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SWITCHING AND STABILITY PROPERTIES

OF CONEWISE LINEAR SYSTEMS ∗, ∗∗

Jinglai Shen1, Lanshan Han2 and Jong-Shi Pang2

Abstract. Being a unique phenomenon in hybrid systems, mode switch is of fundamental importance

in dynamic and control analysis. In this paper, we focus on global long-time switching and stability

properties of conewise linear systems (CLSs), which are a class of linear hybrid systems subject to

state-triggered switchings recently introduced for modeling piecewise linear systems. By exploiting

the conic subdivision structure, the “simple switching behavior” of the CLSs is proved. The infinite-

time mode switching behavior of the CLSs is shown to be critically dependent on two attracting

cones associated with each mode; fundamental properties of such cones are investigated. Verifiable

necessary and sufficient conditions are derived for the CLSs with infinite mode switches. Switch-free

CLSs are also characterized by exploring the polyhedral structure and the global dynamical properties.

The equivalence of asymptotic and exponential stability of the CLSs is established via the uniform

asymptotic stability of the CLSs that in turn is proved by the continuous solution dependence on

initial conditions. Finally, necessary and sufficient stability conditions are obtained for switch-free

CLSs.
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1. Introduction

A conewise linear system (CLS) is a dynamical system consisting of a finite number of linear dynamical
systems that are active on certain polyhedral cones which partition the entire Euclidean state space [11]. Each
of these linear systems is called a mode of the CLS; transitions between modes occur along a state trajectory.
Introduced in [11] for modeling Lipschitz piecewise linear systems, the CLSs form a special class of linear hybrid
automata [24], where the vector fields are linear in states, the invariant sets are solid polyhedral cones, the guard
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sets are the boundaries of these cones, and the reset maps are all identity [11]. A distinct feature of a CLS is
that it possesses finitely many modes and is subject to state-dependent mode switchings with implicit transition
times and implicit mode selection at switching times. Being common in applications, state-dependent switchings
complicate many fundamental dynamical and control issues of hybrid systems [11], e.g., the (non)-Zeno and
stability analysis.

Among various piecewise linear systems modeled by the CLSs, linear complementarity systems (LCSs) satis-
fying singleton properties [33,34] have attracted focused attention in recent years. Roughly speaking, an LCS is
described by a linear time-invariant ordinary differential equation (ODE) coupled with a linear complementarity
problem (LCP) [14]. The LCSs and their generalizations, e.g., differential variational inequalities (DVIs) [29],
have received a surge of research interest across several areas, including optimization, systems/control, and ro-
botics, due to their wide applications in the modeling of nonsmooth physical systems and dynamic optimization
in operations research. See the two survey articles [8,32] and the research papers [10–12,18,28,29,33–35] as well
as the references therein for various issues and results arising from many theoretical and applied problems.

Mode switching is a unique and intrinsic phenomenon in hybrid ODE systems and it plays a critical role
in determining fundamental solution properties, e.g., well-posedness, and understanding control-theoretical
issues such as stability and observability as well as the numerical analysis of a hybrid system. Stimulated
by the modeling and control of complex dynamical systems subject to constraints and possessing multiple
subsystems, extensive efforts have been devoted recently to investigating dynamical properties under various
mode switching conditions, e.g., [19,24]. For hybrid systems subject to state-dependent mode switchings, the
Zeno behavior, which refers to the existence of infinitely many mode switches in finite time, is one of the most
crucial switching properties for short-time or finite-time dynamic analysis. It has been shown in [11] that the
CLSs are free of Zeno states and hence possess piecewise analytic state trajectories. Additional non-Zeno results
have also been obtained for the LCSs satisfying certain singleton properties [33,34], the strongly regular nonlinear
complementarity systems [28], and a class of DVIs [17]. In spite of the advances in non-Zeno analysis, much
less is known about the mode switching behavior over infinite time domain, which we refer to as the long-time
switching behavior throughout the paper. Motivated by the global and long-time dynamic analysis of the CLSs
and related systems, for example, stability and long-time observability analysis, the present paper investigates
long-time mode switching and stability properties of the CLSs. In particular, long-time switching properties
are characterized for several important classes of the CLSs, either expressed in terms of attracting cones or
described by finitely verifiable algebraic conditions. By exploiting the switching results and other analytic
properties of the CLSs, stability analysis is performed and new stability results are obtained. Compared with
the existing stability results for hybrid/switched systems, e.g., [19,20,23,24], the current paper focuses on the
CLSs, a class of switched linear systems subject to state-dependent mode switchings, by fully exploring the
conic subdivision structure of the systems [15,31]. In the recent paper [1], Arapostathis and Broucke address
stability and controllability of planar conewise linear systems with discontinuous right-hand sides. While their
characterization of such a CLS is rather complete, their techniques are restricted to planar geometry. It is
unclear at this stage whether these techniques can be extended to the general CLS on Rn, which is the main
concern of our work.

The rest of the paper is organized as follows. In Section 2, mode switching is defined and the “simple switching
property” of the CLSs, which pertains to the persistence of certain index sets corresponding to both the forward-
time and the backward-time trajectories, is proved. In Section 3, the notions of attracting cones and global
attracting cones are introduced for each mode of a CLS. With the help of these two cones, long-time invariant
behaviors of the CLS are investigated. Sections 4 and 5 address the CLSs with infinite mode switchings and
the switch-free CLSs respectively; explicit verifiable algebraic conditions are derived to characterize these two
classes of CLSs. By linking asymptotic stability to uniform asymptotic stability, the equivalence of asymptotic
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and exponential stability for the CLS is established in Section 6.2; necessary and sufficient Lyapunov stability
conditions for switch-free CLSs are given in Section 6.3 via the switching results obtained in Section 5.

2. Mode switchings of conewise linear systems

A conewise linear system (CLS) on Rn is given by:

ẋ = Ai x, ∀x ∈ Xi = {x | Ci x ≥ 0}, i = 1, . . . , m, (2.1)

where Ai ∈ Rn×n and Ci ∈ R�i×n. The family of all the cones Xi forms a conic subdivision of Rn [31], and the
right-hand side of the ODE satisfies the following continuity condition: x ∈ Xi ∩ Xj ⇒ Aix = Ajx. Recall
that a conic subdivision of Rn possesses the following properties:

(a) the union of all the cones is equal to Rn, i.e.,
⋃m

i=1 Xi = Rn;
(b) each cone is solid, i.e., it has a nonempty interior (thus is of dimension n); and
(c) the intersection of any two cones is either empty or a common proper face of both cones, i.e., Xi ∩Xj =

Xi ∩ {x | (Cix)α = 0} = Xj ∩ {x | (Cjx)β = 0} for nonempty index sets α and β.

The right-hand side of (2.1) is continuous and piecewise linear in x, and thus is globally Lipschitz in x.
Hence it follows that (2.1) has a unique C1 state trajectory, denoted by x(t, x0), for any initial state x0 and
all t. Without loss of generality, we assume throughout the paper that each matrix Ci has no zero rows. Due to
this assumption and the fact that Xi is of full dimension, we see that for each index k = 1, . . . , �i, there exists
a vector x̂k ∈ Xi such that (Cix̂

k)k > 0. Therefore, we must have

∅ �= intXi = {x |Cix > 0 }, (2.2)

where int denotes the interior of a set. By (c) of the conic subdivision, it further follows that Xj ∩ intXi = ∅
for all i �= j. Let bdXi ≡ Xi \ intXi = {x ∈ Xi | (Cix)k = 0 for some k} be the boundary of Xi.

Associated with the “forward-time” system (2.1) is a backward-time (or reverse-time) system that allows us
to obtain reverse-time results easily from a forward-time analysis. Specifically, for a given terminal time T > 0,
define xr(t) ≡ x(T − t). We have xr(0) = x(T ) and

ẋr = Ãi xr, if xr ∈ Xi, (2.3)

where Ãi ≡ −Ai. The latter system remains a CLS. The reverse-time system can be used to derive backward-
time results pertaining to the forward-time trajectory. In particular, the reverse-time CLS has a unique state
trajectory for all times and any initial condition.

Definition 2.1. Let x(t, x0) be a state trajectory of the CLS (2.1) with initial state x0, i.e., x(0, x0) = x0. We
say that a time instant t∗ ≥ 0 is not a switching time along x(t, x0) if there exist i ∈ {1, . . . , m} and ε > 0 such
that x(t, x0) ∈ Xi, ∀t ∈ [t∗ − ε, t∗ + ε]; otherwise, we say that t∗ is a switching time along x(t, x0), and that the
CLS has a mode transition or mode switching along x(t, x0) at t∗.

We recall some related notation and results on mode switchings from [11] to be used in the subsequent de-
velopment. An ordered real �-tuple a =

(
a1, . . . , a�

)
is called lexicographically nonnegative if either a = 0 or its

first nonzero element (from the left) is positive and we write a � 0. An n-dimensional vector tuple
(
x1, . . . , x�)

is called lexicographically nonnegative if each real tuple
(
x1

i , . . . , x
�
i) is lexicographically nonnegative for all i =

1, . . . , n, and we write
(
x1, . . . , x�) � 0. For each i = 1, . . . , m, let Yi≡

{
x ∈ Rn

∣∣ (Cix, CiAix, . . . , CiA
n−1
i x

)
� 0

}
be the semiobservable cone associated with the pair (Ci, Ai). It is known that for any x0, x(t, x0) ∈ Xi for all
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Figure 1. A mode switching.
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Figure 2. Non-switching ruled out by Proposition 2.2.

t ≥ 0 sufficiently small if and only if x0 ∈ Yi [11]. For the given pair (Ci, Ai), let O(Ci, Ai) be its unobservable
subspace, namely, O(Ci, Ai) = {x ∈ Rn |CiA

k
i x = 0, k = 0, . . . , n − 1}. Given ξ ∈ Rn, define two index sets

I(ξ) ≡ {i | ξ ∈ Xi} and J (ξ) ≡ {i | ξ ∈ Yi}. Similarly, we can define J r(ξ) for the associated reverse-time
system. It is shown in [11] that a time t∗ > 0 is a switching time along a given trajectory x(t, x0) if and only
if J (x(t∗, x0)) ∩ J r(x(t∗, x0)) = ∅. In [11], Example 3.12, a CLS is given with J (x(t∗, x0)) �= J r(x(t∗, x0)) at
a non-switching time t∗. However, this example does not satisfy the proper face property of the conic subdivi-
sion. The following proposition shows that the equality J (x(t∗, x0)) = J r(x(t∗, x0)) holds at any non-switching
time t∗ under the proper face condition. Thus at a non-switching time t∗, if the forward-time trajectory starting
from x(t∗, x0) stays in a cone Xi for a while, then the reverse-time trajectory starting from the same state must
also remain in Xi for some time. This property, referred to as the simple switching property, is illustrated in
Figure 2; Figure 1 shows a mode switch. Incidentally, while being intuitive, the proof of the simple switching
property is not totally trivial as seen below. More importantly, this property is critical to several subsequent
results; see Propositions 3.6, 4.1 and Lemma 5.1, the latter being instrumental in proving Proposition 5.2.

Proposition 2.2. For any trajectory x(t, x0) of the CLS (2.1), a time t∗ > 0 is a non-switching time along
x(t, x0) if and only if J (x(t∗, x0)) = J r(x(t∗, x0)).

Proof. For notational simplicity, let x∗ = x(t∗, x0). The “if” part follows readily from the facts that J (x(t, x0))
is nonempty for all t ≥ 0 and that t∗ is a non-switching time if and only if J (x∗) ∩ J r(x∗) �= ∅. In the
next, we show the “only if” part using the proper face property of the conic subdivision. Since t∗ is a non-
switching time, there is a j ∈ J (x∗) ∩ J r(x∗). We claim that J r(x∗) ⊆ J (x∗). Suppose not. Then there
exists an i ∈ J r(x∗) but i �∈ J (x∗). Hence, i �= j. By the choice of j, we deduce the existence of ε > 0
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such that x(t, x0) = eAj(t−t0)x(t0, x0) for all t ∈ [t∗ − ε, t∗ + ε], where t0 = t∗ − ε. Since x(t, x0) ∈ Xi ∩ Xj

for t ∈ [t∗ − ε, t∗], by the proper face condition, there exist two nonempty index sets α and β such that
Xi ∩ Xj = Xi ∩ {x | (Cix)α = 0} = Xj ∩ {x | (Cjx)β = 0}; thus (Cix(t, x0))α = 0 and (Cjx(t, x0))β = 0 for
all t ∈ [t∗ − ε, t∗]. Notice that (Cjx(t, x0))β = 0, ∀t ∈ [t∗ − ε, t∗] implies that x∗ ∈ O((Cj)β•, Aj). Thus
(Cjx(t, x0))β = 0 for all t ∈ [t∗, t∗ + ε], which yields x(t, x0) ∈ Xj ∩ {x | (Cjx)β = 0} for all t ∈ [t∗, t∗ + ε].
Consequently, x(t, x0) ∈ Xi ∩{x | (Cix)α = 0} ⊆ Xi for all t ∈ [t∗, t∗ + ε]. However, this is a contradiction to the
assumption that i �∈ J (x∗). Therefore, the claim holds. By the similar argument for the reverse-time system,
we conclude that J r(x∗) ⊇ J (x∗). This thus shows that J (x∗) = J r(x∗). �

3. Attracting cones and long-time mode switching properties

In this section, we study long-time mode switching behaviors of CLS trajectories. It is shown below that
such switching behaviors are critically dependent on two attracting cones associated with each mode. We begin
by introducing a key positively invariant cone corresponding to a given mode. It is easy to verify that the set
Ai := {x |CieAitx ≥ 0, ∀t ∈ [0,∞)} ⊆ Xi is a closed convex cone. Formally, we call Ai the attracting cone
of Xi. We collect a few basic facts about the attracting cones as follows.

Lemma 3.1. Let Ai be the attracting cone of Xi. Then the following statements hold:

(a) x ∈ Ai if and only if eAitx ∈ Ai, ∀t ∈ [0,∞);
(b) if x ∈ Ai, then Aix ∈ T (x;Ai), where T (x;Ai) denotes the tangent cone of Ai at x;
(c) linAi = O(Ci, Ai), where linAi := Ai ∩ (−Ai) is the lineality space of Ai.

Thus, Ai is pointed, i.e., linAi = {0}, if and only if O(Ci, Ai) = {0}.

