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NUMERICAL ANALYSIS OF SOME OPTIMAL CONTROL PROBLEMS
GOVERNED BY A CLASS OF QUASILINEAR ELLIPTIC EQUATIONS*

EDUARDO CAsAs! AND FREDI TROLTZSCH?

Abstract. In this paper, we carry out the numerical analysis of a distributed optimal control problem
governed by a quasilinear elliptic equation of non-monotone type. The goal is to prove the strong
convergence of the discretization of the problem by finite elements. The main issue is to get error
estimates for the discretization of the state equation. One of the difficulties in this analysis is that, in
spite of the partial differential equation has a unique solution for any given control, the uniqueness of
a solution for the discrete equation is an open problem.

Mathematics Subject Classification. 49M25, 35J60, 35B37, 65N30.

Received December 1st, 2008. Revised December 20, 2009.
Published online August 6, 2010.

1. INTRODUCTION

In this paper we will study some aspects of numerical analysis for the optimal control problem

min J(u) ::/QL(:c,yu(:c),u(x))d:c,

a <u(x) < g for ae. x €,

(P)
where g, is the solution of the state equation
(1.1)

{—diV[a(I,y(I))Vy(I)]+f(x7y($)) = u(z) nQ
ylz) = 0 on I'.

Our main goal is to show the strong convergence of the numerical discretization of this problem by finite
elements for the state and different kinds of discretizations for the control. For this purpose, we have to derive
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error estimates for the discretization of equation (1.1) and associated adjoint equation. The regularity of the
solutions to these equations, which is required for this analysis, is obtained from the first order necessary
optimality conditions. These optimality conditions were proved in [5] and are included here for convenience.

Although the equation (1.1) is not of monotone type, it has a unique solution. This can be proved by
a comparison principle. However, this technique cannot be applied to the discretized equation, where the
uniqueness of the solution is an open problem. Nevertheless, we are able to derive error estimates in a local
framework.

Since (P) is not a convex problem, we have to deal with local minima. We show that every strict local
minimum of (P) can be strongly approximated by local minima of the discrete control problems.

The convergence analysis of discretized control problems associated with nonlinear elliptic equations was
already studied in [1,4]. In both cases, the equations were semilinear. As far as we know, the specific difficul-
ties arising from the quasilinear and non-monotone character of equation (1.1) were not yet addressed in the
literature. Let us explain these difficulties as well as our contributions in this field. A first step to discretize
the control problem is the approximation of the state equation (1.1), typically by using finite elements. By an
application of the Brouwer fix-point theorem it is easy to deduce the existence of a solution for the discrete
equation. However, in general, the uniqueness is unknown due to the non-monotone character of the equation.
There are just a few uniqueness results in the case of sufficiently small data u, Brenner and Scott [2], pp. 188
191, or when the discretization parameter h is large enough, Hlavacek [9] and Hlavdcek et al. [10]. Moreover
these papers assume the coefficient a(z,y) of the quasilinear equation to be bounded on € x R. In this case,
we are able to prove the uniqueness of the solution of the discrete equation for every h small enough for any
u € LP(§2) when p > n; see Corollary 3.3.

When a(z,y) is not bounded, then a significant difficulty arises in formulating the discrete control problem,
because the control-to-state mapping is possibly multivalued. This forces us to carry out a local analysis around
a solution @ of control problem (P). We are able to prove that, around an LP(€2)-ball centered at @, a unique
solution of the discrete state equation exists in a certain WP (Q)-ball centered at the optimal state §. To show
this result, we have to derive LP error estimates for a finite element approximation of the state equation. To
our best knowledge, these estimates are not known for our non-monotone quasilinear equation. There are some
previous estimates proved by Douglas and Dupont [7] and Liu et al. [11] in the spaces L?(Q) and H'(2), but
these spaces are not suitable for our goals. Furthermore, all these papers also require the coefficient a(z,y) to
be bounded in 2 x R.

In view of this, we are able to deal with this class of quasilinear equations under weaker assumptions and
we derive more general LP estimates. This is not obvious due to the non-monotone character of the equation;
at least it cannot be done by classical arguments. Moreover, also the uniqueness of the solution of the discrete
equation for bounded coefficients a(x,y) is a new contribution of this paper.

The numerical analysis of the control problem (P) also requires the approximation of the adjoint state
equation, which is linear but non-monotone. This equation has been studied by the authors in [5], where the
uniqueness and regularity of the solution was investigated. Here we prove that the discrete adjoint state equation
has also a unique solution in spite of its non-monotone character; see Theorem 4.1. We also derive associated
LP error estimates in Theorem 4.5.

2. ASSUMPTIONS AND PRELIMINARY RESULTS

The following hypotheses will be assumed in the whole paper.

(H1) Q is an open, convex and bounded subset of R, n = 2 or 3, with boundary I' of class C*'. We fix real
numbers a < § and introduce the admissible set

Upg = {u e L=(Q) : a <wu(z) <G for ae. xz e}
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(H2) The function a : @ x R — R is of class C' with respect to the second component and, for any M > 0,
there exists a constant Cy as > 0 such that, for all z; € Q and |y;| < M, i = 1,2, it holds

P ) — 22 w1, 00)| < Connrllz — 1] + g2 — ), 5 = 0,1 (21)
Dy 2,Y2 Dy 1,Y1)| = Ca,m (|22 1 Y2 — Y1), 3 =Y, L. .
Moreover, we assume

Jag > 0 such that a(z,y) > ap YV € Q, Yy € R. (2.2)

(H3) The function f : 2 x R — R is measurable with respect to the first variable, it is of class C! with respect
to the second, and the following properties hold:

3p > n such that f(-,0) € LP(2) (2.3)
of of o0
—(z,y) >0 for a.e. z €, Yy € Rand ——(-,0) € L>(Q) (2.4)
dy dy

of of
VM >0 3C¢ a > 0 such that a—y(:ﬂ,yl) — a—y(x,yg) < Crmlyr — yol (2.5)

for almost all x € Q and all |y1|, |y2] < M.

