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REGULARITY PROPERTIES OF THE DISTANCE FUNCTIONS
TO CONJUGATE AND CUT LOCI FOR VISCOSITY SOLUTIONS
OF HAMILTON-JACOBI EQUATIONS AND APPLICATIONS
IN RIEMANNIAN GEOMETRY

MARCO CASTELPIETRA! AND LuUDOVIC RIFFORD!

Abstract. Given a continuous viscosity solution of a Dirichlet-type Hamilton-Jacobi equation, we
show that the distance function to the conjugate locus which is associated to this problem is locally
semiconcave on its domain. It allows us to provide a simple proof of the fact that the distance function
to the cut locus associated to this problem is locally Lipschitz on its domain. This result, which was
already an improvement of a previous one by Itoh and Tanaka [Trans. Amer. Math. Soc. 353 (2001)
21-40], is due to Li and Nirenberg [Comm. Pure Appl. Math. 58 (2005) 85-146]. Finally, we give
applications of our results in Riemannian geometry. Namely, we show that the distance function to the
conjugate locus on a Riemannian manifold is locally semiconcave. Then, we show that if a Riemannian
manifold is a C*-deformation of the round sphere, then all its tangent nonfocal domains are strictly
uniformly convex.
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1. INTRODUCTION

1.1.

Let H : R" x R® — R (with n > 2) be an Hamiltonian of class C*! (with k > 2) which satisfies the three
following conditions:

(H1) (Uniform superlinearity.) For every K > 0, there is C'(K) < oo such that
H(z,p) > Klp| = C(K)  V(z,p) € R" xR".

(H2) (Strict convexity in the adjoint variable.) For every (z,p) € R™ x R™, the second derivative %QTg(x,p)
is positive definite.
(H3) For every z € R", H(z,0) < 0.
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Let © be an open set in R™ with compact boundary, denoted by S = 952, of class C*'. We are interested in
the viscosity solution of the following Dirichlet-type Hamilton-Jacobi equation

{ H(z, du(z))

x)

0, YV € Q,
0, Va € 00, (1.1)

We recall that if u :  — R is a continuous function, its viscosity subdifferential at x € () is the convex subset
of R™ defined by

D~ u(z) == {dy(z) | € C'(Q) and u — ¢ attains a global minimum at =},
while its wviscosity superdifferential at x is the convex subset of R™ defined by
Dtu(z) = {d¢(z) | ¢ € C*(2) and u — ¢ attains a global maximum at z} -

Note that if u is differentiable at = € 2, then D~ u(z) = D" u(z) = {du(z)}. A continuous function u : @ — R
is said to be a wiscosity subsolution of H(x,du(x)) on € if the following property is satisfied:

H(z,p) <0 Vz € U, Vpe€ DV u(z).
Similarly, a continuous function u : Q@ — R is a said to be a viscosity supersolution of H(z,du(x)) on € if
H(x,p) >0 Ve eU, Vpe D u(z).

A continuous function u : @ — R is called a viscosity solution of (1.1) if it satisfies the boundary condition
u=0on S, and if it is both a viscosity subsolution and a viscosity supersolution of H(z,du(z)) = 0 on . The
purpose of the present paper is first to study the distance functions to the cut and conjugate loci associated
with the (unique) viscosity solution of (1.1).

1.2.
The Lagrangian L : R™ x R™ — R which is associated to H by Legendre-Fenchel duality is defined by

L(w,v) = max {(p.v) = H(z.p)}  ¥(@.v) €R" xR".

It is of class C*¥! (see [6], Cor. A.2.7, p. 287) and satisfies the properties of uniform superlinearity and strict
convexity in v. For every z,y € Q and T > 0, denote by Qr(z, y) the set of locally Lipschitz curves vy : [0,T] — Q
satisfying v(0) = « and v(T') = y. Then, set

I(z,y) = inf{/o L(y(t),4@)dt | T >0, v € QT(x,y)}-

The viscosity solution of (1.1) is unique and can be characterized as follows:

Proposition 1.1. The function u : Q — R given by
u(z) == inf {l(y,z) | y € 0N}, VzeQ, (1.2)

is well-defined and continuous on ). Moreover, it is the unique viscosity solution of (1.1).

The fact that u is well-defined and continuous is easy and left to the reader. The fact that the function u
given by (1.2) is a viscosity solution of (1.1) is a standard result in viscosity theory (see [18], Thm. 5.4, p. 134).
The proof of the fact that, thanks to (H3), u is indeed the unique viscosity solution of (1.1) may be found
in [4,5,15].
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1.3.

Before giving in the next paragraph a list of properties satisfied by the viscosity solution of (1.1), we recall
some notions of nonsmooth analysis.
A function u : 2 — R is called locally semiconcave on (Q if for every T € €2, there exist C,§ > 0 such that

pu(e) + (1= pu(y) — u(pe + (1= p)y) < p(l = p)Clz —y|?,

for all z,y in the open ball B(Z,0) C Q and every u € [0,1]. Note that every locally semiconcave function is
locally Lipschitz on its domain, and thus, by Rademacher’s Theorem, is differentiable almost everywhere on its
domain. A way to prove that a given function u : 2 — R is locally semiconcave on 2 is to show that, for every
z € (Q, there exist 0,0 > 0 such that, for every x € B(z,d) C €, there is p, € R™ such that

u(y) < w(@) + (pa,y —2) +oly —al* vy € B(z,9).

We refer the reader to [22,23] for the proof of this fact.
If u: Q — R is a continuous function, its limiting subdifferential at x € ) is the subset of R™ defined by

Opu(z) == {klirgopk | p € D™ u(zr), o — :L'} .

By construction, the graph of the limiting subdifferential is closed in R™ x R™. Moreover, the function w is
locally Lipschitz on Q if and only if the graph of the limiting subdifferential of w is locally bounded (see [9,23]).

Let u : @ — R be a locally Lipschitz function. The Clarke generalized differential (or simply generalized
gradient) of u at the point z € Q is the nonempty compact convex subset of R™ defined by

Ou(z) = conv (dru(x)),
that is, the convex hull of the limiting subdifferential of u at x. Notice that, for every = € 2,
D™ u(z) C dpu(x) C du(z) and Dtu(z) C du(x).

It can be shown that, if Ju(x) is a singleton, then w is differentiable at x and Ju(x) = {du(z)}. The converse
result is false.

Let u : 2 — R be a function which is locally semiconcave on Q. It can be shown (see [6,23]) that for every
z € Q and every p € DT u(z), there are C, 6 > 0 such that

C
u(y) < u(z) + (p,y —z) + 5|y*ﬂc|2 vy € B(z,0) C Q.