Proof. (a) If eAitx ∈ Ai for all t ≥ 0, then take t = 0, we have x ∈ Ai. Conversely, consider x ∈ Ai. For any
t∗ ≥ 0, CieAit(eAit∗x) = CieAi(t+t∗)x ≥ 0 for all t ≥ 0 by the definition of Ai. Hence, eAit∗x ∈ Ai.

(b) Let x ∈ Ai and let {tj} be a positive time sequence converging to zero. Note that eAitj x ∈ Ai due to

statement (a) and the vector sequence {eAitj x} converges to x. Hence, lim
j→∞

eAitj x − x

tj
= lim

j→∞
eAitj − I

tj
x =

Aix. This shows that Aix ∈ T (x;Ai).
(c) It is easy to observe that x ∈ Ai ∩ (−Ai) if and only if CieAitx = 0, ∀t ≥ 0. The latter condition is

further equivalent to x ∈ O(Ci, Ai). Hence, Ai ∩ (−Ai) = {0} if and only if O(Ci, Ai) = {0}. �

A further characterization of the attracting cone for a given pair (Ci, Ai) seems difficult. For one thing, such
a cone is usually non-polyhedral. As an example, consider the pair

Ci =
[
1 0 0

]
, Ai =

⎡⎣0 1 0
0 0 1
0 0 0

⎤⎦ .

The associated cone Ai is the non-polyhedral cone {(x1, x2, x3) ∈ R3 |x1 ≥ 0, x3 ≥ 0, x2 ≥ −
√

2 x1 x3}. In
general, if Ai has the zero eigenvalue only, then characterizing its attracting cone can be formulated as a semi-
algebraic problem; see Section 4.1.1. Despite this difficulty, the next theorem provides a useful result that
relates the non-triviality of Ai to a constrained eigenvector property of Ai on Xi; its proof follows from [27],
Lemma 1, based on a fixed point argument.

Theorem 3.2. Ai �= {0} if and only if either O(Ci, Ai) �= {0} or the matrix Ai has a real eigenvalue with an
associated eigenvector in Xi, i.e., there exists 0 �= v ∈ Xi such that Aiv = λv for some λ ∈ R.
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An interpretation of Theorem 3.2 in term of mode switchings is given in Remark 4.9. This theorem can be
used to characterize cone observability [4]. Specifically, consider a closed convex cone K and a linear system
associated with A ∈ Rn×n and C ∈ Rm×n:

ẋ = Ax, y = Cx, (3.1)

and define the set A(A, C,K) := {x | CeAtx ∈ K, ∀t ≥ 0}. The system (3.1) is K-observable if
A(A, C,K) = {0} [4], Definition 3.1 of Chapter 8. Obviously Theorem 3.2, together with (c) of Lemma 3.1,
gives a necessary and sufficient condition for Rm

+ -observability of (3.1). The following corollary extends the
latter remark to a general closed convex cone K; the proof is similar to Theorem 3.2 and hence omitted.

Corollary 3.3. Let K be a closed convex cone whose lineality space is the null space of a matrix M , i.e.,
K∩ (−K) = kerM . Then the linear system (3.1) is K-observable if and only if the following two conditions hold:
(a) O(MC, A) = {0} and (b) there is no real eigenvector v of A such that Cv ∈ K.

Extending the cone Ai, we define the global attracting cone Âi associated with the mode Xi as:

Âi = {v ∈ Rn | ∃ t∗ ≥ 0 such that x(t, v) ∈ Xi, ∀t ≥ t∗}·

It is clear that Ei ⊆ Ai ⊆ Âi, where Ei := {x |Aix = 0, x ∈ Xi} is the set of equilibrium states of the CLS in Xi.
Unlike Ai, Âi is neither convex nor closed in general. Less obvious is the equality:

Âi =
{

xr(t, x0) | x0 ∈ Ai, t ≥ 0
}
, (3.2)

which shows that Âi is the set of reachable states of trajectories of the reverse-time CLS (2.3) that begin with
initial states in Ai. To establish (3.2), let x∗ = xr(t∗, x0) for some t∗ ≥ 0 and x0 ∈ Ai. Hence, x(t∗, x∗) = x0 by
the uniqueness of the forward and backward time trajectories. Moreover, x(t, x(t∗, x∗)) = x(t, x0) for all t ≥ 0.
Since x0 ∈ Ai, there exists t0 ≥ 0 such that x(t, x0) ∈ Ai for all t ≥ t0. Therefore x(t, x∗) must be in Ai for all
t ≥ t0 + t∗. This shows x∗ ∈ Âi. Therefore, the left-hand set in (3.2) is contained in Âi. The reverse inclusion
is easy. Based on the equality (3.2), it follows readily that the global attracting cone is nontrivial if and only if
its corresponding attracting cone is so. Furthermore, it is easy to observe that if x0 ∈ linAi ≡ O(Ci, Ai), then
xr(t, x0) = e−Aitx0 ∈ Ai for all t ≥ 0 by solution uniqueness of the reverse-time CLS. Therefore, if Ai = linAi,
then we have Âi = Ai by (3.2). These two results are formally stated in the proposition below without a proof.

Proposition 3.4. Let Âi and Ai be the two attracting cones defined above. Then Âi �= {0} if and only if
Ai �= {0}. Moreover, if Ai = linAi, then Âi = Ai = linAi.

The next result identifies several important properties of the cone Âi. It provides a clue as to why this cone
may not be closed, showing in particular that the last switching time τ∗(v) of a state v ∈ Âi, which is defined as:

τ∗(v) ≡ inf{ t∗ ≥ 0 |x(t, v) ∈ Xi, ∀t ≥ t∗ }, (3.3)

plays an important role in the closeness of Âi. The result also establishes a special arcwise connected property
of Âi; see part (c) below. In particular, it shows that any two linearly independent vectors in Âi can be
connected by a continuous injective curve in Âi not passing through the origin. (Note that any two points in
the cone Âi can be trivially connected by two line segments in Âi through the origin.)
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Proposition 3.5. The following three statements hold for the cone Âi.

(a) Let {vk} ⊆ Âi be a sequence converging to v∗. If lim sup
k→∞

τ∗(vk) < ∞, then v∗ ∈ Âi. Thus, Âi is closed

if τ∗(v) is bounded on compact subsets of Âi.
(b) If v∗ ∈ Âi is such that x(t∗, v∗) ∈ intAi for a t∗ ≥ 0, then τ∗(v) ≤ t∗ for all v sufficiently close to v∗.
(c) The following two statements are equivalent for any two nonzero vectors u∗ �= v∗ in Âi:

(c1) there is a continuous injective curve c : [0, 1] → Âi such that c(0) = u∗, c(1) = v∗, and c(λ) �= 0
for all λ ∈ [0, 1];

(c2) u∗, v∗ and Ai do not satisfy all the following three conditions: dim(Ai) = 1, u∗, v∗ ∈ linAi, and
u∗ = −τ v∗ for a positive scalar τ .

Proof. To prove (a), let tk := τ∗(vk). We may assume without loss of generality that {tk} converges to t∗ ≥ 0.
This implies that for all k sufficiently large, x(t, vk) ∈ Xi, ∀t ≥ t∗ + 1. Since x(t, ·) is continuous and Xi is
closed, it follows that x(t, v∗) ∈ Xi for all t ≥ t∗ +1, establishing that v∗ ∈ Âi. The second assertion in (a) does
not require further proof.

To show (b), let x∗ := x(t∗, v∗) ∈ intAi. Then there is a closed ball B ⊆ Ai centered at x∗. Since t∗ is
finite, by the Lipschitz solution dependence result, we have a ball B0 centered at v∗ such that for any v ∈ B0,
x(t∗, v) ∈ B ⊆ Ai. Hence, x(t, v) ∈ Xi for all t ≥ t∗; thus τ∗(v) ≤ t∗.

To prove (c), we first show (c1) ⇒ (c2) via contradiction. Suppose (c2) does not hold. We deduce from
0 �= u∗ ∈ linAi that dim(linAi) ≥ 1. Since linAi ⊆ Ai and dim (Ai) = 1, we have dim(linAi) = 1 which
further implies Ai = linAi. By Proposition 3.4, Âi = linAi. Hence Âi = Span{u∗} is a one-dimensional
subspace of Rn, i.e., Âi is a line through the origin parallel to u∗ and v∗. Therefore, any continuous curve in Âi

connecting u∗ and v∗ passes through the origin. This is contradictory to (c1).
To show (c2) ⇒ (c1), we prove the following claim first: for the given u∗ and v∗, exactly one of the two

statements: (c1) or
[
u∗, v∗ ∈ linAi and u∗ = −τ v∗ for some τ > 0

]
, holds. Let t∗ ≥ 0 be such that

x∗ := x(t∗, u∗) ∈ Ai and y∗ := x(t∗, v∗) ∈ Ai. Since u∗, v∗ are nonzero, we deduce that x∗ �= 0 and y∗ �= 0 by
the global Lipschitz property of the CLS. Thanks to the convexity of Ai, x∗ + λ(y∗ − x∗) ∈ Ai for all λ ∈ [0, 1].
Then exactly one of the following two cases holds:

(i) x∗ + λ(y∗ − x∗) �= 0 for all λ ∈ [0, 1]. In this case, we define the curve c : [0, 1] → Rn as c(λ) =
xr(t∗, x∗ + λ(y∗ − x∗)). We immediately have c(0) = xr(t∗, x∗) = u∗ and c(1) = xr(t∗, y∗) = v∗. Moreover,
c(λ) �= 0 for all λ ∈ [0, 1] due to x∗ + λ(y∗ − x∗) �= 0 and the global Lipschitz property of the reverse-time CLS.
Besides, it is easy to verify x(t∗, c(λ)) = x∗ + λ(y∗ − x∗) ∈ Ai for each λ ∈ [0, 1]. Thus c([0, 1]) ⊂ Âi. The
curve is continuous because of continuous solution dependence on initial conditions and the solution uniqueness
of the reverse-time CLS implies that the curve is one-to-one.

(ii) x∗ + λ∗(y∗ − x∗) = 0 for some λ∗ ∈ (0, 1). In this case, x∗ = −τy∗, where τ := λ∗/(1 − λ∗) > 0. Since
Ai is a cone, both x∗ ∈ linAi and y∗ ∈ linAi. Recalling linAi = O(Ci, Ai) (see (c) of Lem. 3.1), we obtain
CieAitx∗ ≡ 0, ∀t ∈ R, i.e., eAitx∗ ∈ Xi for all t. The solution uniqueness of the reverse-time CLS implies that
xr(t, x∗) = e−Aitx∗ and xr(t, x∗) ∈ linAi for all t ≥ 0. Hence, we deduce that u∗ = e−Ait∗x∗ ∈ linAi. Similarly,
v∗ = e−Ait∗y∗ ∈ linAi. Since x∗ = −τy∗, we have u∗ = −τv∗. This completes the proof of the claim.

We now return to the proof of (c2) ⇒ (c1). Suppose that (c2) holds but (c1) does not for the given u∗, v∗.
The above claim yields that u∗, v∗ ∈ linAi ⊆ Âi and u∗ = −τ v∗ for some τ > 0. Since (c2) holds, dim(Ai) �= 1.
Furthermore, Ai �= {0} implies that dim(Ai) ≥ 2. As a result, there exists a nonzero vector w∗ ∈ Ai ⊆ Âi such
that each of the pairs

(
u∗, w∗) and

(
w∗, v∗) is linearly independent. Applying the claim proved above again,

we obtain two continuous injective curves in Âi, neither passing through the origin, such that they connect(
u∗, w∗) and

(
w∗, v∗) respectively. By concatenating the two curves, we have a continuous injective curve in Âi
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O 

Figure 3. A possible configuration of Âi.

O 

Figure 4. An impossible configuration of Âi.

connecting u∗ and v∗ without passing through the origin. This is a contradiction to the hypothesis that (c1)
does not hold. �

The above connectedness result is geometrically appealing and provides additional structure to the cone Âi.
For example, if Âi �= {0} is such that there is a unique continuous injective curve in Âi connecting any two
different points in Âi, then Âi is either (i) a linear ray with the origin as its starting point, or (ii) a line through
the origin. In the former case, Âi = Ai, and Âi = Ai ∪ (−Ai) in the latter. Moreover, if Âi is the union of a
family of nontrivial cones Cj satisfying Cj ∩ Ck = {0} for any j �= k, then for each j, linAi ∩ Cj �= {0} and a
cone Ck exists with j �= k such that Cj ∩ (−Ck) �= {0}. See Figures 3 and 4 for illustration of a possible and an
impossible configuration of Âi in R2.

The global attracting cone Âi can be used to characterize the CLS with finitely many mode switchings. The
proof uses the simple switching property.

Proposition 3.6. Each CLS trajectory has finitely many mode switches in [0,∞) if and only if
m⋃

i=1

Âi = Rn.

Proof. For the “if” part, let x0 ∈ Rn be arbitrary. It follows that x0 ∈ Âi for some i. Therefore, a time t∗ ≥ 0
exists such that x(t, x0) ∈ Xi for all t ≥ t∗. This means that there is no mode switching after t∗. On the other
hand, the non-Zeno result in [11] shows that there are finitely many mode switchings along x(t, x0) on [0, t∗].
Hence, every trajectory of the CLS has finitely many mode switches on [0,∞). Conversely, suppose that the
CLS has a finite number of mode switches on [0,∞) along any trajectory. Then for any given x0 ∈ Rn, there
is a time t∗ ≥ 0 such that any t ≥ t∗ is a non-switching time along x(t, x0). By Proposition 2.2, we see that
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the (nonempty) index set J (x(t, x0)) remains invariant for all t ≥ t∗. This shows that x(t, x0) ∈ Xi, ∀t ≥ t∗ for
some i ∈ J (x(t∗, x0)). Therefore, x0 ∈ Âi. �

For a CLS such that each trajectory has finitely many mode switchings in infinite (forward) time, the number
of mode switchings is generally unbounded for all trajectories, even for the trajectories reaching the same point.
This causes difficulty in studying long-time switching behavior of the CLS. To overcome this difficulty, we
introduce the “uniform” mode switching notion as follows. We call an x∗ ∈ Ai a regular attracting point if a
positive integer N(x∗) exists such that for each trajectory x(t, v) with x∗ := x(s, v) for some s ≥ 0, the number
of mode switches along x(t, v) on [0,∞) is less than or equal to N(x∗). The following result characterizes such
points.

Proposition 3.7. Let Âr
i be the global attracting cone of Xi defined for the reverse-time CLS. Then x∗ ∈ Ai

is a regular attracting point if and only if x∗ ∈ Âr
j for some j (possibly different from i).