(H4) The function L : 2 x R x R — R is measurable with respect to the first variable, of class C'* with respect
to the others, and twice differentiable with respect to u. Moreover

L(-,0,0) € L*(Q), %(I,y,u) >A>0ae inQand for all y,u € R (2.6)
VM >0 3Cp,n > 0 and ¥p a € LP(2) such that (2.7)
g—i(m,y,u) <CrLum (2.8)
g—j(m,y,u) < m(x) (2.9)
g—i(wzayw) - g—ﬁ(ﬂcl,y,u) < Cp,mlr2 — 24 (2.10)

for all x,2; € Q, y € R, where p > n is as in Hypothesis (H3).
These assumptions look somewhat technical, but we aimed to include the associated most general case. The
following more special example falls into this class:

min / (1 (2) — ya(@))? + vu(z)? da,
Q

a <u(x) < g for a.e. x€Q,

(E)

where g, is the solution of the state equation

{div{a(x,y)VyHexp(y) = wu(z) inQ,
y = 0 onI'

with yq € L=(Q), v, A > 0, and a € C*(Q x R). For instance, a(x,y) = ¢o(z) + y* with a Lipschitz function
¢o(x) > o > 0 meets our assumptions.
For the state equation, we have the following result.
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Theorem 2.1. For every u € LP(Q), with 2 < p < p, the state equation (1.1) has a unique solution y, €
W2P(Q) N W, P(Q), which depends continuously on u. Moreover, for all bounded sets K C LP(Q), there exists
Cx > 0 such that
||yu||Wz,p(Q) < (Cx Yuelk.

Notice that we cannot expect a higher regularity of y,, for p > p, since the regularity of f according to (2.3)
limits the regularity of u + f.

For the proof of this theorem, we refer the reader to Casas and Troltzsch [5]. Moreover, the solution y,
depends continuously of u. In particular, there exists a constant C, g > 0 such that

Hyu||w2,ﬁ(g) < Cqp YU € Ugg. (2.11)

On the other hand, p > n implies that W*P(Q) C C(Q2), hence all the feasible states of problem (P) are
C-functions in .

We also need the following result of [5] on the differentiability of the control-to-state mapping:
Theorem 2.2. The mapping G : L>(Q) — W?P(Q), defined by G(u) = yu, is of class C*. For any v €
L>°(Q), the function z, = G'(u)v is the unique solution in W*P(Q) N W, P(Q) of the equation

—div |a(z,y,)Vz + %(z,yu)szu + g—‘;(z,yu)z = vin

oy (2.12)
0onl.

z

The proof of this theorem relies crucially on the fact that the linearized equation (2.12) has a unique solution
in H}(2). Moreover, this solution has W2P(Q)-regularity. Although the equation (2.12) is not monotone, the
authors were able to prove the well posedness of the equation in [5]. In fact, for any v € W=1P(Q), the boundary
value problem

—div |a(z,y1)Vz + %(x,yg)z Vyl| + ﬂ(m,ys)z v in Q

Jy Jy
z = 0 onl

has a unique solution z € Wy (Q) provided that n < p < p, y1 € C(Q), ya,ys € L®(), and y € WP(Q).

(2.13)

Remark 2.3. The mapping G introduced in Theorem 2.2 can be extended to a Cl-mapping G : L*(Q) —
H2(Q). In particular, equation (2.12) defines an isomorphism v — 2, between L%(Q) and HZ () N H%(Q).

By the previous theorem and our assumptions on the given functions of the control problem, we obtained
the following result [5]:

Theorem 2.4. The functional J : L>°(2) — R is of class C* and for every u,v € L* () we have
L
o= [ (Ge e+ o) v (2.14)
Q ou

where @, € Wy'P () N W?2P(Q) is the unique solution of the problem

. da of oL .
—div [a(:c, yu)vw] + 8_y(1” yu)vyu : ch + 6_y(x’ yu)@ - é?y (:L'a Yus u) in () (215>

p = 0 on .

Now, we already have the main tools to study the control problem (P). First of all, the reader can easily
check that (P) has at least one global solution. The proof follows by standard arguments. In the rest of this
section we will formulate the first order optimality conditions corresponding to local minima of (P). They will
lead us to a regularity result for local minima.
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We say that @ is a local minimum of (P) if there exists an open ball B. (@) in L>(€2) such that
J(@) < J(u) Yu € Uyg N B ().