In particular, DT u(z) = du(z) for every x € 2. The singular set of u is the subset of Q) defined by

Y(u) :={z € Q| u is not differentiable at x}
={z € Q| du(x) is not a singleton}
={x € Q| dru(x) is not a singleton} -

From Rademacher’s theorem, ¥(u) has Lebesgue measure zero. In fact, the following result holds (see [3,6,23,26)):

Theorem 1.2. Let ) be an open subset of M. The singular set of a locally semiconcave function u: Q — R is
countably (n — 1)-rectifiable, i.e., is contained in a countable union of locally Lipschitz hypersurfaces of ).

As we shall see, the Li-Nirenberg theorem (see Thm. 1.10) allows to prove that X(u) has indeed finite
(n — 1)-dimensional Hausdorff measure.
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1.4.

From now on, u : £ — R denotes the unique viscosity solution of (1.1). Let us collect some properties
satisfied by wu:

(P1) The function w is locally semiconcave on .
P2) The function u is C*1 in a neighborhood of S (in ).

(P2)

(P3) The function u is C*1 on the open set Q\ X(u).
) x z,p * T Lz,p

(P4) For every x € Q and every p € Oru(z), there are T, > 0 and a curve v, p : [=T%,p, 0] — € such that

Vop(—Twp) € S and, if (z,p) : [=Ty p, 0] — R™ x R™ denotes the solution to the Hamiltonian system

with initial conditions 2(0) = x, p(0) = p, then we have
f}/l’yp(t) = :L'(t) and du(’yI,P(t)) = p(t)a Vt € [7Tz,pa0]a

which implies that

0
u(z) — “('Y:c,p(t)) = /t L (%v,p(s)a%r,p(s)) ds, Vite [_Tx,pao]-

(P5) For every T > 0 and every locally Lipschitz curve v : [-T,0] — Q satisfying v(0) = =,

0
u(@) w1 < [ L3063 ds.
(P6) As a consequence, we have for every x € (), every p € dru(zx), every T > 0, and every locally Lipschitz
curve v : [T, 0] — Q satisfying v(0) = 2 and v(—=T') € 01,

0

/ L (ap (1), A (1))l < / L (4(s).4(s)) ds.

T, =T

(P7) If x € Q is such that u is C1! in a neighborhood of z, then for every ¢ < 0, the function u is C! in a
neighborhood of v, ,(t) (with p = du(z)).
The proof of (P1) can be found in [22]. Properties (P2)-(P3) are straightforward consequences of the method

of characteristics (see [6]). Properties (P4)—(P6) taken together give indeed a characterization of the fact that
u is a viscosity solution of (1.1) (see for instance [10,23]). Finally the proof of (P7) can be found in [22].

1.5.

We proceed now to define the exponential mapping associated to our Dirichlet problem. Let us denote by ¢
the Hamiltonian flow acting on R™ x R™. That is, for every z,p € R™ x R", the function t — ¢! (x, p) denotes
the solution to

{a’c(t) = Y(x(t),p(1)) (1.3)

1 )
pt) = —G(x(t),p(t))

satisfying the initial condition ¢{!(z,p) = (x,p). Denote by 7 : R" x R® — R™ the projection on the first
coordinate (z,p) — x. The exponential from x € S in time ¢ > 0 is defined as

exp(z,t) =7 (¢ (z, du(x))).
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Note that, due to blow-up phenomena, exp(z,t) is not necessarily defined for any ¢ > 0. For every z € S, we
denote by T'(z) € (0,+o00) the maximal positive time such that exp(z,t) is defined on [0, T(x)). The function
(z,t) — exp(x,t) is of class C¥~! on its domain.

Definition 1.3. For every @ € S, we denote by tconj(x), the first time ¢t € (0,7 (z)) such that dexp(z,t) is
singular (that is, such that the differential of exp in the (x,t) variable at (x,¢) is not surjective). The function
teonj : S — (0,+00) U {+00} is called the distance function to the conjugate locus. The set of z € S such that
teonj(z) < 00 is called the domain of tconj-

Note that, if dexp(z,t) is nonsingular for every ¢ € (0,T(z)), then tconj(z) = +00. The exponential may in-
deed be extended into an open neighborhood § of S. In that case, thanks to (H3) (which implies % exp(z,t) #0),
for every x € S, the first conjugate time is the first time ¢ > 0 such that dexp(x,t) is singular in the x variable.

Theorem 1.4. Assume that H and S = 9Q are of class C*'. Then, the domain of tconj is open and the
function x — teonj(z) is locally Lipschitz on its domain.

If M is a submanifold of R™ of class at least C2, a function u : M — R is called locally semiconcave on M if
for every & € M there exist a neighborhood V, of z and a diffeomorphism ¢, : V,, — ¢, (V;) C R™ of class C?
such that f o ¢, ! is locally semiconcave on the open set ¢, (V) C R™.

Theorem 1.5. Assume that H and S = 0Q are of class C*'. Then, the function x > teonj(x) is locally
semiconcave on its domain.

The proofs of Theorems 1.4 and 1.5 are postponed to Section 2. Applications of these results in Riemannian
geometry are given in Section 4. The strategy that we will develop to prove the above theorems will allow us to
show that any tangent nonfocal domain of a C*-deformation of the round sphere (S, g°®*) is strictly uniformly
convex, see Section 4.

1.6.

The cut-locus of u is defined as the closure of its singular set, that is

Cut(u) = 3(u).
Definition 1.6. For every = € S, we denote by tcut(x) > 0, the first time ¢ € (0,7 (x)) such that exp(z,t) €
Cut(u). The function tey : S — (0,400) is called the distance function to the cut locus.
Note that the following result holds.
Lemma 1.7. For every x € S, teut(x) is finite and teyy () < teonj(z).
Proof of Lemma 1.7. Let x € S be fixed; let us prove that fcut() is finite. Suppose that exp(z,t) ¢ Cut(u)
for all t € (0,7 (x)). Two cases may appear. If there is ¢ € (0, T(x)) such that exp(z,t) ¢ Q, then this means

that there is £ € (0,7 (x)) such that exp(x,t) € S. So, thanks to (P3), u is C*! along the curve ~(-) defined as
~(t) := exp(z,t) for ¢ € [0,?]. Thanks to (P4), we have

t
0= u(y(®) ~ u(1(0) = [ L) (s))ds,
0
But by definition and (H3), the Lagrangian L satisfies for every (x,v) € R” x R™,

L(z,v) := Z?é%}ﬁ{(p’U)_H(x’p)}

> 7H(’JJ,0) > 0;



700 M. CASTELPIETRA AND L. RIFFORD

which yields
t
JRCICREI

So, we obtain a contradiction. If exp(z,t) belongs to Q for all ¢ € (0,T(x)), this means, by compactness of Q,
that T'(x) = +o00. So, thanks to (P3) and (P4), setting v(¢) := exp(z,t) for any ¢ > 0, we obtain

(1)) = u((8)) — u(4(0)) = / Liv(s).A(s)ds Vi >0,

But, by compactness of 2, on the one hand there is p > 0 such that L(y(s),5(s)) > p for any ¢t > 0 and on
the other hand u is bounded from above. We obtain a contradiction. Consequently, we deduce that there is
necessarily ¢ € (0,T(x)) such that exp(z,t) € Cut(u), which proves that tcy(x) is well-defined.