Proof. To show the “if” part, we first observe that if x∗ ∈ Âr
j , then tr ≥ 0 exists such that xr(t, x∗) ∈ Ar

j

for all t ≥ tr. The non-Zenoness of the CLS thus implies that there are N mode switchings along xr(t, x∗)
on [0, tr], where N is a nonnegative integer. By the switching property given in Proposition 2.2, we see that
if x̂ is a switching state on a forward-time trajectory, so is on the same trajectory but in the backward-time
direction. Hence for any v such that x(t, v) reaches x∗ in the forward time, there are at most N mode switchings
along x(t, v). This completes the proof for this part. We next prove the “only if” part via contradiction, i.e.,
suppose x∗ �∈

⋃m
j=1 Âr

j . Thus xr(t, x∗) has infinitely many mode switchings on [0,∞) (since otherwise xr(t, x∗)
will remain in one piece for all t sufficiently large, which leads to a contradiction). That is, for any positive
number M , there is a tM ≥ 0 such that there are M mode switchings along xr(t, v) on [0, tM ]. Letting
vM = xr(tM , v), we see that x(t, vM ) has M mode switchings on [0, tM ] before it reaches the non-switching
state x∗. Since M is arbitrarily large, we conclude that the number of mode switchings of all the trajectories
reaching x∗ in the forward time is unbounded. This is a contradiction. �

We say that a CLS satisfies the uniform finite switching property if (i) any (forward-time) trajectory of the
CLS has finitely many mode switchings in infinite time, and (ii) each Ai contains regular attracting points only.
The following result is easy to obtain via Proposition 3.7: the CLS (2.1) satisfies the uniform finite switching

property if and only if
m⋃

i=1

Âi = Rn and
m⋃

i=1

Âr
i = Rn. This result may be served as a necessary condition for

a CLS with a bound on the number of mode switchings of all trajectories. However, instead of pursuing further
general discussion, we address two special classes of the CLSs in the next two sections by obtaining explicit
characterization conditions for these CLSs.

4. CLSs with infinite mode switchings

In this section, we focus on the CLSs satisfying (b) of Proposition 4.1 below, which are referred to as the
CLSs with infinite mode switchings. To characterize such CLSs, we only need to consider trajectories starting
from non-equilibrium states when dealing with those with at least one switching.

Proposition 4.1. Let E :=
m⋃

i=1

Ei be the equilibrium set of the CLS. Then Xi ∩ E = Ei for all i = 1, . . . , m and

the following four statements are equivalent:

(a) for any x0 �∈ E, the trajectory x(·, x0) has a mode switching in [0,∞);
(b) for any x0 �∈ E, the trajectory x(·, x0) has infinitely many mode switchings in [0,∞);
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(c) for each i = 1, . . . , m and any x0 ∈ Yi \ Ei, there exists a t∗ > 0 such that eAi t∗x0 �∈ Xi;
(d) Âi = Ai = Ei = Xi ∩ E for all i = 1, . . . , m.

Moreover, if any of (a)–(d) holds, then O(Ci, Ai) = ker
[

Ci

Ai

]
for all i = 1, . . . , m.

Proof. Clearly, Ei ⊆ Xi ∩ E . Conversely, if x ∈ Xi ∩ Ej for some j �= i, then x ∈ Xi ∩ Xj . Thus, Aix = Ajx = 0;
hence x ∈ Ei. Therefore, Ei = Xi ∩ E .

(a) ⇔ (b). We only need to show (a) ⇒ (b). Let x0 �∈ E . Suppose for contradiction that x(·, x0) has finitely
many switchings on [0,∞). Let t∗ ≡ τ∗(x0) be the last switching time defined in (3.3). Thus the trajectory
starting from x(t∗ + 1, x0) has no switching in the forward time. By (a), x(t∗ + 1, x0) must be in E . This shows
that x(t∗ + 1, x0) is an equilibrium of the CLS. We deduce, via the solution uniqueness of the reverse-time
trajectory, that x(t, x0) is an equilibrium for all t ≥ 0. This is a contradiction to the assumption x0 �∈ E . Hence,
(a) ⇔ (b).

(a) ⇔ (c). We show (a) ⇒ (c) first. Clearly, if (c) fails, then there exists an x0 ∈ Yi \ Ei such that
x(t, x0) ≡ eAitx0 ∈ Xi for all t ≥ 0. Hence no switching occurs along x(t, x0), which is a contradiction since
x0 �∈ E . To show the reverse, recall that for any x0, x0 ∈ Yi for some i ∈ {1, . . . , m}. This implies that
x(t, x0) ∈ Xi for all t ≥ 0 sufficiently small. If x0 �∈ E , then x0 ∈ Yi \ Ei. Thus (c) yields the existence of a time
instant t̂ ∈ (0, t∗) such that x(t, x0) ∈ Xi, ∀t ∈ [0, t̂ ] and that i �∈ J (x(t̂, x0)), where the former condition further
shows that i ∈ J r(x(t̂, x0)). Hence, we deduce via the simple switching property proven in Proposition 2.2 that
x(t, x0) has a mode switching at t̂. This leads to (a).

(a) ⇔ (d). We first show that (a) implies Ai = E ∩ Xi for all i = 1, . . . , m. Note that under (a), for any
x0 ∈ Xi \ E , there exists t∗ > 0 such that eAit∗x0 �∈ Xi (otherwise there is no switching along x(t, x∗)). Hence
x0 �∈ Ai. Therefore, Ai ⊆ E ∩ Xi; the other direction is trivial. Similarly, one can show, via the equivalence
of (a) and (b), that if x0 �∈ E , then x0 �∈

⋃m
i=1 Âi. Thus Âi ⊆ E for all i. Moreover, if x0 ∈ E but not in Xi,

x(t, x0) ≡ x0, ∀t will never be in Xi for all t ≥ 0. Thus such x0 is not in Âi, which implies Âi ⊆ E ∩ Xi for
each i. The reverse inclusion holds trivially. Therefore, (a) implies (d). Conversely, if (d) holds, then for a
given x0 �∈ E , x0 �∈

⋃m
i=1 Ai. Hence for any i ∈ J (x0) (i.e., x0 ∈ Yi), there exists t∗ > 0 such that eAit∗x0 �∈ Xi.

This shows the existence of one switching along the trajectory x(t, x0) via the previous argument for (c) ⇒ (a).
Consequently, (a) holds true.

Finally, if any one of conditions (a)–(d) holds, then O(Ci, Ai) = Ai ∩ (−Ai) = Ei ∩ (−Ei), from which the

equality O(Ci, Ai) = ker
[

Ci

Ai

]
follows readily. �

4.1. Further necessary and sufficient conditions

In this section, we derive verifiable conditions that characterize the CLSs with infinitely many mode switch-
ings. In view of (c) and (d) of Proposition 4.1, it suffices to treat each pair (Ci, Ai) individually. For notational
simplicity, we drop the subscript in this pair and use (C, A) throughout this subsection. We also assume with-
out loss of generality that A is in real Jordan canonical form via a (real) similar transformation. Let A have
p distinct real eigenvalues λi and s distinct complex eigenvalue pairs μj and μ̄j . Hence, A has the following
Jordan form [13], Section 5.6,

A =

⎡⎢⎢⎢⎣
J1

J2

. . .
Jp+s

⎤⎥⎥⎥⎦ (4.1)
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where Ji denotes all the Jordan blocks associated with a real eigenvalue λi or a complex eigenvalue and its conju-
gate (i.e. μi and μ̄j). (We assume that J1, . . . , Jp correspond to the distinct real eigenvalues and Jp+1, . . . , Jp+s

correspond to the distinct complex eigenvalue pairs.) Specifically, Ji is given by

J i =

⎡⎢⎢⎢⎣
Ji1

Ji2

. . .
Jir(i)

⎤⎥⎥⎥⎦ .

Here r(i) is the number of Jordan blocks in Ji and Jij is the jth (real) Jordan block given by

(i) Jij =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

λi 1
λi 1

. . . . . .
. . . 1

λi

⎤⎥⎥⎥⎥⎥⎥⎥⎦
corresponding to the real eigenvalue λi; or

(ii) Jij =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Di I2

Di I2

. . . . . .
. . . I2

Di

⎤⎥⎥⎥⎥⎥⎥⎥⎦
corresponding to the complex eigenvalue pair σi ± ı ωi, where

σi, ωi ∈ R with ωi > 0, I2 is the 2 × 2 identity matrix and Di =
[

σi ωi

−ωi σi

]
.

Accordingly, the matrix C can be written as

C =
[
C1 C2 . . . Cp+s

]
, with Ci =

[
Ci1 Ci2 . . . Cir(i)

]
, (4.2)

where Cij =
[
Cij�

]kij

�=1
and Cij� represents the �th column of the block Cij . Obviously, Cij has at least one

column (resp. two columns) if it corresponds to a real eigenvalue (resp. a complex eigenvalue pair). In addition,
associated with each real eigenvalue λi or complex eigenvalue pair (μi, μ̄i), we define C�

i as the collection of the
�th columns of Cij (if they exist), namely,

C�
i =

[
Ci1� Ci2� . . . Cir(i)�

]
. (4.3)

The observability result presented below is a modification of [13], Theorem 5.21, for A in the real Jordan
form, where we recall that the pair (C, A) is an observable pair if its corresponding unobservable subspace
O(C, A) = {0}.

Lemma 4.2. Let A ∈ Rn×n and C ∈ Rm×n with A in the real Jordan form (4.1). Then (C, A) is an observable
pair if and only if the following two conditions are both valid:

(a) the columns of C1
i are linearly independent over the real field for all i = 1, . . . , p;

(b) the columns of both C1
i + ı C2

i and C1
i − ı C2

i are linearly independent over the complex field for all
i = p + 1, . . . , p + s.

The next result shows that Cij1 plays a dominant role in characterizing the long time behavior associated
with its real eigenvalue.
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Lemma 4.3. Let Jij ∈ Rk×k be a Jordan block defined above associated with a real eigenvalue λi of A and let
its corresponding block in C be Cij with Cij1 �= 0. Then for any nonzero v ∈ Rk with v� as the last nonzero

element where � ∈ {1, . . . , k}, Cij eJijt v = eλit
[

t�−1

(�−1)!Cij1v� + O(t�−2)
]
.

Proof. Using the Jordan form of Jij , we have

CijeJijtv = Cijetλi

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 t t2

2! . . . tk−1

(k−1)!

1 t . . . tk−2

(k−2)!

. . . . . .
...

1 t

1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
v = eλitCij

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v�
t�−1

(�−1)! + O(t�−2)
O(t�−2)

...
O(1)

0
...
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= eλit

[ t�−1

(� − 1)!
Cij1v� + O(t�−2)

]
. �

The following technical results, stated in a slightly general setting, are useful to characterize the long-
time behaviors corresponding to complex eigenvalues of the matrix A. We call a continuous periodic function

h : R → R with period T > 0 of zero average if
∫ T

0

h(τ)dτ = 0.

Lemma 4.4. Given (finitely many) continuous periodic functions gi : R → [ai, bi] with frequency ωi > 0, where
[ai, bi] ⊆ R and i = 1, . . . , m. Assume that each gi is onto [ai, bi] and the frequency ratio ωi/ωj is irrational
for any i �= j. Then for any given ỹ ∈ [a1, b1] × . . . × [am, bm] and any scalar ε > 0, there is a t̃ ≥ 0 such that
‖ỹ −

(
g1(t̃), . . . , gm(t̃)

)
‖2 ≤ ε.

Proof. Let the function g(t) ≡
(
g1(t), . . . , gm(t)

)
, and let Tm ≡ S1 × . . . × S1︸ ︷︷ ︸

m-times

denote the m-torus. Moreover, let

the functions h : Tm → [a1, b1]× . . .× [am, bm] be h(s1, . . . , sm) ≡
(
g1(s1/ω1), . . . , gm(sm/ωm)

)
and p : R → Tm

be p(t) ≡
(

mod (ω1t, 2π), . . . , mod (ωmt, 2π)
)

respectively. It is easy to verify that g = h ◦ p and that h

is continuous and surjective. Due to the the irrational frequency ratios, the range of p is dense on Tm [2],
Example 3, p. 73. In particular, for any neighborhood U on Tm, there exists t ′ ≥ 0 such that p(t ′) ∈ U . For
a given ỹ ∈ [a1, b1] × . . . × [am, bm] and a given ε > 0, it follows from the continuity and surjectivity of h that
N ≡ h−1(B(ỹ, ε)) is a neighborhood on Tm of h−1(ỹ), where B(ỹ, ε) denotes an open ball centered at ỹ with
the radius ε (defined by the 2-norm). We thus deduce, via the density of the range of p, that there is a t̃ ≥ 0
such that p(t̃) ∈ N . Hence ‖ỹ − g(t̃)‖2 ≤ ε. �

Lemma 4.5. Let fi : R → R be a continuous and periodic function of zero average with frequency ωi > 0,
where i = 1, . . . , m and ωi �= ωj for any i �= j. Assume that f(t) :=

∑m
i=1 fi(t) is not identically zero. Then

there exist two scalars γ1 > 0 and γ2 < 0 such that for any t∗, t1, t2 ∈ [t∗,∞) exist satisfying f(t1) ≥ γ1 and
f(t2) ≤ γ2.
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Proof. Without loss of generality, we assume that each fi(t) is not identically zero. Since each fi is continuous,
it achieves its maximal value bi and minimal value ai on any compact time interval of length Ti ≡ 2π/ωi.
Furthermore, since fi is not identically zero but has zero average, we must have ai < 0 < bi. For a given t∗, let
f̃i(s) := fi(s + t∗), where s := t − t∗. Note that f̃i(s) is a continuous and periodic function satisfying all the
properties of fi(t). Hence, without losing generality, we assume t∗ = 0. We consider three cases as follows:

(i) All the frequency ratios ωi/ωj, i �= j are rational. Hence, there exists a basis (i.e., resonant) frequency
ω̃ > 0 such that for each ωi, i = 1, . . . , m, ωi = niω̃ for some positive integer ni. Thus f(t) =

∑m
i=1 fi(t)

is continuous and periodic with frequency ω̃ (i.e., the period T = 2π/ω̃). Noticing that T = niTi such that∫ T

0

fi(τ)dτ = ni

∫ Ti

0

fi(τ)dτ = 0, we obtain
∫ T

0

f(τ)dτ =
m∑

i=1

∫ T

0

fi(τ)dτ = 0. Suppose f(t) ≥ 0 (resp. ≤ 0)

on [0, T ]. We deduce, via the continuity of f , that f(t) ≡ 0 on [0, T ]. Therefore f(t) is identically zero. This is
a contradiction. Consequently, there must be two points t̃1, t̃2 ∈ [0, T ] such that f(t̃1)f(t̃2) < 0. Besides, since
f(t) is periodic, continuous and bounded, it must achieve its maximal and minimal values on any interval of
length T , i.e., t1, t2 ∈ [0, T ] exist such that f(t1) = γ1 and f(t2) = γ2, where γ1 > 0 is the maximal value of f

and γ2 < 0 is the minimal value of f .
(ii) All the frequency ratios ωi/ωj with i �= j are irrational. Note that each function fi(t) is periodic and

onto [−ai, bi]. Choose two points ỹ1 = (b1, . . . , bm) > 0 and ỹ2 = (a1, . . . , am) < 0. By Lemma 4.4, we
obtain t1, t2 ≥ 0 such that fi(t1) is sufficiently close to bi and fi(t2) is sufficiently close to ai for each i. Thus
f =

∑m
i=1 fi is sufficiently close to

∑m
i=1 bi > 0 at t1 and to

∑m
i=1 ai < 0 at t2 respectively. The lemma follows

by letting γ1 ≡ 1
2

∑m
i=1 bi and γ2 ≡ 1

2

∑m
i=1 ai.