Also the next two theorems were proven in [5]:

Theorem 2.5. If 4 is a local solution of (P) with associated state § = ya, then there exists an adjoint state
function @ in W2P(Q) such that the following optimality system is satisfied:

{ —div [a(z,y(z)) Vy(z)] + f(sc,z?;xa)jg - ﬂ<0fc> Z; fI{ | (2.16)
o = 0 on T,
oL . _ _ _ _
/Q (%@, g(), u() + so(x)> (u(@) = u(x) de > 0 Yu € Una. (2.18)

Remark 2.6. Given y € WHP(Q), let us consider the partial differential operator

Az = ~div |ale. ) Vs + 5 0.0)2 | + G 2.0)
The formally adjoint operator is
da

A@V@=—&ﬂd%wvﬂ+a¢%wWNw+%§%w%

In [5], Theorem 3.2, it was proved that A(y) and A(y)* are isomorphisms from W,*(Q) to W~12(Q) for
2<p<p

From (2.18) we get in a standard way
>0 ifa(z) =

and d(z)={ <0 ﬁa@):§ (2.19)

_ {a if d(z) >0
=0 ifa<alz)<p

ufr) = B ifd(z) <0

for almost all z € Q, where

- oL, _ _ _

d(w) = 5 (@, 5(@), a(@)) + $(a). (220)
Furthermore, (2.18) allows us to deduce some higher regularity of the local minimum .

Theorem 2.7. If @ is a local minimum of (P), then, for every x € Q, the equation

oL

o (w,5(2),0) + §l) =0 (221)

has a unique solution t = 5(x). The function 5: Q — R is Lipschitz and  is related to 5 by the formula
u(x) = Proji, g (5(x)) = max{min{3, 5(x)}, a}. (2.22)

Consequently, u is Lipschitz in Q, too.
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3. NUMERICAL ANALYSIS OF THE STATE EQUATION

The goal of this section is to study the approximation of the state equation (1.1) by finite elements and to
derive some associated error estimates. To this aim, we consider a family of triangulations {7}, } >0 of 2, defined
in the standard way, e.g. in [2]. In particular, this definition excludes the so-called hanging nodes. Moreover,
this triangulation is supposed to be regular and to satisfy an inverse assumption; see (i) below.

With each element T' € Tj, we associate two parameters p(T) and o(T), where p(T') denotes the diameter
of the set T and o(T) is the diameter of the largest ball contained in 7. Define the size of the mesh by
h = maxper, p(T). We suppose that the following regularity assumptions are satisfied.

(i) There exist two positive constants p and o such that

p(T) h
—= <0, —<p
o(T) p(T)

hold for all T € 7;, and all h > 0.

(ii) Define Q) = Urer, T, and let € and I'j, denote its interior and its boundary, respectively. We assume
that Q, is convex and that the vertices of 7;, placed on the boundary I'j, are points of I'. From [13], estimate
(5.2.19), we know that

1\ Q] < CR% (3.1)

We will use piecewise linear approximations for the states, thus we set

Vi = {yn € C(Q) | ynjp € Py, for all T € T, and ys = 0 on Q\ Qp},

where P; is the space of polynomials of degree less or equal than 1.
The discrete version of equation (1.1) is defined as follows:

Find y;, € Y}, such that, for all z;, € Y},

/Q (ae, v (2)) Vign (2) V() + (2 yn () 20 (2)] dae = / u(z)on(z) d.

Qp,

(3.2)

By applying the Brouwer fixed point theorem, using (2.2)-(2.4) and taking into account that Y;, C C(9), it
is easy to deduce the existence of at least one solution of (3.2). As far as we know, the uniqueness was an open
question until now. There are some uniqueness results for the restrictive cases where u is sufficiently small or h
is large enough; see [2], pp. 188-191, and [9,10]. In the previous references, the functions a and f are assumed
to be bounded in Q x R.

We are are able to prove a more general uniqueness theorem: if ¢ and f are bounded, then there exists an
ho > 0 such that (3.2) has a unique solution for every h < hg and any u € Uyq, where hg is independent of w.
We also derive some error estimates. If we do not assume the boundedness of the functions a and f, then we
will prove that the solution of (1.1) can be approximated by solutions of (3.2) and we derive estimates for these
approximations. The question of the existence of other solutions yj, of (3.2), which are not close to the solution y
of (1.1), remains open. If such solutions yj, exist, then ||y (o) — oo when h — 0; see Corollary 3.3.

Theorem 3.1. Let K C LP(Q), with 2 < p < p, be a bounded subset. There exist two constants hg > 0 and
Cx > 0 such that, for any v € K and h < hy, equation (3.2) has at least one solution yn(u) that obeys

1y — yn (Wl L2y + RllYa — yn (W)l @,y < Crch? (3.3)
Cxhr  ifn=2

oo (34)
Cxh™2  ifn=3 and p <6,

lyu — yn(w)lwrr@,) < {
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where y,, is the solution of (1.1). If a and f are bounded in Q xR, then (3.3) and (3.4) hold for all the solutions
of (3.2). Finally, if ys, is a solution of (3.2) for every h > 0 and the family {yn}n>o is bounded in L>°(Q), then
the inequalities (3.3) and (3.4) hold with yp, substituted for yp(u).

Proof. (i) Proof of (3.3). Let us take
M =1+ sup{[|yvllcq) : v € £} (3.5)

According to Theorem 2.1, it holds that M < co. Now we consider a nondecreasing cut-off function ¢y : R — R
of class C* such that

t if [t < M
oM (t) = M+1 ift>M+1
—-M-1 ift<-M-1

and we set ay (z,y) = a(z,¢um(y)) and far(w,y) = f(x,¢m(y)). Then ap and fur are functions of class ot
with respect to the second variable and dJans(z,y) and 87 far(x,y) are bounded in © x R for j = 0,1. Let us
consider the equation

{div[aM<x,y<x>>Vy<x>1+fM<z,y;z£ ~ W) 3.6)

and its discrete version
Find y, € Yy such that Vz, € Yy,

/ lans (2, yn (@) Vyn Ve + far (2, yn(2))zs] da :/ uzy, dz.
2n Qp

(3.7)

From (3.5) we get that ay (2, yu(2)) = a(z, yu(2)) and frr (2, yu(x)) = f(z,yu(x)) for every € Q and all u € K.
Therefore (3.6) has the same solution than (1.1) for any u € K. Let us denote by y (u) an arbitrary but fixed
solution of (3.2). Now we can apply the error estimates obtained in [11] for the quasilinear problems (3.6)
and (3.7) and deduce the existence of a constant Cy > 0 depending on ||y || 52(q) such that

Iy = un' @llz2(n) + Rllye = ya" (@ @) < Carh?, (3.8)

where C) is independent on h and u € K.