Let us now show that tcut(x) < teonj(x). We argue by contradiction. Suppose that teonj(z) < teus(z). Thanks
to (P3), this means that the function u is at least C'*! in an open neighborhood V of § := exp(x, teonj(x)) in Q.
Set for every y € V,

T(y) :=inf {t > 0| ¢”,(y, du(y)) € S} -
By construction, one has T'(§) = tconj(x). Moreover since the curve ¢t — exp(z,t) is transversal to S at t = 0,
taking V smaller if necessary, we may assume that 7" is of class C*~11 on V. Define F : V — S by

Fly) = (6% (. duly)))  Vye V.

The function F' is Lipschitz on V and satisfies exp(F(y),T(y)) = y for every y € V. This shows that the
function exp has a Lipschitz inverse in a neighborhood of the point (z, tconj(z)). This contradicts the fact that
dexp(z, teonj(x)) is singular. O

Actually, the distance function to the cut locus at z € S can be seen as the time after which the “geodesic”
starting at x ceases to be minimizing.

Lemma 1.8. For every x € S, the time t.u(x) is the mazimum of times t > 0 satisfying the following property:

u(exp(z,t)) = /O1t L (exp(:c, s), %(x, s)) ds. (1.4)

Since it uses concepts that will be defined in Section 2.1, we postpone the proof of Lemma 1.8 to Appendix B.
Define the set I'(u) C Cut(u) as

I(u) := {exp(z,t) | x € S,t > 0 8.t. t = teonj(z) = teus(z)} -

The two above lemmas yields the following result.

Lemma 1.9. One has
Cut(u) = 3(u) UT'(u).

The following theorem is due to Li and Nirenberg [17]; we provide a new proof of it in Section 3.

Theorem 1.10. Assume that H and S = 99 are of class C*'. Then the function x — teuw(z) is locally
Lipschitz on its domain.

As a corollary, as it is done in [17], since

Cut(u) = {exp(x,teut(z)) | x € S},
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we deduce that the cut-locus of u has a finite (n — 1)-dimensional Hausdorff measure. Note that it can also be
shown (see [6,14,20]) that, if H and S = 09 are of class C'*°, then the set I'(u) has Hausdorff dimension less or
equal than n — 2.

2. PROOFS OF THEOREMS 1.4 AND 1.5

2.1. Proof of Theorem 1.4

Before giving the proof of the theorem, we recall basic facts in symplectic geometry. We refer the reader
to [1,7] for more details.
The symplectic canonical form ¢ on R™ x R" is given by

()0 )= )2 ()

where J is the 2n x 2n matrix defined as
0, I,
(%)

It is worth noticing that any Hamiltonian flow in R™ x R™ preserves the symplectic form. That is, if (z(-), p(+))
is a trajectory of (1.3) on the interval [0, T], then for every (hy,v1), (he,v2) € R™ x R™ and every t € [0,T], we

have
(()-() -+ () -C)
V1 ’ V2 U1 (t) ’ V2 (t) ’
where (h;(+),v;(+)) (with ¢ = 1,2) denotes the solution on [0,7] to the linearized Hamiltonian system along
(x(+),p(+)), which is given by
{ hi(t) = B(z,1)"hi(t) + Q(z, t)vi(t)
v(t) = —Az,)hi(t) — Bz, t)vi(t),
with initial condition (h;,v;) at t = 0.
We recall that a vector space J C R™ x R™ is called Lagrangian if it is a n-dimensional vector space where
the symplectic form o vanishes. If a n-dimensional vector subspace J of R” x R" is transversal to the vertical
subspace, that is J N {0} x R™ = {0}, then there is a n x n matrix K such that

J{(I?h) IheIR{"}.

It can be checked that J is Lagrangian if and only if K is a symmetric matrix.
Let 2 € S be fixed. Denote by (x(-),p(+)) the solution to the Hamiltonian system (1.3) on [0, T'(z)) satisfying
(2(0),p(0)) = (z,du(z)). The linearized Hamiltonian system along (z(-),p(:)) is given by

{h(t) = B(z,t)*h(t) + Q(z, t)u(t) 2.1)
o(t) = —A(z,t)h(t) — B(z, t)v(t), ’

where the matrices A(z,t), B(x,t) and Q(x,t) are respectively given by

2 2 2
b)), (w000 S 0,000

and where B(x,t)* denotes the transpose of B(z,t). Define the matrix

_( Bt Q@
uen= (200 S0 )
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and denote by R(z,t) the 2n x 2n matrix solution of

OR
E(I’t) = M(z,t)R(z,t)
R(x,0) = I,.

Finally, let us set the following spaces (for every ¢ € [0, T(x))):

T(w,) = {R(x,t)_1<3)) |weR”},

Ulz) = {( DQUh(:C)h> |h€R”}~

The following result is the key tool in the proofs of Theorems 1.4 and 1.5.

Lemma 2.1. The following properties hold:

(i) The spaces J(x,t) (for allt € (0,T(x))) and U(z) are Lagrangian subspaces of R™ x R™; moreover, one

has
teonj(z) =min{t > 0 | J(z,t)NU(x) # {0}}-
(i) For everyt € (0,tconj(z)], the space J(x,t) is transversal to the vertical subspace, that is

J(z,t)N ({0} x R™) = {0} Vt € (0, teonj()].

(iii) If we denote for every t € (0,tconj(z)], by K(x,t) the symmetric matriz such that

T(w,t) = {< K(:Zt)h ) | heR"},

then the mapping t € [0,T(x)) — K(x,t) is of class C*~1:1. Moreover there is a continuous function
0 > 0 which is defined on the domain of the exponential mapping such that

K(z,t) := %K(x,t) > 6(z, )1, vVt € (0,T(x)).

Proof. Let us prove assertion (i). The fact that J(¢,2) and U(z) are Lagrangian subspaces of R™ x R™ is easy,
its proof is left to the reader. Suppose that there exists

0 £ < Z ) € J(z,t) NU(z).