(iii) Some of ωi/ωj with i �= j are rational and the others are irrational. Note that the rational ratio of
a pair of frequencies defines an equivalent relation between the two frequencies. Therefore, for the family of
the functions fi(t), we obtain a collection of (disjoint) equivalent classes Eωi = { fj(t) | ωi/ωj is rational}. Let
hEωi

(t) :=
∑

fj ∈Eωi

fj(t). Hence, f(t) =
∑

hEωi
(t). Moreover, at least one of the hEωi

(t)’s is non-vanishing

(i.e. it is not identically zero), since otherwise we have a contradiction that f(t) is identically zero. Without
loss of generality, we may assume that all the hEωi

(t)’s are non-vanishing. It is easy to verify that each (non-
vanishing) hEωi

(t) is a continuous periodic function with zero average and the (basis) frequency ω̃i. Thus it has
maximal and minimal values μi > 0 and νi < 0 respectively. Moreover, for any two distinct equivalent classes,
the ratio of their basis frequencies is irrational. Hence, by the similar argument as in (ii), we see that there
exist t1, t2 ≥ 0 such that f(t) is sufficiently close to

∑
μi > 0 at t1 and sufficiently close to

∑
νi < 0 at t2,

respectively. This leads to the desired result. �

Corollary 4.6. Let f : R → R be f(t) ≡
m∑

i=1

[
αi cos(ωit) + βi sin(ωit)

]
, where ωi > 0, ωi �= ωj for i �= j, and

|αi| + |βi| �= 0 for all i. Then there exist two scalars γ1 > 0 and γ2 < 0 such that for any t∗, two time instants
t1, t2 ∈ [t∗,∞) exist satisfying f(t1) ≥ γ1 and f(t2) ≤ γ2.

Proof. Let fi(t) := αi cos(ωit) + βi sin(ωit). Apparently, each fi is a continuous periodic function with zero
average and is not identically zero. We only need to verify that f(t) =

∑m
i=1 fi(t) is not identically zero. Notice

that for any given t∗, we can write f as f(s + t∗) =
m∑

i=1

[
α̃i cos(ωis) + β̃i sin(ωis)

]
, where s := t − t∗, and

[
α̃i

β̃i

]
=
[

cos(ωit∗) sin(ωit∗)
− sin(ωit∗) cos(ωit∗)

] [
αi

βi

]
.
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Hence, |αi|+ |βi| �= 0 if and only if |α̃i|+ |β̃i| �= 0. Hence, without loss of generality, we consider t∗ = 0. Suppose
that f(t) is identically zero. Then by the Taylor expansion of f(t) at t∗ = 0, we have⎡⎢⎢⎢⎢⎣

1 1 . . . 1
ω2

1 ω2
2 . . . ω2

m
...

...
...

ω
2(m−1)
1 ω

2(m−1)
2 . . . ω

2(m−1)
m

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎣

α1

α2

...
αm

⎤⎥⎥⎥⎦ = 0,

⎡⎢⎢⎢⎢⎣
1 1 . . . 1
ω2

1 ω2
2 . . . ω2

m
...

...
...

ω
2(m−1)
1 ω

2(m−1)
2 . . . ω

2(m−1)
m

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎣

ω1β1

ω2β2

...
ωmβm

⎤⎥⎥⎥⎦ = 0.

Since the above matrix is a Vandermonde matrix with ω2
i �= ω2

j for all i �= j, we have αi = 0 and βi = 0, a
contradiction. In fact, this can be extended to show that f(t) �= 0 almost everywhere. Finally, by applying
Lemma 4.5, we obtain the desired result. �

We write XC ≡ { x |Cx ≥ 0} and let E(λi) be the eigenspace associated with the real eigenvalue λi of A.
Moreover, we let EA and A(C,A) be the equilibrium set of A and the attracting cone with respect to the pair
(C, A) respectively. Similarly, we let E(C,A) := EA ∩ XC and Y(C,A) denote the semiobservable cone associated
with the pair (C, A). Since EA = E(0), it is easy to see that E(C,A) = E(0) ∩ XC . We first give some necessary
conditions in term of observability of each Jordan block and the corresponding block in C. These conditions
are a direct consequence of basic linear systems theory, e.g., [13], and Lemma 4.2; the proof is thus omitted.

Lemma 4.7. Let A ∈ Rn×n and C ∈ Rm×n with A in the real Jordan form (4.1) and C in (4.2). Then the
statement E(C,A) = A(C,A) holds only if the following two conditions are both satisfied:

(a) for each real block Ji (resp. Jordan block Jij) associated with a nonzero real eigenvalue or a complex
eigenvalue pair, (Ci, Ji) (resp. (Cij , Jij)) is an observable pair;

(b) for each real block J0 (resp. J0j) associated with the zero eigenvalue, O(C0, J0) = ker
[

C0

J0

]
(resp.

O(C0j , J0j) = ker
[

C0j

J0j

]
).

Moreover, for a real Jordan block Jij corresponding to a real eigenvalue (resp. a complex eigenvalue pair), the
pair (Cij , Jij) is observable if and only if Cij1 �= 0 (resp.

[
Cij1 Cij2

]
�= 0).

We introduce another notion. Let F, G : R → R� be two functions. We say that F (t) tends to G(t) as
t → +∞ if for any ε > 0, there is tε ≥ 0 such that ‖F (t) − G(t)‖ ≤ ε, ∀t ≥ tε. For ease of presentation, we
present the characterizing conditions for (C, A) in three cases.

Proposition 4.8. Consider the pair (C, A) such that E(C,A) = {0}. Then E(C,A) = A(C,A) if and only if the
following conditions are both satisfied:

(a) statements (a) and (b) of Lemma 4.7 hold;
(b) E(λi) ∩ XC = {0} for each distinct nonzero real eigenvalue λi.

Moreover, (b) holds if and only if for each nonzero real eigenvalue λi, the linear inequality C1
i y ≥ 0 has the

zero solution only, where C1
i is defined in (4.3) with � = 1.

Proof. The “only if” part holds trivially; we only need to show the sufficiency. Without loss of generality, we

assume that A is in the real Jordan form. Notice that E(C,A) ≡ E(0) ∩ XC = {0} implies that ker
[

C

A

]
= {0},

which further implies ker
[

C0

J0

]
= {0}. By (b) of Lemma 4.7, we have O(C0, J0) = {0}, that is, (C0, J0) is an

observable pair. This result, along with (a) of Lemma 4.7, shows that (C, A) is an observable pair and that
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each pair (Ci, Ji) (resp. (Cij , Jij)) is observable for all i, j. Now consider an initial condition v ∈ Y(C,A) \E(C,A).
Apparently, v �= 0. Let vJij denote the sub-vector of v corresponding to the jth Jordan block of Ji. Hence,
CeAtv =

∑
i,j CijeJijtvJij . For presentation convenience, we look at three subcases as follows:

(i) vJij = 0 for all i, j corresponding to the Jordan blocks associated with complex eigenvalues. In this case,
the remaining sub-vectors correspond to the Jordan blocks associated with distinct real eigenvalues. Suppose,
in contrast, that CeAtv ≥ 0, ∀t ≥ 0. Let λk be the largest real eigenvalue such that

(
vJk1 , . . . , vJk r(k)

)
�= 0.

Therefore, by observability of the pair (Ck, Jk), we see that CeAtv tends to
∑r(k)

j=1 CkjeJkjtvJkj as t → +∞.
Without loss of generality, we assume that vJkj �= 0 for all j = 1, . . . , r(k), since, otherwise we can simply drop
those terms corresponding to the zero vJkj in the subsequent analysis. For each sub-vector vJkj , let v

Jkj

�j
be

the last nonzero element of vJkj . Notice that Lemma 4.2 and the observability of the pair (Ck, Jk) imply that

Ckj1 �= 0 for all j. By Lemma 4.3, we observe that CkjeJkjtvJkj tends to eλkt t�j−1

(�j − 1)!
Ckj1 v

Jkj

�j
as t → +∞.

We further assume, without losing generality, that �1 = . . . = �q > �q+1 > . . . > �r(k) with 1 ≤ q ≤ r(k).
Consequently,

∑r(k)
j=1 Ckj eJkjt vJkj , and hence CeAtv, tends to

eλkt t�1−1

(�1 − 1)!

q∑
j=1

Ckj1 v
Jkj

�j
≡ eλkt t�1−1

(�1 − 1)!
C1

k y

as t → +∞, where y ≡
(
vJk1

�1
, . . . , v

Jk q

�q
, 0, . . . , 0

)T is nonzero. By augmenting y to an n-vector ỹ, we obtain
0 �= ỹ ∈ E(λk) ∩ XC , which is a contradiction to (b) of the proposition.

(ii) vJij = 0 for all i, j corresponding to the Jordan blocks associated with real eigenvalues. Let μk ≡ σk±ı ωk

be the complex eigenvalues of A, where k = 1, . . . , q, such that the real parts of μk are the largest among those
of all the complex eigenvalues of A and that

(
vJk1 , . . . , vJk r(k)

)
�= 0. Note that we must have σ1 = . . . = σq ≡ σ

and that ωi �= ωk for any i, k ∈ {1, . . . , q} with i �= k. Since each pair (Cij , Jij) is observable, CijeJijtvJij is not
identically zero for any nonzero vJij . Moreover, for each Jij of order 2�,

eJijt =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

etDi tetDi . . . . . . etDi t�−1

(�−1)!

etDi tetDi . . . etDi t�−2

(�−2)!

. . . . . .
...

. . . tetDi

etDi

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, and eDit = eσt

[
cos(ωit) sin(ωit)
− sin(ωit) cos(ωit)

]
.

Hence, a straightforward computation shows that each element of CijeJijtvJij is of the form

eσit
∑

l

νl t
l sin(ωit + θl),

where νl and θl are constants depending on vJij . Consequently, CeAtv tends to
∑q

k=1

∑r(k)
j=1 CkjeJkjtvJkj as

t → +∞. Specifically, at least one element of CeAtv tends to eσt

q∑
k=1

νk t�k sin(ωkt + θk) as t → +∞, where νk

and θk are constants depending on
(
vJk1 , . . . , vJkr(k)

)
. Without loss of generality, we assume �1 = . . . = �r̄ >

�r̄+1 > . . . > �q and νk �= 0 for all 1 ≤ k ≤ r with 1 ≤ r ≤ r̄. Hence, the element of CeAtv considered above

further tends to g(t) ≡ eσt t�1
r∑

k=1

νk sin(ωkt + θk) as t → +∞. Since νk �= 0 and ωk’s are distinct, we deduce
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the existence of γ1 > 0 and γ2 < 0, via Corollary 4.6, such that for any t∗ ≥ 0, there exist t1, t2 ∈ [t∗,∞) with
g(t1) ≥ γ1eσ t1(t1)�1 > 0 and g(t2) ≤ γ2eσ t2(t2)�1 < 0. This shows that CeAt∗v �≥ 0 at some t∗ > 0.

(iii) We look at the case other than cases (i) and (ii). Let v = (vre, vcp), where vre �= 0 and vcp �= 0
are the sub-vectors of v corresponding to the real and complex eigenvalues respectively. Hence, CeAtv =
Cre eJre t vre + Ccp eJcp t vcp , where Jre and Jcp are the respective Jordan blocks associated with the real and
complex eigenvalues. Following the result of (i), we see that one element of Cre eJre t vre tends to eλ̄t t�̄ α

with α < 0 as t → +∞. For the same corresponding element of Ccp eJcp t vcp , either (1) such the element is
identically zero for all t, or (2) such the element is not identically zero. For the former case, it is obvious that
the sufficiency holds. For the latter case, we have, via the similar argument as (ii), that this element tends to
g̃(t) ≡ eσ̃t t�̃

∑r̃
k=1 ν̃k sin(ω̃k t + θk) as t → +∞, where ν̃k �= 0 and ω̃k’s are distinct. Consider two additional

sub-cases:

(2.1) (λ̄, �̄) �= (σ̃, �̃). In this case, either eλ̄t t�̄ α or g̃(t) dominates for all t ≥ 0 sufficiently large. Hence, the
argument of (i) or (ii) leads to the sufficiency.

(2.2) (λ̄, �̄) = (σ̃, �̃). In this case, the corresponding element of CeAtv tends to h(t) ≡ eσ̃ t t�̃
[
α +∑r̃

k=1 ν̃k sin(ω̃k t + θk)
]

as t → +∞, where α < 0. Moreover, we deduce, via Corollary 4.6, the ex-
istence of γ2 < 0 such that for any t̃ ≥ 0, there is t ′ ≥ t̃ satisfying

∑r̃
k=1 ν̃k sin(ω̃k t ′ + θk) ≤ γ2 < 0,

which further shows that h(t ′) < eλ̄t ′
(t ′)�̄

(
α + γ2) < 0. This results in the sufficiency.