The equation considered in [11] does not contain the semilinear term fs(z,y), but it can be treated similarly
as apr, even in a easier way.

Now denote by IIj, : C(Q) — Y}, the interpolation operator. It is known that, for all z € H?(2),

{ Iz = MnzllL2y) + bllz = Tzl g a,) < Cih?(2)m2 ),

Iz = Mzl oe () < C1A* % 2]l 20,
see, for instance, Ciarlet [6]. The same book also contains the inverse inequality

||ZhHLoe(Qh) < Cgh7%||zh”L2(Qh) Vz, € Y} (310)
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Using (3.3), (3.9) and (3.10) we get
v — yp" (Wl pe @) < 1yu — Dnyulle @) + 1Taye — v ()| L)
< C1R*" 2 ||yl g2y + Coh™ 2 |hyu — yi' (W)l L2an)

< C1h* 2 Yl 520y + Coh ™2 (

Mnyu = yullz2n) + 19a = un' (@)lL2@n))
<C1h* % Yl 2 () + Coh®™ 2 (Cy + Crr) |yl 2 (02)-
This inequality, along with (2.11), leads to

ouh ifn=2

C
9w = yi" ()| oo @) < { . (3.11)

Cyhs ifn=3.
Therefore there exists hg > 0 such that
lyu = yi" (W)l =00y <1 ¥h < ho.
This inequality implies that
lyn" (W)l o) = lun" (Wllzoo@n) < lyw = v (WL + lvulle@ <1+ lvullo@ <M Vh < he.
Therefore the following identities hold for h < hg
arr (@, gy (w)(@)) = alw, ' (u)(@)) and far(z, gy (w)(@) = flz,y3" (u)(2)),

thus yp,(u) = yM(u) is a solution of (3.2) and (3.3) follows from (3.8).

(i) Proof of (3.4). By estimates for the interpolation error and inverse inequalities of [6], we get
2,p Ca
Iz = pzllwir,) < Cihllzllwze@) V2 € W2P(Q) and |znllwire,) < o=z l2nllmi@,) Y2n € Ya.
2p

Using (3.3) and the previous inequalities it follows that

Y — yn(W)llwir@,) < 1Ye — Dayullwrre@n) + 1Haye — yn(w)lwie @)

Cs
< Crhllyullwzr @) + hn(Tz)Hthu = yn(w)| 52 ()
2p

Cs
< Cihllyullwer @) + e (IMryu = Yull o @n) + 1Y — yn (W)l 51 (02))
2p

n(2—p)
< C1h|yullwar(qy + Coh'™ 2 (C1 + Ci)lyull 20

For n = 2, the number 1 4 n(2 — p)/2p above is equal to 2/p, hence the upper exponent in (3.4) is found. If
n = 3, then we obtain the value (6 — p)/2p, which is positive for p < 6. Therefore, the last inequality, along
with the estimate of Theorem 2.1, yields (3.4).
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If the functions a and f are bounded, then we do not need the cut off function ¢, and we can get directly the
inequalities (3.3) and (3.4) for any solution of (3.2). Finally, if {ys}r>0 is a family of solution of (3.2) bounded
in L*°(Q), then we can define ap; and fy; as above, with

M = sup |[ynll Lo (@) + [YullL=~@) + 1.
h>0

Then we can apply the results of [11] to the equations (3.6) and (3.7) and deduce that y; satisfies (3.3) and
consequently (3.4) too. O

In the rest of the section, we fix u € LP(Q) and denote by § the solution of (1.1) associated to @, precisely
U = ya. From Theorem 2.1 we know that § € W2P(Q)). We are going to prove the following theorem on
existence and uniqueness and on an LP-error estimate:

Theorem 3.2. Suppose that n < p < p. Then there exist hg > 0, pg > 0 and py > 0 such that, for any h < hg
and any u € B, (u) C LP(Q), equation (3.2) has in the closed ball B, () C WyP(Q) a unique solution yp,(u).
Moreover, there holds the estimate

190 = yn (@)l o) + hlYa = ya (@) lwrr(e,) < C@)h*. (3.12)

The proof of Theorem 3.2 is worked out in the next subsections.
As a consequence of Theorems 3.1 and 3.2, we get the following result.

Corollary 3.3. Assume that n < p < p and @ € LP(Q), then the following statements hold.

(1) If the functions a and f are bounded in Q x R, then there exists hg > 0 such that (3.2) has a unique
solution for every h < hg.