On the one hand, for a solution of (2.1) with initial data (h,v), we have that h(t) = 0, since (h,v) isin J(z,t). On
the other hand, since (h,v) € U(x), dexp(z,t)h = h(t) = 0 with h # 0, i.e. dexp(x,t) is singular. Conversely,
if dexp(x,t) is singular for some ¢t € (0,7(x)), then there is h # 0 such that dexp(z,t)h = 0. Then there exists

v(t) € R™ such that . _(dexple,th y _ (0
R(x,t)( D2u(z)h ) ( u(t) ) < v(t) )

that is, (h, D*u(z)h) € J(z,t) N U(z).
Let us prove assertion (ii). We argue by contradiction and assume that there is ¢ € (0, tconj(x)] such that
J(z,t) N ({0} x R™) # {0}. By definition of ¢conj(x), we deduce that

J(z,s)NU(z) = {0} Vs € [0,1). (2.2)
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Doing a change of coordinates if necessary, we may assume that D?u(z) = 0, that is
U(z) =R" x {0}

By (2.2), we know that, for every s € [0,t), J(z, s) is a Lagrangian subspace which is transversal to U(x). Hence
there is, for every s € [0,¢), a symmetric n X n matrix K(s) such that

I, s) = {( ’Cf)“ ) lve R”}- (2.3)
Let us use the following notation: we split any matrix R of the form 2n x 2n in four matrices n x n so that
([ Ri R
r-(w)
Indeed, for any fixed w € R"™ and any s € [0, 1),
e (2)-()- ()
w Vw,s Vw,s

where hy, s = (R(x, s)_1)2 wand vy, s = (R(x, s)_1)4 w. Thanks to (2.2), the matrix (R(x, t)_l)
for every s € (0,t), then we have

4 Is non-singular

-1

K(S) = (R(:L'a 5)71)2 (R(:L'a 5)71)4
This shows that the function s € [0,7) — K(s) is of class Ck=L1 We now proceed to compute the derivative
of K at some 5 € (0,t), that we shall denote by K(5). Let v # 0 € R™ be fixed, set hs := K(8)v and consider

the unique w; € R™ satisfying
( hs\ _( O
R(m,s)( ; ><wé) Vs € (0,t).
Define the C! curve ¢ : (0,¢) — R™ x xR" by

6(s) = < s > — R(z, )" ( D ) Vs € (0, 1).

Vs

S
The derivative of ¢ at s is given by

$(3) = % [R(z,5)"] ( 0 ) - R(:c,s)lM(:c,s)< Y >

Wz 5

Thus, since the Hamiltonian flow preserves the symplectic form, we have

o(p(5),0(3)) = a(R(x,E)l <£ ),R(x,g)lM(x,§)< 0 >)

Ws

S

()0 ()

= (Q(x, 5)ws, ws)-

By construction, the vector ¢(s) belongs to J(z, s) for any s € (0,¢). Hence, it can be written as

w-(3)-()
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which means that

0= ( K(s)os + K(5)0 )

since K(5) is symmetric. Finally, we deduce that
(v, K(5)v) = —(ws, Q(z, 5)ws) < 0. (2.4)
By assumption, we know that J(z,¢) N ({0} x R™) # {0}, which can also be written as

J(x,t) N J(x,0) # {0}

This means that there is v # 0 and a sequence { ( Zk ) } in R™ x R™ such that
k

lim ( Ik ) = ( g ) and ( };k ) € J(x,t —1/k) Vk large enough in N.
k

But we have for any large k € N, hy, = K(t — 1/k)vg. Hence we deduce that limy_.o K(t — 1/k)vr, = 0. But,
thanks to (2.4) we have for k large enough

t-1/k t/2
(vg, K(t — 1/k)vg) = /0 (v, K(s)vi)ds < /0 (g, KC(s)vg)ds.

But
t/2

: t/z
klim (g, K(s)vg)ds = / (v, K(s)v)ds < 0.
—Jo 0

This contradicts the fact that limy_. (¢t — 1/k)vg = 0 and concludes the proof of assertion (ii). We note that
another way to prove (ii) would have been to use the theory of Maslov index, see [2].
It remains to prove (iii). By (ii), for every ¢ € (0, tconj(x)], the matrix (R(x,t)~'), is nonsingular and the
matrix K (z,t) is given by
K(z,t) = (R(z,t)""), (R(z, t)_l);l
This shows that the function ¢ € (0, tconj(x)] — K (z,t) is of class C*~11. Let us compute K (z,t) for some
t € (0, tconj(x)]. Let h € R™ be fixed, set vy := K (x,t)h and consider the unique w; € R" satisfying

wen(8)-(4)

Wy = [R(l‘, t)S + R(:L'a t)4] h.

that is
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Define the C! curve ¢ : (0, tconj] — R™ x R™ by

o= (b )= et (1), e O tun(o)]

Vs (0

As above, on the one hand we have

ot = o (Rt (2) e (2))

I
Q
7N
N
g o
~~_
|
B
~
N~—
N
g o
~_
~~

= (Q(z,t)w, wy)-

On the other hand, using the fact that ¢(s) € J(z,s) for any s, we also have

O—(Sa(t)a cp(t)) - <K(l‘, t)ha h>

For every t € (0,%conj(x)], the linear operator : U(z,t) : h +— wy; := [R(x,t)s + R(x,t)4] h is invertible. If we
denote, for every t € (0,tconj(x)], by A(z,t) > 0, the smallest eigenvalue of the symmetric matrix ()(z,t), then
we have for any h € R™

<K(l‘,t)h, h> = <Q(xvt)wtawt> A(xvt)|wt|2

Ma, )@ (2, t) |72 |,

(A\VARAY,

The function § defined as
S(z,t) = N, t)|| W (z, 1) 1|72 Vo e S, Vt € (0, teonj()],

depends continuously on (x,t). This concludes the proof of Lemma 2.1. ]
We are now ready to prove Theorems 1.4.

Proof of Theorem 1.4. Let & € S such that ¢ := tconj(Z) < 0o be fixed. By Lemma 2.1, there is h € R" with
|h| = 1 such that K(z,f)h = D?u(Z)h. There is p > 0 such that the function ¥ : (SN B(Z,p)) x (t—p,t+p) — R
defined by

U(x,t) = < [K (2, t) — D*u(x)] h,h> (2.5)

is well-defined (note that W(z,7) = 0). The function W is locally Lipschitz in the 2 variable and of class C*~1:1
in the t variable. Moreover, restricting p if necessary, we may assume that

O (o) = (K (w, )b h) > 8(m,t) >

By 5z, t)>0  VxeSNB(z,p), Vte (t—pt+p).

N | —

Thanks to the Clarke Implicit Function Theorem (see [8], Cor., p. 256), there are an open neighborhood V of
Z in S and a Lipschitz function 7 : )V — R such that

U(x,7(z)) =0 Ve e V.

This shows that for every x € V, tcon; (x) is finite. To prove that tconj is locally Lipschitz on its domain, it
suffices to show that for every # in the domain of tcopnj, there is a constant K > 0 and an open neighborhood V
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of T such that for every x € V), there is a neighborhood V, of = in S and a function 7, : V, — R which is
K-Lipschitz and which satisfies

To(2) = teonj(x)  and  teonj(y) < 72(y) Vy € V,.

