be obtained with a purely Riemannian approach using some special properties of Jacobi fields
(see [25], Chapter 14, Third Appendix). Such a proof is given in [13].

Appendix A. Strictly uniformly convex sets

Let n ≥ 2 be fixed; in the sequel, if A is a given subset of Rn, we denote by d(·, A) the distance function
to A. Following [19], Appendix B, a natural notion of uniformly convex set is given by the following:

Definition A.1. A compact set A ⊂ Rn is said to be strictly uniformly convex if there is κ > 0 such that

d(λx + (1 − λ)y, ∂A) ≥ κλ(1 − λ)|x − y|2. (A.1)

The following proposition more or less well-known gives a local characterization of strictly uniformly convex
sets. We refer the reader to [19], Appendix B, for its proof.

Proposition A.2. Let A be a compact subset of R
n which Lipschitz boundary. Then the two following properties

are equivalent:
(i) A is strictly uniformly convex.
(ii) There is κ > 0 such that for every x ∈ ∂A, there are δx > 0 and zx ∈ Rn with |zx − x| = 1/κ satisfying

A ∩B(x, δx) ⊂ B(zx, 1/κ).

As a corollary, one has the following result.

Proposition A.3. Let T : Sn−1 → R be a Lipschitz function, set

AT :=
{
tT (v)v | v ∈ S

n−1, t ∈ [0, 1]
}
⊂ R

n.

There is K > 0 such that if, for every v ∈ Sn−1, there is a function τ : Sn−1 → R of class C2 satisfying
τ(v) = T (v), T ≤ τ and ‖D2τ‖∞ ≤ K, then the set AT is strictly uniformly convex.

Appendix B. Proof of Lemma 1.8

Set T := tcut(x). First, by (P4), we know that

u(exp(x, T )) =
∫ T

0

L

(
exp(x, s),

∂ exp
∂t

(x, s)
)

ds.

Argue by contradiction and assume that there is t̄ > T such that (1.4) is satisfied. By (P7), for every s ∈ [T, t̄],
the point exp(x, s) necessarily belongs to Cut(u) (the fact that exp(x, s) belongs to Ω is a consequence of the
proof of Lem. 1.7). Fix s̄ ∈ (T, t̄) and set ȳ := exp(x, s̄). Two cases may appear: either ȳ belongs to Σ(u) or ȳ
belongs to Cut(u) \ Σ(u) = Σ(u) \ Σ(u). By (P4), if ȳ belongs to Σ(u), then there is a curve γ̄p : [−Tp, 0] → Ω
with

˙̄γp(0) 
= ∂ exp
∂t

(x, s̄) (B.1)

such that

u(ȳ) =
∫ 0

−Tp

L (γ̄p(s), ˙̄γp(s)) ds.
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Thanks to (P4)–(P6), this means that the curve γ̃ : [−Tp, t̄− s̄] → Ω defined as

γ̃(s) :=
{

γ̄p(s) if s ∈ [−Tp, 0]
exp(x, s̄+ s) if s ∈ [0, t̄− s̄]

minimizes the quantity ∫ t̄−s̄

−Tp

L(γ(s), γ̇(s))ds,

among all curves γ : [−Tp, t̄− s̄] → Ω such that γ(−Tp) = γ̄(−Tp) and γ̃(t̄− s̄) = exp(x, t̄). But, thanks to (B.1),
the curve γ̃ has a corner at s = 0. This contradicts the regularity of minimizing curves given by Euler-Lagrange
equations. Therefore, we deduce that ȳ necessarily belongs to Cut(u)\Σ(u). This means that u is differentiable
at ȳ and that there is a sequence of points {yk} of Σ(u) converging to ȳ. Thus by (P4)–(P6), for each k, there
are p1

k 
= p2
k in ∂Lu(yk) and T 1

k , T
2
k > 0 such that

yk = exp
(
φH
−T 1

k
(yk, p

1
k)
)

= exp
(
φH
−T 2

k
(yk, p

2
k)
)
.

Since the sequences {p1
k}, {p2

k} and {T 1
k}, {T 2

k } necessarily converge to du(ȳ) and s̄, we deduce that exp is
singular at (x, s̄). To summarize, we proved that if there is t̄ > T such that (1.4) is satisfied, then for every
s ∈ [T, t̄], the function exp is singular at (x, s). Let us show that it leads to a contradiction3. Using the notations
which will be defined later in Section 2.1, there is (h, v) 
= 0 ∈ U(x) such that the solution (h(·), v(·)) of the
linearized Hamiltonian system (2.1) starting at (h, v) satisfies h(T ) = 0. Moreover, since any s ∈ [T, t̄] is a
conjugate time, there is indeed a sequence {sk} converging to T associated to a sequence of vectors {(hk, vk)}
converging to (h, v) such that each solution (hk(·), vk(·)) of (2.1) starting at (hk, vk) satisfies hk(sk) = 0. Since
the Hamiltonian flow preserves the canonical symplectic form σ, one has for any k

〈hk(T ), v(T )〉 = 0.

But since hk(sk) = 0, the differential equation (2.1) yields

hk(T ) = −(sk − T )Q(x, sk)vk(sk) + o(sk − T ).

Since {vk(sk)} converges to v(T ), we deduce that

〈Q(x, T )v(T ), v(T )〉 = 0,

which contradicts the fact that Q(x, T ) = ∂2H
∂p2

(
ȳ, ∂L

∂v (ȳ, ∂ exp
∂t (x, T ))

)
is positive definite. This concludes the

proof. �
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