(2) Suppose that, as in Theorem 3.2, (3.2) has in the ball B,, (y.) C Wy P(Q) for every h < ho a unique
solution. If for any h < hg there exists another solution yy of (3.2) outside the ball B,, (y.), then

1. ) = .
hlg})HthL (@) = 00

Proof. Let us show (1) under the simplifying assumption that the estimate (3.8) is valid that was used in the
proof of Theorem 3.1. This estimate was shown in [10] under the fairly strong assumption that, in addition
to a, also the first- and second-order derivatives of a with respect to y are bounded. This simplification is not
necessary as the proof of Theorem 4.1 in the forthcoming paper [3] shows. In [3], a statement analogous to (1)
is proven for bounded a in the case of boundary control. The adaptation of this proof to our case of distributed
control is straightforward.

If n = 3 we can assume without loss of generality that that p < 6. Indeed, if we prove the uniqueness of
solutions for data w € LP(Q), with p < 6, then the result is obviously true for p > 6. From Theorem 3.2 we
deduce the existence of hy > 0 and p,, > 0 such that (3.2) has a unique solution in B, (y.) C WyP(Q) for
every h < hy. Let now y(u) be any solution of (3.2). Then, Theorem 3.1 yields the existence of hy > 0 such
that

Y — yh(u)HWOLP(Q) < Py, Yh < hs.

To check this we notice first that y, = y, — yn(u) in Q\ Q, and y, € W2P(Q) C C1(Q) thanks to p > n. Then
the previous inequality is a consequence of (3.1), (3.3) and (3.4)

2 N
lyu — yh(u)”WOl’p(Q) < C”yu”Cl(Q\Qh) Q\ Qh|1/p +lyu — yh(u)”WOl’p(Qh) < {h” Hyu”(ﬂ(()\ﬂh) + hé} )
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where
2 .
— if n=2,
p
s = 6
2P if n=23and p <6.
2p

By taking ho = min{h, ha} we get that any solution of (3.2) for h < ho belongs to the ball B, (y.), which
implies the uniqueness.

To prove (2), we proceed by contradiction. Let us assume that {yn}n<n, C Y \ B,,, (¥u) is bounded in
L>(€). We denote by yp(u) the solution of (3.2) belonging to the ball B, (y.). Then we define

M= }Lfgf; llynll o) + hﬁgﬁ lyn ()l oo () + 1Yull Lo (@) + 1-

Taking aps and fys as in the proof of Theorem 3.1, we have that y; and yp(u) are solutions of (3.7) for every
h < hg, which contradicts (1) (notice that aps and fas are bounded). O

3.1. Existence and uniqueness of solutions of (3.2) around u
Let us consider the mapping
FiLP(Q) x WEP(Q) — WiP(Q), Fluy) =2 -y,
where z is the solution of the linear equation

Following the steps of Theorem 2.4 of [5], we obtain z € W?2P(Q); therefore F is well defined. The next
proposition states some properties of this function. Let us provide first the expression for the derivative % (u,y)

in W, P(€). Tt is given by

%:(u,y)w = Zy — W, (3.14)
where z,, is the solution of
—div |a(z,y)Vzy + g—Z(x,y)w Vz| + g—;(m, yYyw = 0 inQ (3.15)

zw = 0 onl,

and z is defined by (3.13).

Proposition 3.4. The following properties hold.
(1) Flu,y) =0 if and only if y = yy.
(2) F is of class C'.
(3) The linear mapping %—g(u,y) c Wy P(Q) — W P(), is an isomorphism.

Proof. The statements (1) and (2) are obvious. The formula for the partial derivative of F defined above is
also evident. Let us prove that %—]; (u,y) is an isomorphism in I/VO1 P(Q). To show the injectivity, we assume that

w € WyP(Q) and
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Then w satisfies the equation

. da of .
—div [a(:c,y)Vw + 0—y(:c, Yy)w Vz] + 0—y(m, yYyw = 0 inQ

w = 0 onl.

From the uniqueness of the solution of the linear equation (2.13) we deduce that w = 0.

Now, we verify the surjectivity. Given ¢ € WOI”’(Q)7 to solve %(u, y)w = ¢, we define w as the solution of

—div [a(x,y)Vw + g—;(m, y)sz] + g—z(x,y)w = divia(z,y)V¢] in Q

w = 0 on .

Since the right hand side of the equation belongs to W~17(2) and the linear equation (2.13) defines an isomor-
phism between W, ?(Q) and W~?(Q), w is well defined. Re-writing the last equation in the form

—div {a(m, y)V(w + @) + g—;(x,y)wv,z} + g—;(m, yYyw = 0 inQ

w+¢ = 0 onl
and comparing this with (3.15), we observe that z,, = w + ¢, therefore %(u, y)w = ¢. O
Next we define the discrete version of F
Fiu s LP(2) x Wy P (92) — WoP(Q), Fulu,y) = 2n —y,
where zp, is the solution of the variational problem

Find z, € Y}, such that Vo, € Yj,

/ [a(z,y())VzrVon + f(z,y(x))dn] dz :/ wgp do.
Qp

Qh,

(3.16)

The following proposition states some important but evident properties of Fj. Its proof is completely
analogous to the previous one.
Proposition 3.5. The following properties hold true for Fy,:

(1) Fr(u,y) =0 if and only if y € Yy and y is a solution of (3.2).
(2) Fp is of class C* and the partial derivative of Fj, with respect to y is given by

OFhn
ay} (u, y)w = zp(w) — w, (3.17)

where zp(w) € Yy, satisfies Vor € Yy

/Qh { [a(m, y)Van(w) + g_Z(%y)sz;z Von + g—‘;(x,y)wcm]} dz = 0. (3.18)