Derivating ¥ (z, 7(x)) = 0 yields

ow
V1(z) = —M Ve e V.
S (2, 7(x))
This shows that the Lipschitz constant of 7 depends only on the Lipschitz constant of ¥ and on a lower bound
on §(z,t). The result follows. O

2.2. Proof of Theorem 1.5

Let Z € S in the domain of tconj(z) be fixed. By Lemma 2.1, there is h € R™ with |h| = 1 such that
K(z,t)h = D*u(Z)h. There is p > 0 such that the function ¥ : (SN B(z, p)) x (t—p,t+p) — R defined by (2.5)
is well-defined. Since k > 3, W is at least of class O, Moreover, ¥(z,t) = 0 and

%—f(z,f) = (K(z,Dh, h) > 6(z,1) > 0.

By the usual Implicit Function Theorem, there exist an open ball B of Z and a C*! function 7 : SN B — R
such that
U(z,7(x)) =0 Ve e SNB.

This means that we have
T(i') = tconj (j) and tconj (l‘) < T(l‘) Ve e SNB.

Moreover, derivating ¥(z,7(z)) = 0 two times (thanks to Rademacher’s theorem, this can be done almost
everywhere) yields

N (. r(x
Vr(x)z—% Yz e SNB
and
-1 RV RV 0%
D?*7(x) = — %(xﬁ(m)) 92 (z,7(x))h + M(I’,T(l‘)MV’F(CL’), h) + <m(x,7(m)), h> VT(LL‘):| )

This shows that the Lipschitz constant of V7 is controlled by the local C*! and C? norms of the functions K
and u. The radius of B being controlled as well when we apply the Implicit Function Theorem, this proves that
teonj() is locally semiconcave on its domain. U

3. PrROOF OF THEOREM 1.10

We have to show that there is L > 0 such that the following property holds:
(PL) For every x € S, there are a neighborhood V,, of « € S and a L-Lipschitz function 7, : V,, — R satisfying

Tx (SL') = tcut(x) and tcut(y) < T (y) Yy € V,.

First, we claim that ., is continuous on S. Let z € S be fixed and {zx} be a sequence of points in S
converging to x such that teu(zx) tends to T as k tends to oo. Since the limit (for the C! topology) of a
sequence of “minimizing curves” is still minimizing, we know by Lemma 1.8 that t..:(z) > T. But each point



REGULARITY PROPERTIES OF THE DISTANCE FUNCTIONS TO CONJUGATE AND CUT LOCI 707
exp(xg, teut () belongs to Cut(u). So, since Cut(u) is closed, the point exp(z,T) belongs to Cut(u). This

proves the continuity of t¢ys.
Let S C S be the set defined by

S = {z € S| teonj(®) = teut(z)} -

Since by continuity t¢,t is bounded, the set S is included in the domain of tconj. Therefore, by Theorem 1.4, S
is compact and there is Ly > 0 such that tcus = teonj is Li-Lipschitz on S (in the sense of (PL)).

Let € S\ S be fixed. Set { := teu(Z), 7 := exp(Z, 1), and (7, p) := @H (z,du(z)). Since exp is not singular
at (Z,1), one has

diam (Ou(y)) =: p > 0.
This means that there is 2’ € S such that exp(a’,t") = gy (with ¢’ := tcue(2’)) and

|ﬁ7p/| > ga

where p’ is defined by (7,p’) = ¢ (2/,du(z")). Since p' € du(y) = Dt u(y), by semiconcavity of u, there are
6,C > 0 such that

_ . C _ _
u(y) <u@+ @y -9 +ly-9°  VyeBE9)
Set g(y) :=u(y) + (', y — ) + Cly — |? for every y € B(y,d) and define the C* function ¥ : S x R — R by
t 0 exp
W(at) = glexp(ot) - [ L (explos). 5 Pa,s) ) s
0 S

Note that ¥(z,t) = 0. Moreover if x # Z is such that exp(z,t) € B(y,d) and ¥(z,t) = 0 for some ¢ > 0, then
we have

u(exp(zx,t)) — /Ot L <exp(:c, s), a;:p (z, s)) ds < g(exp(z,t)) — /O1t L (exp(:c, s), %(x, s)) ds =0,

which means that teu(z) < t. Set for every t € [0,¢], ¥(¢) := exp(z,t). We have

Bed = 030 LE0A0)
= ' =pA®) + H@.p) = ¢ —p,y(1)

Two cases may appear:

First case. There is p > 0 such that u > p. Since the set {p | H(g,p) < 0) is uniformly convex, we deduce
that the quantity
ov . OH
t "—p, ) =(p — . —(7,P
5 @0 =0 =p.7(1) <p P 5y (y7p)>
is bounded from below by some constant €(p) > 0. By the Implicit Function Theorem, there are an open ball B
of # and a C! function 7: BN S — R such that

U(z,7(x)) =0 Ve e BNS,
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where the Lipschitz constant of 7 is bounded from above by M/e(p), where M denotes the Lipschitz constant
of W. This shows that there is Lo > 0 such that ¢.ut, is Lo-Lipschitz (in the sense of (PL)) on the set

S, :={x €S| diam (Qu(exp(tcut(x),x))) > p}-

Second case. p is small enough. Without loss of generality, doing a global change of coordinates if necessary,
we may assume that S is an hyperplane in a neighborhood of # and that D?u(z) = 0. Set for every s € [0, 1],

Lo(s) == 923, Tuls) = S ((s), A (5)),
and
hy(s) := dexp(z, s)(v) Vv e Tz S C R™.
Then

()

Il
Py
N@\

Q
Q| o
SRR
ol
2
N
<
S~—
|
h
|
8
S
>
<
©
=
+
l
e
—
»
:_/
>
<
—
»
=
o,
%)

Recall that (h,(t),,(t)) is the solution of the linearized Hamiltonian system (2.1) along 7 starting at h,, (0) = v
and 7, (0) = D?u(z)r = 0. Let us denote by (h'(t),v’(t)) the solution of (2.1) along 4 such that h'(0) = 2/ — =
and v'(0) = D?*u(z)(z' — x) = 0. Then, if p’ — p is small, p’ — p equals v'(f) up to a quadratic term. But since
the Hamiltonian flow preserves the symplectic form, there is D > 0 such that we have for any v € T3S of norm
one
(R (1), 0 ()| = [(W'(8),5,(D))| < Do’ — z[%,

because” we know that exp(z,f) = exp(2’,t'). In conclusion, we have that %—f(a’c, t) is bounded from above by
D'|x’ — z|? for some D’ > 0. Besides, since H(y,p) = H(y,p') = 0, we have, by Taylor’s formula,

_JOH, ., N\ 1/0*H, _ .,

for some p on the segment [p, p’]. Therefore we deduce that, for some ¢ > 0,

ov
D] = o
where we also have a positive constant k such that |p’ —p| > k|2’ —Z|. Then, by the Implicit Function Theorem,
the function 7z(-) is well defined as the function such that U (z,7z(z)) = 0, and its gradient is bounded from
above. This yields that if u is taken small enough, then there there is L3 such that ¢., is Ls-Lipschitz on the
set
S, :={x € 5|0 < diam (Ju(exp(teut(2),2))) < p} -

This concludes the proof of Theorem 1.10.