Lastly, we show the equivalent condition for (b). For each distinct real eigenvalue λi, we see from the real
Jordan form of A that the eigenspace E(λi) = Span{eij1}r(i)

j=1, where eij1 is the standard basis vector whose
nonzero element corresponds to the first column of each Jordan block Jij associated with λi. By the given form
of C, we thus deduce that E(λi)∩XC = {0} if and only if { y |

∑r(i)
j=1 Cij1 yj ≥ 0} = { y |C1

i y ≥ 0} contains the
zero element only. This leads to the desired result. �

Remark 4.9. It is worth pointing out that Proposition 4.8 can be proved by Theorem 3.2. Indeed, the
condition E(C,A) = {0} implies that E(C,A) = A(C,A) is equivalent to A(C,A) = {0}. Hence, the observability
condition (a) and the eigenspace condition (b) of Proposition 4.8 can be obtained by applying Theorem 3.2.
Admittedly, Theorem 3.2 is based upon an elegant fixed point argument that gives rise to a shorter proof, while
Proposition 4.8, on the other hand, relies on the dynamical system results, e.g., Lemmas 4.4 and 4.5, which
lead to a longer, yet more constructive, alternative proof. Nevertheless, the latter arguments form a foundation
for the investigation of other cases of CLSs with infinite mode switchings as seen below.

To avoid redundancy in the subsequent development, we always assume that A is of the real Jordan form. Fur-
thermore, recall that J0 is the Jordan block of A associated with the zero eigenvalue and C0 is its corresponding
matrix block in C.

Proposition 4.10. Consider the pair (C, A) such that E(C,A) ∩ intXC �= ∅. Then E(C,A) = A(C,A) holds if and
only if the following four conditions are all satisfied:

(a) statements (a) and (b) of Lemma 4.7 hold;
(b) each nonzero real eigenvalue λi of A is positive and E(λi) ∩ XC = {0};
(c) each complex eigenvalue of A has the positive real part;
(d)

[
C0eJ0tv0 ≥ 0, ∀t ≥ 0

]
=⇒ J0 v0 = 0.

Moreover, (d) holds only if J0j is a scalar, i.e., J0j = 0, for any j ∈ {1, . . . , r0} such that C0j1 ≥ 0 or C0j1 ≤ 0,
where J0j is the Jordan block associated with the zero eigenvalue.
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Proof. “Necessity”. We only need to show (b)–(d) as follows:
(1.1) Consider (b) first, for which we only need to show λi > 0 if λi �= 0. Suppose, in contrast, that

λi < 0. Let u �= 0 be an eigenvector of A associated with λi. Since EA ∩ intXC �= ∅, a nonzero vector v0

exists such that Av0 = 0 and C v0 > 0. Hence, for any real ε > 0, v0 + εu is not an equilibrium and
CeAt

[
v0 + εu

]
= Cv0 + eλitεCu. Since eλit ≤ 1, ∀t ≥ 0, we have Cv0 + eλitεCu > 0, ∀t ≥ 0 for all ε > 0

sufficiently small. This shows that eAt
[
v0 + εu

]
∈ XC , ∀t ≥ 0 for all ε > 0 small, which is a contradiction.

(1.2) The statement (c) can be proved via the similar argument as (1.1).
(1.3) Consider (d). Suppose, in contrast, that there exists a vector v0 such that J0 v0 �= 0 and C0eJ0tv0 ≥ 0,

∀t ≥ 0. Since J0 has the zero eigenvalue only, we see that v0 does not belong to the eigenspace of J0 (associated
with the zero eigenvalue) and thus the vector x0 =

(
v0, 0

)
is not an equilibrium in Rn. Moreover, CeAtx0 =

C0eJ0tv0 ≥ 0, ∀t ≥ 0 by the assumption. Thus eAtx0 ∈ XC , ∀t ≥ 0. This results in a contradiction.
(1.4) The necessary condition for (d). Suppose, in contrast, that a Jordan block J0j is of order 2 and its

corresponding block C0j1 ≥ 0 or C0j1 ≤ 0. Consider the case where C0j1 ≥ 0 first. Let e0j2 be the standard
basis vector of Rn whose nonzero element corresponds to the second column of J0j . Moreover, as in (1.1), let
v0 be such that Av0 = 0 and C v0 > 0. Let an initial state be v0 + εe0j2 with ε > 0. We deduce, from the
construction, that v0 + ε e0j2 �∈ E(0) and CeAt

[
v0 + ε e0j2

]
= Cv0 + εCj02 + tεCj01. Hence, v0 + ε e0j2 is not

an equilibrium and CeAt
[
v0 + ε e0j2

]
> 0, ∀t ≥ 0 for all ε > 0 sufficiently small. The case where C0j1 ≤ 0 can

be proved in the similar way.
“Sufficiency”. We prove it by contradiction. Suppose that a vector x0 exists such that x0 �∈ E(C,A)

but v ∈ A(C,A). Let x0 =
(
v0, vre0̄, vcp

)
, where the three sub-vectors v0, vre0̄, vcp correspond to the zero

eigenvalue, the nonzero real eigenvalues, and the complex eigenvalues respectively. If
(
vre0̄, vcp

)
�= 0, then by

the observability condition in (a), the eigenvalue conditions in (b) and (c) (i.e., λi > 0 if λi �= 0 and σj > 0
for any complex eigenvalues σj ±ωj), and the similar argument as (i)–(iii) of Proposition 4.8, we conclude that
a t∗ > 0 exists such that CeAt∗v �≥ 0, which is a contradiction to x0 ∈ A(C,A). Therefore,

(
vre0̄, vcp

)
≡ 0 or

equivalently x0 =
(
v0, 0, 0

)
. Since x0 �∈ EA, v0 is not in the null space of J0 or equivalently the eigenspace

of J0. On the other hand, x0 ∈ A(C,A) implies that C0eJ0tvJ0 ≥ 0 for all t ≥ 0. This leads to a contradiction
to (d). �

Proposition 4.11. Consider the pair (C, A) such that EA ∩ intXC = ∅ but EA ∩ bdXC �= {0}. Then
E(C,A) = A(C,A) holds only if the following conditions are all satisfied:

(a) statements (a) and (b) of Lemma 4.7 hold;
(b) E(λi) ∩ XC = {0} for each nonzero real eigenvalue λi;
(c) for any nonzero vector v0 ∈ EA ∩ bdXC with (Cv0)α > 0 and (Cv0)ᾱ = 0 (where ᾱ �= ∅), the following

two conditions both hold:
(c1) E(λi) ∩ XCᾱ• = {0} for each negative real eigenvalue λi;
(c2)

(
(Ci)ᾱ•, Ji

)
is an observable pair for each real block Ji associated with a complex eigenvalue pair

σi ± ı ωi with σi ≤ 0;
(d)

[
C0eJ0tv0 ≥ 0, ∀t ≥ 0

]
=⇒ J0 v0 = 0.

In addition, if (a)–(c) hold and J0 = 0 (i.e., J0 is diagonal), then E(C,A) = A(C,A).

Proof. “Necessity”. We only need to show (c) since (a), (b) and (d) have been shown before.
(c1) Suppose, in contrast, that there exist a nonzero vector v0 ∈ EA ∩ bdXC with (Cv0)α > 0 and (Cv0)ᾱ = 0

and a nonzero vector u ∈ E(λi) ∩ XCᾱ• for an eigenvalue λi < 0. Thus (CeAtu)ᾱ = eλit(Cu)ᾱ ≥ 0. A similar
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argument as (1.1) of Proposition 4.10 shows that Cα•eAt
[
v0 + εu

]
> 0, ∀t ≥ 0 for all ε > 0 small. Hence

CeAt
[
v0 + εu

]
=
[
Cα•eAt

[
v0 + εu

]
ε eλit

(
Cu

)
ᾱ

]
≥ 0, ∀t ≥ 0 for all ε > 0 small. Since v0 + εu is not an equilibrium, we

have a contradiction.
(c2) Suppose, in contrast, that there exist a 0 �= v0 ∈ EA ∩ bdXC with (Cv0)α > 0 and (Cv0)ᾱ = 0 and a

complex eigenvalue pair σi ± ı ωi with σi ≤ 0 such that
(
(Ci)ᾱ•, Ji

)
is an unobservable pair. Hence, by basic

linear systems theory, we obtain a (nonzero) vector u ∈ Span
{
ei11, ei12, . . . , eir(i)1, eir(i)2

}
with real weights(

c11, c12, . . . , cr(i)1, cr(i)2

)
�= 0 such that Cᾱ•eAtu = 0, ∀t ≥ 0, where

CeAtu =
r(i)∑
j=1

[
Cij1 Cij2

]
eDit

(
cj1

cj2

)
, and Di =

[
σi ωi

−ωi σi

]
.

Furthermore, v0 + εu is not an equilibrium for ε > 0 sufficiently small and CeAt
[
v0 + εu

]
= Cv0 + εCeAtu.

Since σi ≤ 0, ‖eDit‖ is bounded for all t ≥ 0. Therefore, Cα•eAtu is bounded for all t ≥ 0. This, together with
the fact that

(
Cv0 + CeAtu

)
ᾱ• ≡ 0 for all t ≥ 0, shows that CeAt

[
v0 + εu

]
≥ 0, ∀t ≥ 0 for all ε > 0 sufficient

small. This is a contradiction.
We now prove the stated sufficient condition. Suppose that a vector v exists such that v �∈ E(C,A) but

v ∈ A(C,A). Let v =
(
v0, vre+, vre−, vcp+, vcp≤0

)
, where the sub-vectors v0, vre+, vre−, vcp+, vcp≤0 correspond

to the zero eigenvalue, the positive real eigenvalues, the negative real eigenvalues, the complex eigenvalues with
positive real parts, and the complex eigenvalues with nonpositive real parts respectively. Since J0 = 0, v �∈ EA

if and only if
(
vre+, vre−, vcp+, vcp≤0

)
�= 0. Note that if

(
vre+, vcp+

)
�= 0, then by the observability condition

in (a) and the similar argument of Proposition 4.8, we conclude that a t∗ > 0 exists such that CeAt∗v �≥ 0,
which is a contradiction to v ∈ A(C,A). Therefore,

(
vre+, vcp+

)
≡ 0 or equivalently v =

(
v0, 0, vre−, 0, vcp≤0

)
with

(
vre−, vcp≤0

)
�= 0. We consider two cases as follows:

(i) v0 = 0. In this case, CeAtv = Cre− eJre− tvre−+Ccp≤0 eJcp≤0 t vcp≤0, where Jre−, Jcp≤0 are the correspond-
ing blocks in A and Cre−, Ccp≤0 are the corresponding blocks in C respectively. Therefore the observability
condition in (a), the condition (b), and the similar argument in Proposition 4.8 yields a t∗ > 0 such that
CeAt∗v �≥ 0, which is a contradiction.

(ii) v0 �= 0. In this case, C0 v0 ≥ 0 such that v0 =
(
v0, 0, 0, 0, 0

)
∈ EA ∩ XC and thus the nonzero vector

v0 ∈ EA ∩ bdXC satisfies (Cv0)α = (C0v0)α > 0 and (Cv0)ᾱ = (C0v0)ᾱ = 0, where the index subset ᾱ is
nonempty. Hence,

Cᾱ•eAtv = (C0v0)ᾱ + (Cre−)ᾱ• eJre− tvre− + (Ccp≤0)ᾱ• eJcp≤0 t vcp≤0

= (Cre−)ᾱ• eJre− tvre− + (Ccp≤0)ᾱ• eJcp≤0 t vcp≤0.

By the equivalent condition for (b) of Proposition 4.8, we notice that E(λi) ∩ XCᾱ• = {0} if and only if
{y | (C1

i )ᾱ• y ≥ 0} = {0}, which further implies that {y | (C1
i )ᾱ• y = 0} = {0}, namely, the columns of (C1

i )ᾱ•
are linearly independent. We thus deduce via (a) of Lemma 4.2 that

(
(Ci)ᾱ•, Ji

)
is an observable pair for each

negative real eigenvalue λi. This observation, together with
(
vre−, vcp≤0

)
�= 0 and the similar argument in

Proposition 4.8, yields a t∗ > 0 such that Cᾱ•eAt∗v �≥ 0, which is a contradiction. �

4.1.1. Finite verification

The characterization results of Propositions 4.8, 4.10, and 4.11 raise the question of whether the conditions
in these propositions can be verified by a finite procedure, namely, whether checking these conditions is a
decidable problem. It is easy to see that the conditions (a)–(c) in each proposition can be formulated as linear
equations or linear inequalities, which can be checked via efficient linear programming methods in finite steps.
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Proposition 4.13 below addresses the condition (d) using the following sum-of-squares lemma in elementary
algebra [30]:

Lemma 4.12. Let f : R → R be a (univariate) polynomial. Then f(t) ≥ 0, ∀t ∈ R if and only if f(t) =
k∑

i=1

g2
i (t)

for finitely many polynomials g1, . . . , gk.

Proposition 4.13. Checking the condition (d) in Propositions 4.10 and 4.11 is a decidable problem.

Proof. Since J0 has the zero eigenvalue only, it is nilpotent, i.e.,
(
J0

)� = 0 for some positive integer �. Therefore

C0 eJ0tv0 =
�−1∑
k=1

C0

(
J0

)k
v0

k!
tk is a (vector-valued) polynomial in t whose coefficients are linear combinations of

v0 ∈ Rn0 . Letting t = s2 where s ∈ R, we have F (s, v0) ≡
�−1∑
k=1

C0

(
J0

)k
v0

k!
s2k as a (vector-valued) polynomial in

(s, v0) ∈ R1+n0 . Moreover, the condition J0 v0 �= 0 is equivalent to h(v0) :=
(
J0 v0

)T
J0 v0 > 0, where h(v0) is a

quadratic polynomial. Hence, checking the condition (d) is equivalent to the following problem whose defining
functions are all polynomials:

(P̃0) : find v0 ∈ Rn0 such that F (s, v0) ≥ 0, ∀s ∈ R and h(v0) > 0.