The next result states that %—];(ﬂ, y) can be approximated as closely as we wish by %ﬂ(u, y), provided that
h is sufficiently small and v and y are taken close enough to @ and .
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Proposition 3.6. For any ¢ > 0, there exist he > 0, pc.q > 0 and p.y > 0 such that

<e (3.19)

H%w - g
gy Ay cwrr )

for all 0 < h < he, ||u—1lrr) < pea and ||y — gHWOLP(Q) < peg-
Proof. We have to show that for any w € Wy (Q)

OF}, oOF _ _
[T wn-Fr@ale], . <Ml (3.20)
Notice that it holds
OF oF, 1 i B i
{a—y(% y) — a—y(%y)} w = (zp(w) —w) = (Zy —w) = 2p(w) — Zy. (3.21)

Let us list for convenience the functions we will handle and the equations that they solve. Take y, 2z, Zy, 24 €
WyP(Q) N W2P(Q) and zp, 25 (w), 2w, € Y satisfying

—diva(e, y)V2] = u — f(z,9) (3.23)

—div [a(w, §)VZzy + g—;(m, g)ng} + g—z(x,y)w =0 (3.24)

—div [a(ac, Y)Vzy + Z—Z(x, y)sz] + g—‘;(x, Yw=0 (3.25)

| taw)Vave) o= [ u- faalonds o, <, (3.26)

Aot ivanto + S wpuva)] Yo+ L pwonf a =0 v, v, (3.21)
Q, dy Oy

/ { {a(x,y)Vzwyh + @(m, y)sz] Von + ﬂ(x,y)wgﬁh} dr =0 Vo, €Y. (3.28)
o dy dy

Notice that zj is the FEM approximation of z. We have to estimate the right hand side of (3.21). To do
this, we insert some intermediate functions and obtain

[[2n(w) — Z’LU”WOL"(Q) < llzn(w) — Z’LU7hHW[)1’p(Q) + [[2w,n — ZWHWOl’p(Q) + |20 — ZWHWOLP(Q)' (3:29)
Next, we estimate each of these three terms. First we assume that y and u are chosen such that
lu—allr) <1 and [y =gllyprg < 1.

A smaller radius will be introduced later. Let us estimate the first term of the right hand side of (3.29). By
subtracting the equations (3.27) and (3.28), for z;(w) and 2, j, shifting da/dy to the right-hand sides, and using
the results by Brenner and Scott [2], see also Rannacher and Scott [12], we get

. |[Oa
l|zn(w) — Zw,hHW(}vP(Q) < C" div [a—y(x,y)wV(zh - z)] H

W-1r(Q)
< Cllzn — 2oy lwllz=(@) < Chllzllwany lwllyrn gy (3:30)

where p’ is the conjugate of p. Notice that y is bounded, and this property transfers to da/dy.
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The estimation of the second term of (3.29) follows again from the results in [2,12]. Indeed it is enough to
notice that (3.28) is the discretization of equation (3.25), therefore

”Zw,h - Zw”WOlvP(Q) < Ch”Zw”W?vP(Q) <Ch (1 + HZ”W?vP(Q)) H"UHWOLP(Q) < ChHw”VV(}vP(Qy (3.31)
Finally we estimate the last term of (3.29). Subtracting equations (3.25) and (3.24) we get

—div{a(z, §)V (50 — 70)} = —div{[a(z,5) — a(z,1)] Tz}
~aiv{ | S Vi - v o)+ | - ) w

hence
12w = Zwllwpr ) < C (Hy —Jllwrr + 12— 37||W01fp(9)) |wl[ Lo () (3.32)
Now from (3.23) and (3.22) we get

7le[a(l‘,g)V(2 - g)] = —div[(a(x,g) - (Z(l‘,y))VZ] + (U - ﬂ) - (f(ma y) - f(ma g))a

hence
2 = Bl < C (= llio@) + Iy = Bl -
This inequality, along with (3.32), leads to

120 = Zullwer @y < C (e = allo@) + Iy = Fllwoy ) lollx)- (3.33)

Collecting (3.30), (3.31), and (3.33) we conclude the theorem. O
Corollary 3.7. If € is chosen by

-1

1{oF,_ _

L(WyP ()
then
0Fn
y

is an isomorphism for every h < he, ||u — @ prq) < pea and [y — gHWOLP(Q) < pey and

(u,y) : Wy P(Q) — Wy P ()

O (3:34)

oF
< Y (s o1
_2H 8y(u,y)

L(WyP(Q)) LWy (Q))

It is enough to combine Proposition 3.6 with well known results for operators in Banach spaces.
Finally, we arrive at the theorem on local existence and uniqueness of solutions of (3.2).

Theorem 3.8. There exist hg > 0, pg > 0 and py > 0 such that the following holds: for any h < hy and
|u— @l L) < pa, the equation Fp(u,y) = 0 has in the ball B, (y) of WyP() a unique solution yy(u) € Yy,
Proof. (i) Definition of a mapping ¥y,. Select € by

-1

1

1||0F,_ . _
0<e< 3 Ha—y(u,y) (3.35)

L(WyP(9))
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and fix he, peg and pe 5 as in Corollary 3.7. For h < h., 0 < p1 < pe,a, pj = Pe,5, and u € Bpl (@) C L*(Q2), we
define a mapping v, : B, (§) C Wy P (Q) — W, *(Q) by

Yu(y) =y — ——(,9) " Fn(u,y).