2Just use Taylor’s formula together with the fact that (h/(Z),5(f)) = 0.
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4. APPLICATIONS IN RIEMANNIAN GEOMETRY

4.1.

Let (M, g) be a smooth compact Riemannian manifold and @ € M be fixed. The cut locus of z, denoted
by Cut(z) is defined as the closure of the set of points y such that there are at least two distinct minimizing
geodesics between x and y. The Riemannian distance to x, denoted by dy(z, -), is locally semiconcave on M\ {z}.
Then we have

Cut(z) = X(dg(z, ).
For every v € T, M, we denote by =, the geodesic curve starting from = with speed v. For every v € T, M, we
set ||v]|z = gz (v,v) and we denote by S§ the set of v € T, M such that ||v||, = 1. The distance function to the
cut locus (from z) t7,, : ST — R is defined by

ti(v) :==min{t > 0 | 7, (t) € Cut(z)} -
We prove easily that tZ . is continuous on ST (see [24]).

4.2.

Let T* M denote the cotangent bundle and g be the cometric on T* M, the Hamiltonian associated with g is
given by

1
H(z,p) = 5 Ipl*

For every « € M, the Riemannian distance to x which we denote from now by df is a viscosity solution to the
Eikonal equation

1
H(z,du(z)) = 5 Ve e M\ {z}
The following result, due to Itoh and Tanaka [16], can be seen (see [21]) as a consequence of Theorem 1.10.
Theorem 4.1. The function tZ,, is Lipschitz on S7.

We denote by exp, : T,M — R the Riemannian exponential mapping from z. Since M is assumed to be
compact, it is well-defined and smooth on T, M. We recall that exp, is said to be singular at w € T, M if

dexp, (w) is singular. The distance function to the conjugate locus (from x) tZ, . : ST — R is defined by

T
conj

(v) == min{t > 0 | exp,(t) is singular} -

The following result, which is new, is an easy consequence of Theorem 1.5.

Theorem 4.2. The function tg,,; is locally semiconcave on its domain which is an open subset of S7.

We mention that Itoh and Tanaka proved in [16] the locally Lipschitz regularity of the distance function to
the conjugate locus from a point.

4.3.

Let (M, g) be a complete smooth Riemannian manifold. For every x € M, we call tangent nonfocal domain
of = the subset of T, M defined by

NF(z) = {tv [ o]l =1,0<t < tfonj(’u)} .

By Theorem 4.2, we know that for every = € M, the set N F(x) is an open subset of T, M whose boundary is
given by the “graph” of the function ¢, ; which is locally semiconcave on its domain. We call C*-deformation

of the round sphere (S", g°*") any Riemannian manifold of the form (M, ¢g°) with M = S™ and ¢° close to g in
C*-topology. The strategy that we develop to prove Theorem 1.5 allows to prove the following result.
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Theorem 4.3. If (M, g) is a C*-deformation of the round sphere (S™, g®), then for every x € M, the set
NF(z) is strictly uniformly conver.

We provide the proof of this result in the next section.

4.4. Proof of Theorem 4.3

Consider the stereographic projection of the sphere S” C R™*! centered at the origin and of radius 1 from
the north pole onto the space R™ ~ R" x {0} C R""!. This is the map o : S* \ {N} — R" that sends a point
X € S"\ {N} Cc R*"! written X = (z,\) with z = (21,...,2,) € R" and A € R, to y € R", where Y := (y,0)
is the point where the line through N and P intersects the hyperplane {\ = 0} in R"*!. That is,

VX = (z,)\) € S"\ {N} c R*".

The function o is a smooth diffeomorphism from S™\ {N} onto R™. Its inverse is given by

_ 2y |y|2—1)
1 n
o S A A — Vy e R",
) (1+|y|2 L+ [yl? Y

where | - | denotes the Euclidean norm on R™. The pushforward of the round metric on S™ is given by

4
gy(v,v) = WMQ Vy,v e R"™

The metric g is conformal to the Euclidean metric g®“!(-,-) = (-,-), that is it satisfies g = e2/g°"! with
f(y) =log(2) — log(1 + |y|?). Hence the Riemannian connection associated to g is given by

VLW = VYW 4 df (V)W + df (W)V — g®{(V, W)V £. (4.1)
Set X := (¢,0) € S" with 5 := (—1,0,...,0) € R" and V := (v,—1) with v := 0 € R". For each vector
V =(0,v) = (0,v1,...,v,) € R""! such that |[V| = |v] = 1 and |V — V| < 1, the minimizing geodesic on the
sphere starting from X with initial speed V is given by
v (t) = cos(t) X + sin(t)V vt € [0, 7.

Its projection by stereographic projection is given by

by (1) = o (90 ()) = (

—cos(t) sin(t)vy sin(t)vy,—1
1 —sin(t)v, 1 —sin(t)v,” 1 —sin(t)v,

Therefore, 6y is the geodesic starting from (X ) = ¢ with initial speed v = do(X)(V) =: 0. (V) in R? equipped
with the Riemannian metric g. For every V as above, one has

U1 Un—1
ZV:(ZYa"'azr‘L/) ::9‘/(77/2): (0717)717”-’1711)71).

They are contained in the hyperplane
S = {y:(y1a7yn)€Rn | Y1 :0}
Set V:={V = (0,v) e R | |V| =1, |V — V| < 1} and define the mapping Z : V — S by,

ZV)=2"Y  VYVew



REGULARITY PROPERTIES OF THE DISTANCE FUNCTIONS TO CONJUGATE AND CUT LOCI 711

This mapping is one-to-one from V into its image S := Z(V) C S; its inverse is given by

Z1(2) 0 229 2z, |2|* -1
z) = R , .
B TR O 1
In particular, we note that for every V = (0,v1,...,v,) € V, one has
2
1 V2 _ : 4.2
= 2)
Let H : R™ x R™ — R be the Hamiltonian canonically associated to the metric g, that is,
1 + y 2\2
H(y.p) = i él; i pl*>  Vy,peR"™
The Hamiltonian system associated to H is given by
. 1+ 2\2
{ o= Yyp = )2p 2 (43)
. 1 .
p o= —%—Z(y,p) _( +\y2\)|p| y.

For every V € V the solution (y",p") of (4.3) starting at (g,pV(O) = (—Up,v1,... ,vn_l)) is given by

{ vt = Ov(t)
v _ vt (g
pV(t) = W = (sin(t) — vn,cos(t)vy, . .., cos(t)vn_1).

Set for every z = (0,2,-1) € S,
exp(z,s) = ((f)f(z, P(2))),
where P(z) is defined by
—1 2
P(2):=p* F(r/2) = —"-,0,...,0].
@ =07 O/ = (70

We denote by tconj(2) the first time ¢t > 0 such that the mapping z — exp(z,t) is singular. The linearized
Hamiltonian system along a given solution (y(t),p(t)) of (4.3) is given by

. 2,2
{h = (1+]yl?)(y, h)p + L
2,2 2
g = —WHLIPLpp2(y, by — (1+ [y2) (- q)y.