Let Fj be the jth element of F (s, v0), j = 1, . . . , m. Hence, Fj(s, v0) =
(
aT

j0v0

)
+
(
aT

j1v0

)
s2 + . . .+

(
aT

j kj
v0

)
s2 kj ,

where the vectors aji depend on C0 and J0 only. By Lemma 4.12, Fj(s, v0) ≥ 0, ∀s ∈ R for some given v0 if and
only if Fj(s, v0) = zT Qj(v0)z, where z =

(
1, s, . . . , skj

)T and Qj(v0) is a symmetric and positive semidefinite
matrix. Since the latter condition is equivalent to nonnegativity of all the principal minors of Qj(v0) and each
principal minor is a polynomial of the elements of Qj(v0), the condition Fj(s, v0) ≥ 0, ∀s ∈ R holds for some v0

if and only if finitely many (real-valued) polynomial inequalities gj�(qj) ≥ 0 and finitely many (real-valued)
polynomial (indeed, linear) equations lji(qj , v0) := bT

jiqj − aT
j iv0 = 0, i = 0, . . . , kj have a real solution

(
q̃j , ṽ0

)
,

where qj ∈ R(2+kj)(1+kj)/2 corresponds to the independent elements in Qj, bji ∈ R(2+kj)(1+kj)/2 are constant
vectors, and the polynomial inequalities gi�(qj) ≥ 0 and the polynomial equations lji(qj , v0) = 0 correspond
to the principal minor conditions and the coefficient constraints respectively. Letting q =

(
q1, . . . , qm

)
∈ Rnq

and observing that feasibility of (P̃0) is equivalent to existence of v0 satisfying Fj(s, v0) ≥ 0, ∀s ∈ R for all
j = 1, . . . , m and h(v0) > 0, we deduce that the problem (P̃0) is equivalent to the subsequent semi-algebraic
problem:

(P̂0) : find
(
q, v0

)
∈ Rnq+n0 such that gj�(q) ≥ 0, lji(q, v0) = 0, ∀j, �, i, and h(v0) > 0.

Following Seidenberg’s approach in real algebraic geometry, e.g., [7], Fact 2.5, one can show that verifying
(in)solvability of the problem (P̂0) is equivalent to checking whether finitely many multivariate polynomial
equations have real solutions. The latter problem can be solved by the Tarski-Seidenberg decision procedure in
finite steps [6,7]. Consequently verification of the original condition (d) is decidable. �

Proposition 4.13 not only shows decidability of checking the condition (d) but its proof also leads to an
algorithm to verify (d). However, solving a semi-algebraic problem such as (P̂0) via the decision procedure is
known to be algorithmically hard (in term of complexity), and it is expected that a more efficient algorithm
can be developed by exploiting the problem structure. Nevertheless, further exploration of this issue is beyond
the scope of the paper. We refer the reader to [3,6,7,30] for additional discussion on the algorithmic issues and
related mathematical programming approaches respectively.
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4.2. Bimodal CLSs

Bimodal CLSs are the simplest, yet nontrivial, CLSs with two modes. It has been shown in [11], Example 2.1,
that each cone of such a CLS is a half space of Rn and the bimodal CLS can be written as ẋ = Ax+b max(0,−cT x)
for some n×n matrix A and two (nonzero) n-vectors b, c. In this section, we derive necessary and sufficient con-
ditions that characterize bimodal CLSs with infinite mode switchings. As discussed in the previous section, we
can focus on the mode corresponding to the pair (cT , A). An important feature of the cone XcT ≡ {x | cT x ≥ 0}
is that it is non-pointed so that it has a nontrivial intersection with any nonzero subspace. In the following, we
assume that A is in the real Jordan form and let cT

Ji
be the sub-row in cT corresponding to the block Ji of A.

Moreover, we let J0 be the block associated with the zero eigenvalue and cT
J0

be the corresponding sub-row
in cT .

Theorem 4.14. E(cT ,A) = A(cT ,A) if and only if the following conditions are all satisfied:

(a) if EA �= {0}, then the matrix block J0 = 0 (i.e., J0 is diagonal);
(b) A has no nonzero real eigenvalue;
(c) for each real block Ji associated with a complex eigenvalue pair,

(
cT
Ji

, Ji

)
is an observable pair;

(d) if EA �= {0} and cT
J0

�= 0, then each complex eigenvalue of A has the positive real part.

Moreover, (c) holds if and only if Ji has a single Jordan block and
(
ci1, ci2

)
�= 0.

Proof. “Necessity”. We consider (a) first. Suppose that J0 is not diagonal. Then there is a real Jordan block J0j

associated with the zero eigenvalue such that J0j is of order 2. Consider the initial state v0 = α1 e0j1 + α2 e0j2

for α1, α2 ∈ R. A straightforward computation gives rise to cT eAt v0 =
(
α1 c0j1 + α2 c0j2

)
+ α2 c0j1 t. Consider

three cases as follows: (a.1) c0j1 �= 0. Letting α1 = sgn(c0j1) and α2 = ε sgn(c0j1) where ε > 0, we have
cT eAt v0 = sgn(c0j1)

[
(c0j1 + εc0j2) + c0j1 t

]
> 0, ∀t ≥ 0 for all ε > 0 sufficiently small; (a.2) c0j1 = 0 but

c0j2 �= 0. Letting α1 be arbitrary and α2 = sgn(c0j2), we have cT eAt v0 = sgn(c0j2) c0j2 > 0, ∀t ≥ 0;
(a.3) c0j1 = c0j2 = 0. Letting α1, α2 be arbitrary with α2 �= 0, we have cT eAt v0 = 0, ∀t ≥ 0. Hence,
v0 ∈ A(cT ,A) in all the three cases. However, this is contradictory to v0 �∈ EA as α2 �= 0 in all the three cases.

Statement (b) follows from the fact that E(λi)∩XcT �= {0} for any nonzero real eigenvalue λi. Statement (c)
follows from Lemma 4.7. The necessary and sufficient condition for (c) is a consequence of [13], Corollary 5.2
and Lemma 4.7. We finally consider (d). Without loss of generality, let c0j1 �= 0. Letting v0 = sgn(c0j1) e0j1,
it is easy to verify that cT v0 = sgn(c0j1) c0j1 > 0. Hence, v0 ∈ intXcT . By Proposition 4.10, we obtain (d).

“Sufficiency”. If cT
J0

�= 0, the sufficiency follows readily from Proposition 4.10. Now consider the case
where cT

J0
= 0. Suppose, in contrast, that a vector v0 exists such that v0 �∈ EA but v0 ∈ A(cT ,A). Let

v0 = (vJ0 , vcp), where vJ0 and vcp are the sub-vectors corresponding to the zero eigenvalue and the complex
eigenvalues respectively. By (a) and v0 �∈ EA, we have vcp �= 0. Notice that cT eAtv0 = cT

cp eJcp t vcp. By the
observability condition in (c) and the argument for (ii) of Proposition 4.8, we conclude that a t∗ > 0 exists such
that cT eAt∗v0 ≡ cT

cp eJcp t∗ vcp < 0. This results in a contraction to v0 ∈ A(cT ,A). �

Corollary 4.15. Let (cT , A) be an observable pair. Then E(cT ,A) = A(cT ,A) if and only if the following conditions
are all satisfied: (a) A is of order greater than one; (b) if A is of even order, then A has complex eigenvalues
only; (c) if A is of odd order greater than one, then A has no nonzero eigenvalue except the zero eigenvalue with
algebraic multiplicity one and each complex eigenvalue of A has a positive real part.

Proof. We show the necessity first. The statement (a) is trivial. The above mentioned observability results,
e.g., [13], Corollary 5.2 and Lemma 4.7, along with (b) of Theorem 4.14, show that the block J0 must have
order at most one and that A has no nonzero eigenvalue. Thus (i) if A is of even order, then it has complex
eigenvalues only; and (ii) if A is of odd order greater than one, then it must have the zero eigenvalue of algebraic
multiplicity one. Notice that cT

J0
is a nonzero scalar via the observability condition in case (ii). Hence in this case,
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each complex eigenvalue of A has the positive real part by (d) of Theorem 4.14. The sufficiency follows readily
from Theorem 4.14 and the observability condition. �

Example 4.16. Consider a contact mechanical system involving a moving mass interacted with a spring
modeled by the linear complementarity system (LCS): ẍ = u, 0 ≤ u ⊥ x + u ≥ 0, where x, u ∈ R. See
Section 6.2 for more on LCSs. This model is equivalent to a planar bimodal CLS with

A =
[
0 1
0 0

]
, b =

(
0
1

)
, c =

(
1
0

)
, A − bcT =

[
0 1
−1 0

]
.

It is easy to show that (cT , A) is an observable pair and that A − bcT has two complex eigenvalues but A has
no complex eigenvalue. By Corollary 4.15, a system trajectory starting from some non-equilibrium initial state
has finitely many mode switchings in the forward time. Indeed, this system has at most one mode switching
starting from any initial state.

An immediate consequence of Corollary 4.15 is that a bimodal CLS with infinite mode switchings and
(cT , A) being an observable pair contains a continuum of equilibria if n ≥ 3 is odd. Hence, such a CLS cannot
be asymptotically stable at xe = 0 but may be semistable instead, where the notion of semistability is stronger
than Lyapunov stability but weaker than asymptotic stability [5].

5. CLSs without mode switchings

In this section, we derive necessary and sufficient conditions for the CLSs without mode switchings along any
trajectory, which we simply call the switch-free CLSs. While a CLS of this type is perhaps the simplest, it is
not equivalent to a smooth ODE system. Furthermore, characterizing such a CLS is non-trivial; for one thing,
it involves the use of the simple switching property shown in Proposition 2.2.

Lemma 5.1. Consider the CLS (2.1). Suppose that for any x0 ∈ Rn, there is no switching along x(t, x0) for
all t ≥ 0. Then the following statements hold:

(a) For a given x0 ∈ Rn, x(t, x0) ∈ Xi, ∀t ∈ (−∞,∞) for each i ∈ J (x0). Moreover, J (x(t, x0)) =
J r(x(t, x0)) = J (x0) for all t ≥ 0;

(b) If x0 ∈ intXi, then x(t, x0) ∈ Xi for all t ∈ (−∞,∞);
(c) For each i ∈ I(x0), x(t, x0) ∈ Xi for all t ∈ (−∞,∞);
(d) I(x(t, x0)) = I(x0) = J (x0) for all t ∈ (−∞,∞);
(e) If x0 ∈ intXi (resp. x0 ∈ bdXi), then x(t, x0) ∈ intXi (resp. x(t, x0) ∈ bdXi) for all t ∈ (−∞,∞);
(f) If x0 ∈ bdXi, then there exists j ∈ {1, . . . , �i} such that (Cix(t, x0))j ≡ 0 for all t ∈ (−∞,∞).

Proof. (a) We first show that x(t, x0) ∈ Xi for all t ≥ 0. Consider i ∈ J (x0) and let t∗ ≡ sup{t ≥ 0 |x(t, x0) ∈ Xi,

∀t ∈ [0, t ] }. Clearly, t∗ > 0. Suppose t∗ is finite. Then we have i �∈ J (x(t∗, x0)). However, by the uniqueness of
the solution and the reverse-time property, we have i ∈ J r(x(t∗, x0)). This thus implies that t∗ is a switching
time thanks to the simple switching property, which leads to a contradiction. We then show that t = 0 is a
non-switching time. Indeed, if it is false, then for any ε > 0, x(t, xr(ε, x0)) has a switching at t = ε, which is
a contradiction. Hence, we have J r(x0) = J (x0). This equality, together with Proposition 2.2 and a similar
argument for t ≥ 0, implies that J r(x(t, x0)) = J (x0) for all t ≥ 0. This completes the proof for (a).

(b) If x0 ∈ intXi, then we have J (x0) = J r(x0) = {i}. We then obtain the desired result from (a).
(c) Consider i ∈ I(x0). Since Xi is of full dimension, there is a vector y ∈ int Xi, i.e., Ciy > 0, with y �= x0.

By the convexity of the cone Xi, we have x0 + ε(y − x0) ∈ int Xi for all ε ∈ (0, 1]. Hence, we deduce from
statement (b) that x(t, x0 + ε(y − x0)) ∈ Xi, or equivalently Cix(t, x0 + ε(y − x0)) ≡ CieAit[x0 + ε(y − x0)] ≥ 0,
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for all t ∈ (−∞,∞) and ε ∈ (0, 1]. Letting ε ↓ 0, we see that Cix(t, x0) ≡ CieAitx0 ≥ 0 for all t ∈ (−∞,∞).
This completes the proof for (c).

(d) Clearly, I(x(t, x0)) ⊇ I(x0) as shown in (c). We only need to show I(x(t, x0)) ⊆ I(x0). Notice that (c)
implies I(x0) ⊆ J (x(t, x0)) ≡ J (x0). Hence, due to J (x0) ⊆ I(x0), we have J (x0) = I(x0). Replacing x0 by
x(t, x0), via the initial state shifting argument, and noting (a), we obtain (d).

(e) We prove the case where x0 ∈ intXi; the other case follows from the similar argument. Note that if
x0 ∈ intXi, then J (x0) = J r(x0) = {i}. This yields from (d) that I(x(t, x0)) = {i} for all t ∈ R. This shows
that x(t, x0) �∈ bdXi for all t. Thus x(t, x0) must be in the interior of Xi for all t.

(f) Since x0 ∈ bdXi ⊆ Xi, we deduce from (d) that i ∈ J (x0). Hence, there exists a scalar ε > 0 such that
CieAitx0 ≥ 0 for all t ∈ [0, ε]. By Cayley-Hamilton Theorem, we further see that for each j ∈ {1, . . . , �i}, either
(Ci)j•eAitx0 ≡ 0 or (Ci)j•eAitx0 > 0 for all t ∈ (0, ε] with ε > 0 appropriately restricted. Note that there is at
least one j satisfying (Ci)j•eAitx0 ≡ 0, ∀t ∈ (0, ε], since otherwise, Cix(t, x0) > 0 on (0, ε], i.e. x(t, x0) = eAitx0

is in the interior of Xi on (0, ε]. This leads to x0 ∈ intXi according to (e), which is contradictory to the assumption
that x0 ∈ bdXi. Furthermore, (Ci)j•eAitx0 ≡ 0, ∀t ∈ (0, ε] implies that (Cix

0)j = 0 and x0 ∈ O((Ci)j•, Ai).
Hence, (CieAitx0)j ≡ 0, ∀t ∈ (−∞,∞). �

Proposition 5.2. The following statements are equivalent for the CLS (2.1):

(a) the CLS has no switching along x(t, x0) for all t ≥ 0 and any x0 ∈ Rn;
(b) for each i = 1, . . . , m, there exists Gi : R → R�i×�i

+ such that CieAit = Gi(t)Ci for all t ≥ 0 and each
Gi(t) has no vanishing rows;

(c) Ai = Xi for all i = 1, . . . , m;

(d)
m⋃

i=1

Ai = Rn;

(e) for any x ∈ Rn and any i ∈ I(x), Aix ∈ T

⎛⎝x;
⋂

i∈I(x)

Xi

⎞⎠.

Moreover, if any one of (a)–(e) holds, then Ai = Âi and O(Ci, Ai) = ker(Ci) for each i = 1, . . . , m.