It is obvious that Fj(u,y) = 0 if and only if y is a fixed point of ¢,,. We prove that v, is a contractive mapping
from the ball B, (y) C Wy P(Q) into itself, provided that hy and p; are sufficiently small. We define

oOF _ o OFy, _ o
D(uay) = —(%y), D= D(u,y), Dh(uay) = —(uay)7 Dy, == Dh(u7y)
Jy y
to shorten the next formulas.
(ii) An auziliary inequality. First, we show the inequality
[YVu(y) = Gllwrr ) < Py (3.36)

for all h, u, y with h < ho, ||u — 4l zr) < pa and ||y — §||W01,p(m < pg. For such u and y we have

19u () = Gllwr iy = |1 D5 {Dn (v = 9) + [Fulw, 5) = Falw )] = Falw, )} 100

< 2 HD_IHL(stP(Q)) {H}—h(uvy)llwol’p(ﬂ)
_ 1
; HDh w-n+ [ Dh<u,y+e<y—y>>(y—y>deH }
0 WoP ()

<207 gy {150 g

1
+/O | D — Dp(u, 54 0(y — ?7))||[;(W01,p(9)) dolly — y|W01’p(Q)}
=2 HDAHL(W(}P(Q)) {”}—h(“vg)nwgvp(ﬂ) + <HDh - DHﬁ(WOl’p(Q))

1
+/O HDDh(uag+9(gy))||L(W&vP(Q))d9)|yg”WOl*p(Q)}
<207 ey {10 Doy + 22y = Fllyan e |- (3.37)

The last inequality is a consequence of Proposition 3.6 and our choice for h, p; and py. From the definition
of Fp, we know that Fp,(u,y) = zp — §, where zj, € Y}, satisfies

{a(z,§)Vzp - Vop} dz = / [u— f(z,9)]|onda VYop € Y.

Qp, Qp,
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Let us define z € Wy () N W22(Q) by
—div[a(:c, g)vz] =u- f(xa g)

Then zp is the finite element approximation of z. Making the difference between the equations satisfied by y
and z (cf. the proof of Prop. 3.6), we get

||~7:h(“a?7)||w[}vp(§z) = |lzn - gHWO“’(Q) < llzn — Z”WOLP(Q) + Iz — ?7||W(}vp(§z) <Ch+lu—tllpre).  (3.38)

Notice that ||z — Z]HWDLP(Q) < cllu — 1| pr(q). Combining (3.37) and (3.38) we deduce

ku(y) - gHWol’p(Q) <2 HD_IHE(W(}vP(Q)) {C(h + H“ - aHLP(Q)) + QEHy - g”wolvl’(g)} . (3'39)
By choosing 0 < hg < h. and 0 < pg < pe,g such that
Py -1t
ho + pa < 10 D Hc(wgvp(n)) ’
we get from (3.35) and (3.39) the desired inequality (3.36).

(iii) Contractivity of 1y, : By, (§) — By, (§). Take y1,y2 € B, (). Then

||wu(y2) - wu(yl)HWOlp(Q) = HD}ZI {Dh(aag)(yQ - yl) - []:h(uayQ) - fh(uvyl)]}HWOlvP(Q)

1
< 21D (@ 9) M| gt ) HDh(u’ Pz =) - /0 Dty 0z =)z =) deHwLp(m
0

1
<2 ||D_1||L:(W01’p(Q)) /O ||Dh(aa g) - Dh(’U;, Y1+ 9(y2 - yl))llﬁ(wol,p(ﬂ)) d9||y2 — ylHWOI’p(Q)
A—1
<4 ||D ||£(W01’5"(Q)) elly2 — ylHWOI,p(Q). (3.40)
The last inequality follows from Proposition 3.6 in the following way
1D (@, 5) = Da(u; y1 +0(y2 = y1))ll cower ) < 1Pr(@,5) = D(@, 9)llcwpor ) + I1D(3:9)
7Dh(ua Y1+ 9(y2 - yl))”L(WOl,p(Q)) < 2e.

Finally (3.35) and (3.40) lead to

1
[Vuly2) = Yu(yo)llwir o) = 5llv2 = vilwirq),
therefore 1), is contractive. O

3.2. Error estimates in W'?(Q)

To derive LP-error estimates, we follow the standard procedure and establish at first an estimate in the
WtP_norm. From this estimate, we obtain the LP estimate in the next subsection.

Let hg > 0, pg > 0 and py > 0 be given by Theorem 3.8 and let us fix n < p < p. Given h < hgy and
u € By, (u) C LP(), yn(u) will denote the unique solution of (3.2) in the ball B, () C WyP(€). The existence
and uniqueness of yp, (u) is a consequence of Proposition 3.5, statement (1), and Theorem 3.8. Our next objective
is to prove the following error estimate:
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Theorem 3.9. For all u € B, (u) C LP(2), there holds the estimate

9w — yn(w) lwrp ) < Cla)h (3.41)
with some constant C(@) that may depend on u but not on h.

Let us start with the following lemma.