We note that h is a Jacobi vector field along the geodesic t — y(¢). As in Lemma 2.1, we set for every z € §
and every s > 0,

q

and we denote by K(z, s) the n X n symmetric matrix such that

19 = 4 (selan ) 1hE®

Let us now compute the mapping (z, s) — J(z, s).

sesy={ (1) o) € o) <),
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Let z € S be fixed and V = (0,vy,...,v,) € V be such that Z(V) = z. Set for every s > 0,

Ef(s):=0y(s+7/2)
_ ( sin(s + 7/2) — v, cos(s + m/2)v; cos(s + m/2)vn—1 ) .
(1 —sin(s + 7/2)v,)2" (1 —sin(s + 7/2)v,)2" 7 (1 — sin(s + 7/2)v, )2

Denote by {e1,...,e,} the canonical basis of R™. One check easily that

1
B (0) = -——e1. (4.4)

Let F5(s),...,E%(s) be (n — 1) vectors along the curve 6, : s — exp(z, s) satisfying

EZ(0)=e; Vi=2,...,n, (4.5)
and such that EY, ..., EZ form a basis of parallel vector fields along 6,. One has
B3 (0) = (0, q :1;)2 o (1_11”1:)2 > (4.6)
Moreover, thanks to (4.1), one has
B2(0) = ﬁ—*vlnel Vi=2,...,n. (4.7)

Let (h,q) be a solution of the linearized Hamiltonian system along 6y such that h(f) = 0 for some ¢ > 0. Since
E}(t),...,E:(t) form a basis of parallel vector fields along 0y, there are n smooth functions w,...,u, such
that

n
h(t)=> wi(t)E;(t) V. (4.8)
i=1
Hence, since h is a Jacobi vector field along 6y, its second covariant derivative along 0y is given by
n
D2h(1) = S (1) (1)
i=1

Therefore, since (R™, g) has constant curvature, one has
0 = D?h+ R(h,0y)8y
= D?h-ﬁ-g (év,év) h—g (h,év) év

= DB + Y wE (D) — () (1)

= @ (OET(1) + Y [ia(t) + w6 B (¢).

i=2
We deduce that there are 2n constants \i, Ay with i = 1,..., n such that

ui(t) = M +AN(t—m/2)
ui(t) = ANicos(t)+ Nosin(t) Vi=2,...,n.



REGULARITY PROPERTIES OF THE DISTANCE FUNCTIONS TO CONJUGATE AND CUT LOCI

Moreover, since h(t) = 0, one has u;(t) = 0 for all ¢, which yields

Al ;  sin(t
Moo and =S oy
t—m/2 cos(t)

By (4.4), (4.5), since Ef(n/2) = 1—;%@1 and E?(n/2) = e; for any i = 2,...,n, (4.8) yields

Al

p— hi(m/2) =Xy Vi=2,...,n

hi(mw/2) =

Furthermore, differentiating h(t) = >, w;(t)EZ(t) at t = 7/2, we obtain

hi(m/2) = +Z)\217

171)”

1 Vi—1
2)
- 7/2)1 ) +Z1 ha(m/2)

= hy(7/2) +Z Vil p(n)2),

and for every i = 2,...,n,
. i )\1’Ui_
hz(ﬂ-/Q) = _)‘1 - (1 1 v 1)2
sin(t) Vi—1
= AL — 2
cos(t) 2 1—w, (r/2)
= Ih /) - S r2).
~ cos(t) " T 1- 1

But one has

U1 Un—1
0 2)=1{0
V(Tr/) (,1’1),”7 7lvn)7

Pv(ﬂ'/2) = (1 — ’Un)el.

From the linearized Hamiltonian system, one has

and

A(h(m/2), z)

aln/2) = b /2) = = T P (2),

4
(1+12[2)?

Thus we finally obtain that for every z € S and any s € [0, 7), one has

1/s 29 . . Zn
29 —';’;EZ; 0 0
K(z,s) = _ 1 5 <3 0 *Z?j((:)) e 0
(1+[2?) , :
. 7cc;s(s)
Zn 0 . - sin(s)

713
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Let z € S be fixed, let us compute U(z). One has P(z) = (2/(1 + |2]?),0,...,0). Hence one has

0 20 ... zp

—4 zZ2 0 0

U(z) = — |
(1+2?) o

zn 0 ... 0

Therefore we deduce that for any z € S and s € [0, 7), the symmetric matrix K(z,s) — U(z) is given by

—1/s 0 . o 0
U
4 cos(s)
_ _ 0 0 prrey s N 0
K(z,s5) = Ul(z) 11 2P (s) | (4.9)
. . . cos.(s)
0 0 oo C Sin(s)

Moreover, recalling that tconj : S — R denotes the distance function to the conjugate locus associated with the
Dirichlet-type Hamilton-Jacobi equation

H(x,du(z)) —1/2=0, Vo € Q,
u(z) =0, Vo € 0S

(where € is an open neighborhood along the geodesic 0 (- 4+ 7/2)), we have
g 77
tgonj (U* (V)) = tconj (Z('U)) + 5 YV e V.

Let us now consider a smooth metric g¢ on the sphere S™ and x € S”. By symmetry, we may assume that
z = X. By Proposition A.3, there is a constant K > 0 such that, if for any v € T,S™ with ||v]|¢ = 1 (here
|- ||I& denotes the norm in 7T,,S™ associated with g¢), there is a function 7, of class C? defined on the unit sphere
in T, S™ associated with ¢g¢ such that

t(z:onj (’U) - Tv('l)), t(z:onj S T and HDQTWHOO < Kﬂ

then the set N'F(x) is strict uniformly convex. Let v € T,,S™ with ||v]|$ = 1, again by symmetry, we may assume
that v is close to V. Using the stereographic projection as above, we can push the new metric ¢’ into a metric §
on R? and v into a speed ©. Thus, we have to show that there is a C? function 7 : S% — R (where S% denotes
the unit sphere at § with respect to g) such that

n
tconj

(0) =1(2), %,

conj

<7 and |D*] < K.

For every v € S%, we denote by 6, the geodesic (with respect to §) starting at § with initial speed v. Let VY be
an open neighborhood of ¢ in é%, set

Z(v) = 0,(7/2) and S:= {év(w/Q) |ve f/} :

As above, if we denote by fconj the distance function to the conjugate locus associated with the Dirichlet-type
Hamilton-Jacobi equation

{ H(x,du(z)) —1/2 =0, Vr € Q, (4.10)

u(z) =0, Vo € 0S
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(where H denotes the Hamiltonian which is canonically associated with g), we have

fgcjonj (U) = gconj (Z~(U)) + Yv € ]>

ol 3

Set % := Z(%). Therefore, we have to show that there is a function 7 : S — R of class C? such that

teonj(2) = T(2), feonj <7 and ||D*7| small enough.