Proof. (b) ⇒ (a). This is trivial, since if such a Gi exists for each piece Xi, then for any x0 such that x0 ∈ X i,
we have CieAitx0 = Gi(t)Cix

0 ≥ 0, ∀t ≥ 0. Hence, x(t, x0) ≡ eAitx0 is the unique solution starting from x0

and x(t, x0) ∈ Xi for all t ≥ 0. Thus there is no mode switching along x(t, x0).
(a) ⇒ (b). Suppose (a) holds. Then for any x0 ∈ Xi, we deduce from (d) of Lemma 5.1 that x(t, x0) ∈ Xi

for all t ≥ 0. Letting (Ci)j• denote the jth row of Ci, we thus have the following implication:

∀x0 such that Cix
0 ≥ 0 ⇒ (Ci)j•eAitx0 ≥ 0, ∀t ≥ 0.

For any fixed t ≥ 0, we thus conclude, via Farkas’ Lemma, that there exists zj(t) ∈ R�i
+ such that (Ci)j•eAit =

zT
j (t)Ci. Letting Gi

j•(t) = zT
j (t), we obtain the required Gi(t). To show that Gi

j•(t) � 0, j = 1, . . . , �i for all
t ≥ 0, we choose x0 ∈ intXi. Therefore, by (e) of Lemma 5.1, we have Cix(t, x0) ≡ CieAitx0 > 0 for all t ≥ 0.
Combining this with Cx0 > 0, we obtain the desired result.

(a) ⇔ (c) ⇔ (d). We show (a) ⇔ (c) first. Clearly, Ai ⊆ Xi. The opposite inclusion holds due to (c) of
Lemma 5.1, which also shows (a) ⇒ (d). Furthermore, (d) implies that any x0 ∈ Rn must be in Ai for some i,
which shows that x(t, x0) is switching free for all t ≥ 0. Hence, (d) ⇒ (a) holds.

(a) ⇔ (e). The ⇒ direction is simply an implication of Lemma 5.1(d). To show the other direction, we notice
that for any x ∈ Xi ∩ Xj , we have x ∈ Xi ∩ Xj ⇒ Aix ∈ Xi ∩ Xj ⇒ A2

i x ∈ Xi ∩ Xj ⇒ . . .
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Finally, Ai = Âi holds due to (3.2), (c) of Lemma 5.1 and (c) of Proposition 5.2. To see ker(Ci) = O(Ci, Ai)
for each i = 1, . . . , m, we notice that O(Ci, Ai) ⊆ ker(Ci). On the other hand, if x0 ∈ ker(Ci), we have
CieAitx0 = Gi(t)Cix

0 ≡ 0 for all t. Thus x0 ∈ O(Ci, Ai). This completes the proof. �

Remark 5.3. In Corollary 2.11, Chapter 4 of [4], the following result is proved. For a closed convex solid cone
X ⊆ Rn (not necessarily polyhedral) and a matrix A ∈ Rn×n,

[
x0 ∈ X ⇒ eAtx0 ∈ X for all t ≥ 0

]
if and

only if yT Ax ≥ 0 for all pairs (x, y) satisfying X � x ⊥ y ∈ X ∗, where X ∗ is the dual cone of X . (This result
holds for a polyhedral cone X even without the solidness assumption.) Specializing this result to each cone Xi,
we obtain the equivalence between (c) and (e) in Proposition 5.2. This characterization result further shows
finite verification of a switch-free CLS by making use of the polyhedral structure of the CLS. Indeed, since each
dual cone X ∗

i remains polyhedral, we have X ∗
i = {y | C̃i y ≥ 0} for some matrix C̃i. Hence, the implication[

Xi � x ⊥ y ∈ X ∗
i

]
⇒ yT Aix ≥ 0 holds if and only if the semi-algebraic set {(x, y) ∈ Rn × Rn |Ci x ≥ 0,

C̃i y ≥ 0, xT y = 0, yT Aix < 0} is empty. The latter problem can be verified via the Tarski-Seidenberg decision
procedure in finite steps as discussed in Section 4.1.1.

Corollary 5.4. A bimodal CLS: ẋ = Ax + b max(0, cT x), where A ∈ Rn×n and b and c are two n-vectors with
c �= 0, is switching free along any trajectory if and only if c is an eigenvector of the matrix AT .

Proof. To show the “if” part, let c be an eigenvector of AT , i.e., AT c = λc for some λ ∈ R. Therefore,
(A + bcT )T c = (λ + bT c)c, namely, c is an eigenvector of (A + bcT )T . Hence, cT eAt = eλtcT and cT e(A+bcT )t =
e(λ+bT c)tcT for all t. Letting G1(t) = e(λ+bT c)t, G2(t) = e(λ+bT c)t and using Proposition 5.2, we conclude that
the bimodal CLS has no switching. Conversely, for a switch-free bimodal CLS, we deduce, via Proposition 5.2,
that there exists a real-valued function g(t) such that cT eAt = g(t)cT for all t ≥ 0. Recalling c �= 0, we obtain

g(t) =
cT eAtc

cT c
. This shows that g is smooth in t. Consequently, cT AeAt = ġ(t)cT for all t ≥ 0. Letting t = 0,

we have cT A = ġ(0)cT as desired. �

Remark 5.5. Note that the characterizing condition in Corollary 5.4 does not involve b.

6. Asymptotic stability of CLSs and LCSs

Stability analysis of hybrid and switched dynamical systems has received tremendous interest in the systems
and control community over the past few years [16,19,20,23]. In the setting of complementarity and related
systems, the recent paper [10] extensively studies Lyapunov stability of the LCSs with Lipschitz right-hand
sides, or the simply called Lipschitz LCSs. However, a critical question left open in [10] is whether asymptotic
stability is equivalent to its exponential stability. The major difficulty in investigating the connection between
the two stability concepts for LCSs is due to state dependent mode switchings to be discussed soon. In spite
of this difficulty, the present section provides an affirmative answer to this question, and thus bridges the gap
between the two stability notions. The significance of this result lies in two aspects: (i) This result validates
the Lyapunov stability analysis in [10] via the converse Lyapunov Theorem; see [22] for more discussions on
the related converse Lyapunov Theorems. Besides, it broadens stability analysis of nonlinear complementarity
systems via the first-order approximation approach. (ii) Exponential stability is more desirable than asymptotic
stability in that it is more robust when a system is subject to disturbances and/or unknown dynamics. Hence,
this equivalence result facilitates the verification of exponential stability since one only needs to check less
restrictive conditions for asymptotic stability.
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6.1. Preliminary discussion

It is well known that asymptotic stability does not imply exponential stability for general nonlinear systems,
even for piecewise linear systems with or without discontinuous right-hand sides [19], Example 1. It has been
observed in [19] that a switched linear system, with either a continuous or a discontinuous right-hand side, is
related to a linear time-varying system ẋ = A(t)x, although the two classes of systems are quite different in
general. For linear time-varying systems, uniform asymptotic stability [21], Definition 3.2, plays an important
role that relates asymptotic stability to exponential stability [13], Theorem 8.10. Roughly speaking, uniform
asymptotic stability requires a state trajectory converge to an equilibrium independent of initial times. As
a matter of fact, if A(t) is (piecewise) continuous, then uniform asymptotic stability of xe = 0 is equivalent
to its exponential stability [21], Theorem 3.9. It is further shown in [19], Lemma 1, that if a switched linear
system is subject to state independent switchings, then uniform asymptotic stability and exponential stability
are equivalent. However, asymptotic stability of such a switched linear system does not always imply uniform
asymptotic stability as illustrated in [19], Example 2. The relations between these stability concepts can be
summarized in the following diagram:

• linear time-invariant systems:
asymptotic stability ⇔ uniform asymptotic stability ⇔ exponential stability;

• linear time-varying systems:
asymptotic stability �⇒ uniform asymptotic stability ⇔ exponential stability;

• switched linear systems with state independent switchings:
asymptotic stability �⇒ uniform asymptotic stability ⇔ exponential stability;

• switched linear systems with state dependent switchings:
asymptotic stability �⇒ uniform asymptotic stability �⇒ exponential stability.

It is shown in [19] that switching rules are crucial to (resp. asymptotic or uniform asymptotic) stability of
switched linear systems, even when the switchings are state independent. Certain “regularity conditions” on
time intervals between switchings have to be imposed to guarantee asymptotic stability for such a system, even
if each mode is asymptotically stable.

6.2. Uniform asymptotic and exponential stability

In this subsection, we show that asymptotic stability of the CLS (2.1) does imply exponential stability, despite
the fact that switchings are state dependent. A key step is to show uniform asymptotic stability based upon
Lipschitz continuity of the CLS. This observation is motivated by [36], Lemma 8.2 (originally due to [26]), which
considers a class of (closed and convex valued) linear differential inclusions. By using the Lipschitz continuity
of the CLS, we obtain the same uniform stability property via a simpler argument. We begin with a slightly
general setting.

Proposition 6.1. Consider the time-invariant system on Rn: ẋ = f(x) with xe = 0 as its equilibrium. Assume
that f : Rn → Rn is Lipschitz continuous at xe = 0 and the system is asymptotically stable at xe = 0. Then for
any sufficiently small δ > 0 and a given scalar 0 < c < 1, there is a scalar Tδ, c > 0 (depending on δ and c only)
such that the following implication holds:

‖x0‖ ≤ δ ⇒ ‖x(t, x0)‖ ≤ c δ, ∀t ≥ Tδ, c. (6.1)

Proof. Since the system is asymptotically stable at xe = 0, it is stable at xe = 0 and there is a r1 > 0 such
that ‖x0‖ ≤ r1 ⇒ lim

t→∞x(t, x0) = 0. Moreover, by properly restricting r1, we have a scalar r2 > 0 such that

‖x0‖ ≤ r1 ⇒ ‖x(t, x0)‖ ≤ r2, ∀t ≥ 0, due to the stability at xe, and that f(·) is Lipschitz continuous
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on the closed ball Br2, i.e. a constant L > 0 exists such that ‖f(x1)−f(x2)‖ ≤ L‖x1−x2‖ for any x1, x2 ∈ Br2 .
The latter further implies that for any x0, x̂0 ∈ Br1 ,

‖x(t, x0) − x(t, x̂0)‖ ≤ eL t‖x0 − x̂0‖, ∀t ≥ 0. (6.2)

Now consider any given 0 < δ < r1 and 0 < c < 1. Suppose the proposition does not hold for such the δ and c,
then we have an initial state sequence {x0

k} ⊆ Bδ and a nondecreasing time sequence {tk} with lim
k→∞

tk = ∞ such

that ‖x(tk, x0
k)‖ > c δ. We further deduce from the stability of xe = 0 that a scalar μ > 0 exists (with μ < δ)

such that x0 ∈ Bμ ⇒ ‖x(t, x0)‖ ≤ c δ, ∀t ≥ 0. By the similar time shifting argument as in [36], Lemma 8.2, we
have ‖x(t, x0

k)‖ ≥ μ for all t ∈ [0, tk]. Moreover, let x∗ ∈ Bδ be an accumulation point of the sequence {x0
k} (the

existence of x∗ is due to compactness of Bδ). Without loss of generality, let {x0
k} be the subsequence of itself that

converges to x∗. We claim that ‖x(t, x∗)‖ ≥ μ, ∀t ≥ 0. Suppose the contrary, i.e. a time t∗ ≥ 0 exists such that
‖x(t∗, x∗)‖ < μ. Let ε := μ−‖x(t∗, x∗)‖ > 0. Hence, there is a sufficiently large N such that ‖x0

N −x∗‖ ≤ ε

2eL t∗

and tN ≥ t∗; the latter implies ‖x(t∗, x0
N )‖ ≥ μ. Using (6.2), we have ‖x(t∗, x0

N )−x(t∗, x∗)‖ ≤ ε/2. This in turn
shows ‖x(t∗, x0

N )‖ ≤ μ − ε/2 < μ, but this is a contradiction. Therefore, the claim that ‖x(t, x∗)‖ ≥ μ, ∀t ≥ 0
holds. However, this leads to another contradiction because lim

t→∞ x(t, x∗) = 0 as x∗ ∈ Bδ ⊆ Br1 . As a result, we
conclude that the proposition holds. �

Remark 6.2. The implication (6.1) leads to uniform asymptotic stability of a time-invariant system readily.
This result may be extended to a time-varying system with f(t, x) satisfying local Lipschitz condition in x, i.e.,
for any t ≥ 0, ‖f(t, x1) − f(t, x2)‖ ≤ L‖x1 − x2‖ for any x1, x2 in a closed ball of the equilibrium. However,
in order to obtain uniform asymptotic stability, one needs to further show that the scalar Tδ,c is independent
of initial times. See [21], Section 4.3 for the detailed discussions. Finally, we notice that the system [19],
Example 1, satisfies the uniform asymptotic property, though its right-hand side is not continuous near xe = 0.
This suggests that the Lipschitz condition is only sufficient and may be relaxed; see the generalization discussed
at this end of this section.

We now return to the CLS (2.1), which clearly possesses a time-invariant right-hand side. The following
facts have been given in [10,11]: (i) the right-hand side of the CLS is globally Lipschitz continuous; (ii) a state
trajectory of the CLS is positively homogeneous, i.e., x(t, τx0) = τx(t, x0), ∀t ≥ 0, for any τ ≥ 0 and x0 ∈ Rn;
(iii) local (resp. asymptotic/exponential) stability of the CLS implies its global (resp. asymptotic/exponential)
stability. Putting these facts and Proposition 6.1 together, we immediately conclude that if the CLS (2.1) is
asymptotically stable at xe = 0, then for any scalars δ > 0 and 0 < c < 1, there is a scalar Tδ, c > 0 such that the
implication (6.1) holds. This property, together with the time-invariance and linear structure of the CLS, e.g.,
positive homogeneity, yields equivalence of asymptotic and exponential stability; see Theorem 6.3 below. The
proof for this result is similar to that of [36], Lemma 8.2, which is generalized for linear time-varying systems
in [21], Theorem 3.9, and [13], Theorem 8.10. To be self-contained, we include the proof in the Appendix.

Theorem 6.3. The CLS (2.1) is asymptotically stable at xe = 0 if and only if it is exponentially stable at
xe = 0.

One of the important consequences of Theorem 6.3 is that it ensures existence of a Lyapunov function for
an asymptotically stable CLS, via the converse Lyapunov theorem given in [10], Theorem 5.2. Recall that the
right-hand side of the CLS (2.1) is Lipschitz continuous and directionally differentiable in Rn. Consequently,
by applying [10], Theorem 5.2, and the linear structure of the CLS, we have:

Corollary 6.4. Let f(x) be the right-hand side of the CLS (2.1). The CLS is asymptotically stable at xe = 0 if
and only if there exist positive constants c1, c2, c3, c4 and a Lipschitz continuous and directionally differentiable
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function V such that the following conditions hold: (i) c1‖x‖2 ≤ V (x) ≤ c2‖x‖2, ∀x ∈ Rn; (ii) V ′(x; f(x)) ≤
−c3‖x‖2, ∀x ∈ Rn, where V ′(x; d) denotes the (one-sided) directional derivative of V along the direction d ∈ Rn

at x; and (iii) |V ′(x; z) − V ′(x; z̃)| ≤ c4 ‖x‖ ‖z − z̃‖ for all x, z, z̃ ∈ Rn.

The equivalence result established above allows us to obtain better tests for asymptotic/exponential stability
of a nonlinear nonsmooth system via linearization (or Lyapunov’s indirect method). Specifically, consider an
ODE system I : ẋ = f(x), where xe ∈ Rn is an equilibrium and f : Rn → Rn is a (continuous and) piecewise
C1-function on a neighborhood of xe [31]. It is known that such an f is B-differentiable at xe [10]. Let the
“first-order approximated system” of system I be II : ż = f ′(xe; z), where f ′(xe; z) is the directional derivative
of f at xe along z. Since f ′(xe; ·) is (continuous and) piecewise linear and positively homogeneous, we see from
Theorem 6.3 that asymptotic stability of system II at ze = 0 is equivalent to its exponential stability. Hence,
by [10], Corollary 5.6, asymptotic stability of system II at ze = 0 implies asymptotic and exponential stability
of the original system I at xe as well as existence of a B-differentiable Lyapunov function for stability analysis.
The following diagram summarizes this discussion:

for (I): asymptotic stability at xe ⇐ exponential stability ⇔ ∃ a Lyapunov function
�

for (II): asymptotic stability at ze = 0 ⇔ exponential stability ⇔ ∃ a Lyapunov function.
It should be mentioned that asymptotic stability of system I implies neither that of the approximated system II
nor its stability, even for smooth systems.

Before ending this section, we briefly discuss extension to non-Lipschitz linear complementarity systems
(LCSs). Given a vector q ∈ Rm and a matrix M ∈ Rm×m, its associated linear complementarity problem,
denoted by LCP(q, M), is to find u ∈ Rm such that

0 ≤ u ⊥ q + Mu ≥ 0

where, for two vectors a and b, a ⊥ b means that a and b are orthogonal, i.e., aT b = 0. See the monograph [14]
for more details. Being a dynamic extension of the static LCP, the LCS(A, B, C, D) is given by:

ẋ = Ax + Bu, 0 ≤ u ⊥ Cx + Du ≥ 0

where x ∈ Rn, u ∈ Rm, (A, B, C, D) is a matrix tuple of compatible dimensions, and we use SOL(Cx, D) to
represent the solution set of LCP(Cx, D) for a given x in the subsequent development. Apparently, an LCS is
time-invariant and positively homogeneous. Recall that a key step in establishing the stability equivalence of
the CLS is the implication of uniform asymptotic stability from asymptotic stability via the solution dependence
and time invariance properties. This implication and positive homogeneity lead to exponential stability; see the
following diagram for illustration:

asymptotic
stability

sol. depend. + time invar.
=⇒

uniform
asymptotic stability

pos. homogeneity
=⇒

exponential
stability.

We will extend this line of argument to a class of non-Lipschitz LCSs. In particular, we consider linear passive
complementarity systems (LPCSs) [9]. An LCS(A, B, C, D) is an LPCS if the corresponding linear system
(A, B, C, D) satisfies the passivity condition in term of the supply rate uT y, where u is treated as an input
and y ≡ Cx + Du as an output, i.e., there exists a storage function V : Rn → R+ such that V (x0) +∫ t

0

uT (τ, x0)
[
Cx(τ, x0) + Du(τ, x0)

]
dτ ≥ V (x(t, x0)), ∀t ≥ 0 for any x0 ∈ Rn and any L2-solution pair(

x(t, x0), u(t, x0)
)

of the LCS. It is known from linear system theory that if (A, B, C, D) is a minimal realization,
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then the passivity condition is equivalent to the existence of a quadratic storage function V (x) = 1
2xT Kx, where

K is a symmetric positive definite matrix satisfying the matrix inequality:[
AT K + KA KB − CT

BT K − C −(D + DT )

]
is negative semidefinite.

It is further shown in [9] that under the minimal realization assumption, the LPCS possesses a unique L2-state
solution x(·, x0) on [0,∞), provided that x0 is feasible, i.e., SOL(Cx0, D) �= ∅. Moreover, under this assumption,
one can show, via the similar argument as [9], that a scalar μ > 0 exists such that for any feasible initial states
x0, x̃0 in Rn, ‖x(t, x0) − x(t, x̃0)‖ ≤ μ‖x0 − x̃0‖, ∀t ≥ 0. With this global solution dependence result and the
fact that ‖x(t, x0)‖ ≤ μ‖x0‖, ∀t ≥ 0 for any feasible x0, we obtain:

Corollary 6.5. Assume that the LPCS(A, B, C, D) is asymptotically stable at xe = 0, where (A, B, C, D) is
a minimal realization. Then for any scalars δ > 0 and 0 < c < 1, there is a scalar Tδ, c > 0 such that[
‖x0‖ ≤ δ and SOL(Cx0, D) �= ∅

]
⇒ ‖x(t, x0)‖ ≤ c δ, ∀t ≥ Tδ, c. Moreover, the LPCS is exponentially stable

at xe = 0.

6.3. Stability of switch-free CLSs

In this subsection, necessary and sufficient conditions are derived for the stability of a switch-free CLS by
making use of its no switching property. In particular, stability of this class of CLSs is equivalent to that of its
pieces and to the existence of a (continuous) piecewise quadratic Lyapunov function.

Theorem 6.6. Consider the switch-free CLS (2.1). The following statements are equivalent:

(a) the system is asymptotically/exponentially stable at xe = 0;
(b) each Ai is Hurwitz for i = 1, . . . , m, i.e., each eigenvalue of Ai has the negative real part;
(c) there exist symmetric positive definite matrices {Qi}m

i=1 such that xT Qix = xT Qjx for any x ∈ Xi ∩Xj,
and −(QiAi + AT

i Qi) is strictly copositive on Xi.

Proof. (a) ⇒ (b). We focus on a pair (Ci, Ai) and drop the subscript for notational simplicity. Since the cone XC

is solid, there exists a vector x∗ ∈ intXC . Hence, we deduce the existence of a real number ε > 0 such that
vi ≡ x∗ + ε ei ∈ intXC for all i = 1, . . . , n, where

{
ei

}n

i=1
is the standard basis for Rn. It is easy to verify that

the set {vi}n
i=1 is linear independent and thus forms a basis for Rn. By Lemma 5.1, x(t, vi) = eAtvi, ∀t ≥ 0.

Moreover, asymptotic stability of the CLS implies lim
t→∞x(t, vi) ≡ lim

t→∞ eAtvi = 0 for each i = 1, . . . , n. We

further notice that any x ∈ Rn is a linear combination of {vi}n
i=1. Consequently, lim

t→∞ eAtx = 0 for all x ∈ Rn.
This shows that the matrix A is Hurwitz.

(b) ⇒ (a). For any x0 ∈ Rn, x(t, x0) = eAitx0, ∀t ≥ 0 remains in a piece whose dynamics is defined by
some Ai. Since each Ai is Hurwtiz, ‖eAit‖ is bounded for all t ≥ 0. Therefore, ‖x(t, x0)‖ ≤ ‖eAit‖ ‖x0‖ is
bounded for all t ≥ 0 and any bounded ‖x0‖. This shows that the equilibrium xe = 0 is stable. Moreover,
lim

t→∞x(t, x0) ≡ lim
t→∞ eAitx0 = 0 for all x0. As a result, the equilibrium is asymptotically stable.

(a) ⇒ (c). Since the system is asymptotically stable and thus exponentially stable, by [10], Theorem 5.2,

there exists a B-differentiable Lyapunov function V (z) ≡
∫ T

0

x(t, z)T x(t, z)dt for some T > 0 such that its

directional derivative along the right-hand side of the CLS, denoted by f(x), satisfies V ′(z; f(z)) ≤ −c‖z‖2, ∀z

for some scalar c > 0. Let Qi :=
∫ T

0

(eAit)T eAitdt, which is symmetric and positive definite since Ai is Hurwitz.

The non-switching property implies V (z) = zT Qiz, ∀z ∈ Xi. Moreover, for any z ∈ Xi, we have z + τAiz ∈ Xi
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for all τ ≥ 0 sufficient small. Therefore, for all z ∈ Xi,

V ′(z; f(z)) = lim
τ↓0

V (z + τf(z)) − V (z)
τ

= lim
τ↓0

(z + τAiz)T Qi(z + τAiz) − zT Qiz

τ

= zT
(
AT

i Qi + QiAi

)
z ≤ −c ‖z‖2.

Therefore −(QiAi +AT
i Qi) is strictly copositive on Xi. Finally, the continuity of V (z) follows from the solution

uniqueness and the nonswitching property, i.e., eAitx = eAjtx, ∀t ≥ 0 for x ∈ Xi ∩ Xj .
(c) ⇒ (a). Define V (z) := zT Qi z, ∀z ∈ Xi, where Qi’s satisfy the conditions in (c). Since each Qi is

symmetric and positive definite, we have c1‖z‖2 ≤ V (z) ≤ c2‖z‖2, ∀z ∈ Rn, where c1 := mini λmin (Qi) and
c2 := maxi λmax (Qi) are positive scalars. We next show that V (z) is Lipschitz continuous in the closed unit
ball B of the origin and globally directionally differentiable. Let L := maxi,j{‖Qi‖ + ‖Qi − Qj‖}. For any
z1 ∈ Xi ∩ B and z2 ∈ Xj ∩ B, we have∣∣V (z1) − V (z2)

∣∣ ≤
∣∣(z1)T Qiz

1 − (z2)T Qiz
1 + (z1)T Qiz

2 − (z2)T Qjz
2
∣∣ ≤ L‖z1 − z2‖.

Hence, V is Lipschitz continuous in B. Moreover, for any z, d ∈ Rn, we deduce, via [11], Lemma 3.4, that
z + τd ∈ Xi for all τ ≥ 0 sufficiently small for some i ∈ I(z). Hence, V (z + τd) = (z + τd)T Qi(z + τd) for
all τ ≥ 0 sufficiently small. This immediately yields the existence of the directional derivative V ′(z; d) and
shows that V ′(z; d) = 2zT Qi d. Finally, we show that V ′(z; f(z)) ≤ −c3‖z‖2, ∀z ∈ Rn for some scalar c3 > 0.
Since −

(
QiAi + AT

i Qi

)
is strictly copositive on Xi, a positive scalar μi exists such that −zT

(
QiAi + AT

i Qi

)
z ≥

μi‖z‖2, ∀z ∈ Xi. Letting c3 := mini μi and following the similar line discussed before for the directional
derivative of V (z), we see that for any z ∈ Xi, V ′(z; f(z)) = zT

(
QiAi + AT

i Qi

)
z ≤ −μi‖z‖2 ≤ −c3‖z‖2. This

result, along with [10], Theorem 5.2 and positive homogeneity of the CLSs, leads to exponential stability at the
origin. �

Theorem 6.6 shows that stability of switch-free CLSs can be easily characterized. The extent to which such a
characterization holds for CLSs of other kinds is not known currently; see the recent paper [25] that may provide a
negative answer for the existence of piecewise quadratic Lyapunov functions for exponential/asymptotic stability
of the planar bimodal CLS with infinite switchings. Finally, it is worth pointing out that the implication
(c) ⇒ (a) in the theorem holds for general CLSs, even without the switch-free property.

A. Appendix

Proof of Theorem 6.3. Let L be the global Lipschitz constant for the right-hand side of the CLS (2.1). For a
given δ > 0 and a scalar 0 < c < 1, there is a scalar Tδ, c > 0 such that

‖x0‖ ≤ δ ⇒ ‖x(t, x0)‖ ≤ c δ, ∀t ≥ Tδ, c. (A.1)

Moreover, for any x0 ∈ Rn, ‖x(t, x0)‖ ≤ eL t‖x0‖ for all t ≥ 0. Let κ := eL Tδ, c . We have ‖x(t, x0)‖ ≤
κ‖x0‖, ∀t ∈ [0, Tδ, c], ∀x0 ∈ Bδ. Let x(t, x0) be the state trajectory with initial state 0 �= x0 ∈ Bδ. The
linear property and positive homogeneity of the CLS admits that δ

‖x0‖x(t, x0) is also the state trajectory with
initial state δ

‖x0‖x0 whose norm is δ. Thus by the implication (A.1), we have ‖ δ
‖x0‖x(Tδ, c, x

0)‖ ≤ c δ or
equivalently ‖x(Tδ, c, x

0)‖ ≤ c ‖x0‖ ≤ δ. Now consider x(t, x0) on [Tδ, c, 2Tδ, c]. Since x(t, x0) = x(s, x(Tδ, c, x
0))

where s ∈ [0, Tδ, c], we have ‖x(t, x0)‖ = ‖x(s, x(Tδ, c, x
0))‖ ≤ κ‖x(Tδ, c, x

0)‖ ≤ κc ‖x0‖, ∀t ∈ [Tδ, c, 2Tδ, c] and
‖x(2Tδ, c, x

0)‖ = ‖x(Tδ, c, x(Tδ, c, x
0))‖ ≤ c‖x(Tδ, c, x

0)‖ ≤ c2‖x0‖. An induction argument can be used to show
that ‖x(t, x0)‖ ≤ κcn ‖x0‖ for all t ∈ [nTδ, c, (n + 1)Tδ, c] and ‖x(nTδ, c)‖ ≤ cn ‖x0‖, for all n = 0, 1, 2, . . .
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Note that n ≤ t/Tδ, c ≤ n + 1. Hence, we have ‖x(t, x0)‖ ≤ κ‖x0‖ct/Tδ, c for all t ≥ 0. Moreover, since c = eln c

and ln c < 0, we have ‖x(t, x0)‖ ≤ κ‖x0‖e−γt, ∀t ≥ 0, where γ := − ln c/Tδ, c > 0. Since x0 and δ > 0 are
arbitrary, this shows (global) exponential stability. �
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