Denote by K and U the functions associated with (4.10) which have been defined in Section 2. Let § > 0 and
h € R™ with ||h|| = 1 be such that dexp(Z, §)(h) = 0. By Lemma 2.1, this means that

([K(2,3) = U(2)]h,h) = 0.
As in the proof of Theorems 1.4 and 1.5, we define a function ¥ in a neighborhood of (2,5) by
U(z,s) = <[K(z, s) — U(z)]h, h)-
As above, the Implicit Function Theorem will provide a function 7 defined in a neighborhood of Z such that
U(z,7(2)) =0 Vz.
Using (4.9), we define the function ¥ in a neighborhood of (z,7/2) by
U(z,8) = ([K(z,5) = U(2)lh, h)-

If the metric ¢¢ is close to the metric ¢®" on S™ for the C* topology, then the function ¥ (which depends
upon ¢¢) will be C? close (up to a change of variables between S and S ) to the function W. Using the fact that
the first and second derivatives in the z variable of ¥ vanish at time 7/2, we leave it to the reader to conclude
that the function 7 provided by the Implicit Function Theorem is flat enough. This concludes the proof of
Theorem 4.3.

5. COMMENTS

5.1

In dimension 2, the mapping tconj can be shown to be of class C*=21 on its domain.

0.2

The proof of Theorem 1.10 (see first case in its proof) shows that, if the data are of class at least C*1, then
the function t.y is locally semiconcave on any open set S C ST satisfying

diam(adg (exp, (th (v)v))) >0 Yv e S.

This kind of result has been used by Loeper and Villani [19] in the context of optimal transportation theory.
We mention that, given a general smooth compact Riemannian manifold, we do not know if the functions t¥,
are locally semiconcave on S! (see [12] for a partial answer in dimension 2).

5.3.

Our result concerning the strict uniform convexity of nonfocal domains for small deformation of the round
spheres is motivated by regularity issues in optimal transportation theory, see [11,13,14].
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0.4.

In the present paper, we deduce Theorem 4.3 as a corollary of our results concerning viscosity solutions of
Hamiltonian-Jacobi equations. In other terms, we used the symplectic viewpoint. We mention that Theorem 4.3
could as well be obtained with a purely Riemannian approach using some special properties of Jacobi fields
(see [25], Chapter 14, Third Appendix). Such a proof is given in [13].

APPENDIX A. STRICTLY UNIFORMLY CONVEX SETS

Let n > 2 be fixed; in the sequel, if A is a given subset of R™, we denote by d(-, A) the distance function
to A. Following [19], Appendix B, a natural notion of uniformly convex set is given by the following:

Definition A.1. A compact set A C R" is said to be strictly uniformly convex if there is £ > 0 such that
Az + (1 — Ny, 0A) > kA1 — Nz —y| (A1)
The following proposition more or less well-known gives a local characterization of strictly uniformly convex

sets. We refer the reader to [19], Appendix B, for its proof.

Proposition A.2. Let A be a compact subset of R™ which Lipschitz boundary. Then the two following properties
are equivalent:

(i) A is strictly uniformly conve.
(ii) There is k > 0 such that for every x € OA, there are §; > 0 and z, € R™ with |z, — x| = 1/k satisfying

AN B(z,6,) C B(zg,1/K).
As a corollary, one has the following result.
Proposition A.3. Let 7 : S*~! — R be a Lipschitz function, set
Ar = {tT(v)v |veS" ' te[0,1]} CR™

There is K > 0 such that if, for every v € S"~1, there is a function 7 : S*™1 — R of class C? satisfying
7(v) =T (), T <7 and ||D?*7||s < K, then the set Ar is strictly uniformly convexr.

APPENDIX B. PROOF OF LEMMA 1.8

Set T := teut(x). First, by (P4), we know that

w(exp(z, T)) = /OTL (eXp(ac, 9, %(:ﬂ, s)) ds.

Argue by contradiction and assume that there is ¢ > T such that (1.4) is satisfied. By (P7), for every s € [T,
the point exp(x, s) necessarily belongs to Cut(u) (the fact that exp(z, s) belongs to € is a consequence of the
proof of Lem. 1.7). Fix § € (T,t) and set § := exp(z,§). Two cases may appear: either § belongs to X(u) or ¥
belongs to Cut(u) \ L(u) = X(u) \ X(u). By (P4), if 7 belongs to X(u), then there is a curve 7, : [~T},,0] — Q
with

50(0) £ 222z, 5) (B.1)

such that
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Thanks to (P4)—(P6), this means that the curve 7 : [T}, — 5] — Q defined as

o Yo(s) if s €[-T},0]
(s) { eXp(x,§7+ s) if sel0,t—3

minimizes the quantity
t—5
JRZCERE) S
_Tp
among all curves v : [~T),t — 5] — Q such that y(—T,) = 5(—T},) and ¥(f—5) = exp(z,t). But, thanks to (B.1),
the curve 4 has a corner at s = 0. This contradicts the regularity of minimizing curves given by Euler-Lagrange
equations. Therefore, we deduce that § necessarily belongs to Cut(u)\ ¥(u). This means that v is differentiable

at y and that there is a sequence of points {yx} of X(u) converging to . Thus by (P4)—(P6), for each k, there
are pj, # pi in Opu(yx) and T}, T2 > 0 such that

i = exp (0773 (e vh) ) = exp (0772 (u, 7))

Since the sequences {piL}, {pi} and {T}'}, {T?} necessarily converge to du(y) and 5, we deduce that exp is
singular at (z,5). To summarize, we proved that if there is ¢ > T such that (1.4) is satisfied, then for every
s € [T, ], the function exp is singular at (z, s). Let us show that it leads to a contradiction®. Using the notations
which will be defined later in Section 2.1, there is (h,v) # 0 € U(z) such that the solution (h(-),v(-)) of the
linearized Hamiltonian system (2.1) starting at (h,v) satisfies h(T) = 0. Moreover, since any s € [T,{] is a
conjugate time, there is indeed a sequence {s;} converging to T associated to a sequence of vectors {(hg, vi)}
converging to (h,v) such that each solution (hy(-),vx(:)) of (2.1) starting at (hy,vi) satisfies hy(s;) = 0. Since
the Hamiltonian flow preserves the canonical symplectic form o, one has for any k

(i (T),0(T)) = 0.
But since hi(s;) = 0, the differential equation (2.1) yields
hi(T) = =(sk = T)Q(x, sk )vk(sk) + o(sk —T).
Since {vi(sk)} converges to v(T), we deduce that

(Qz, T)o(T),v(T)) = 0,

which contradicts the fact that Q(x,T) = %271;’ (g, ‘g—ﬁ(gj, 6g’t‘p (x,T))) is positive definite. This concludes the

proof. ([
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