Lemma 3.10. For u € B, (u) and h < hg the following inequality holds:

10 (s gl v (- (3.42)
ﬁ(W&*P(Q»

9 — () |y < H

Proof. We adopt the definition of D and Dy, from the last proof. Taking into account that Fy,(u,yn(u)) = 0
and using (3.34), we get

19a = yn(W)llwrr @) = 1 Dn(@ )~ { D@ §) (yu — yn(w) = [Fa(u, yu) = Falw, ya(w)] + Fu(w, yu) e
< 2||D(aag)71|‘[j(W01’P(Q)){||fh(uayu)”WOl*p(Q)

1
+/0 HDh(a, y) — Dh(u’a yh(“) + e(yu - yh(u)))I\[;<W0Lp<g>)d9||yu - yh(u)HWOI’P(Q)}'

Using (3.19) and taking into account that hg, pz and py were chosen for ¢ satisfying (3.35), we deduce from the
previous inequality

_ 1
[Yu = yn(Wlwre o) < 2[|D(w, ) 1||£(W01,p(9))||.7'—h(u, yu)”wolfp(g) + ZHyu - yh(“)”wolvp(g)a
which implies (3.41). O

Proof of Theorem 3.9. We prove estimate (3.41) by Lemma 3.10. Recalling the definition of F and F},, we find
that F(u,y,) = 0 and

Fn(u,yu) = Fr(w,yu) = Fu,yu) = (2n —yu) = (2 = yu) = 20 — 2, (3.43)
where z € WyP(Q) and z, € Y}, satisfy

—divia(z,y.,)Vz] = u — f(z,y.)
and

{a(m, yu)VZh : v¢h} dr = / [U - f(xayu)](vbh dx vd)h S Yh-

Qh Qh,

From well known estimates for the finite element approximation of elliptic partial differential equations, see [2,
12], we get that

2 = znllwpr @) < Chllzllwzr@)-

By (3.43), this gives an estimate for ||Fp(u, y,)||. Combining this with (3.42), we deduce (3.41). O
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3.3. Error estimates in LP(Q)

To start with the error estimates in LP, we notice first that the linear operator

OF
a—y(uvy) WP (Q) — Wy P(9)

can be extended to LP() in the following way

- -

oOF OF

a_y(u7y) : LP(Q) - LP(Q)7 a_y(u’a y)’LU = Zy — W,

where 2, is the solution of (3.15). Since we take w in LP(Q) instead of W, (2) as we did in Proposition 3.4,
we have that z, € W, ?(Q), but in general it is not an element of W?2?(). Let us verify that %(u, y) is an
isomorphism for any v € LP(Q) and y € Wol’p(Q). Repeating the proof of Proposition 3.4, statement (3), we

confirm that %(u, y) is injective. For the surjectivity, we have to show that, for all ¢ € LP(Q)), the equation

Zw —W =0

is solvable. To do this, we define 2 € W, *(2) by

0 0 0 0
~div {a(x,ywz " a—Z(m)éW} + o ()i = —div{a—Z(x,wa} s aone,
where z is the solution of (3.13). The right hand side of the equation is an element of W~1P(Q). Because (2.13)

defines an isomorphism between W, *(€2) and W~17(Q), we deduce that 2 is well defined. Now we write the
previous equation in the form

0 0
—divia@ i+ Lanc-ovit+ X @ pc o) —oma
dy dy
and set w = 2 — ¢. Then we deduce from the previous equation and (3.15) that Z = z, and therefore

%(u, y)w = Z —w = ¢; hence the surjectivity is shown.

Analogously, we can extend 68—];"(u, y) to LP(Q) by

0F O

6—y(u7y) : LP(Q) - LP(Q)v ay (u,y)w = Zh(w) - w,

where zp(w) € Y}, is the solution of (3.18). As in Proposition 3.6, we find that for any € > 0 there exist h. > 0,
peu > 0, and p. 5 > 0 such that

<e, (3.44)

L(LP())

for h < he, u € B,_,(u) and y € B,_,(¥).
Notice that (3.44) is the LP-counterpart of (3.19). Therefore, to show (3.44), we proceed as in the proof of
Proposition 3.6 with the following changes: Inequality (3.29) is written in the form

lzn(w) = ZwllLr) < l2n(w) = 2wnllLr@) + [[2w,h = 2ZwllLe@) + 120 = ZwllLr@)-
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np

By using that p > n, WOL"“’ (Q) € LP(Q), and the error estimates of the finite element method [2,12], we
change (3.31) by

. | Oa
20 (w) = 2w nllLe@) < Cllzn(w) = 2wpll 2 ze < Cldiv)o=(z,y)wV(zn — 2)
W, P(Q) ay Wﬁl’Lf
" ()
oa
=Clg,@uuevi =2 <Cllz=alwgrglvlee @ < Chlzlwzre vl < Chlwli@-
Lntr (Q)

Now (3.31) can be replaced by
12w,h = ZwllLr) < Chllzullyre @) < ChllwlLr o).
The inequalities (3.32) are transformed as follows:

20 = ZwllLr@) < Cllzw — ZwHW;T"f;(Q) < O||div{[a(x,7) — a(x,y)]vzw}HWfl,%(m
Oa

i { [ 2263555 - o] w)

|-

i

_q,_np
W ntp (Q)

_1.n

Wl REE (Q)

< Hlly = llze@Vawl

+ 1z = Fllwar @lllwllze e}

L%(Q) + [Hy - gHWOIP(Q)

< C{lly — Tl ey + 12 = Tl oy Hiwll oger-

We complete the proof of (3.44) in the way we finished the proof of Proposition 3.6 after (3.22).

Also Corollary 3.7 remains valid for BQ—?(U,y) if we replace Wy?(Q) by LP(). Therefore we find as in
Lemma 3.10

slor
I3 = )iy < 5| 5 (2.) 13t ) -
£(LP(2)

Finally we can argue as in the proof of Theorem 3.9 to deduce
190 — yn(w)ll Loy < Cllz = 2znllLr (@) < Ch2.
4. NUMERICAL ANALYSIS OF THE ADJOINT STATE EQUATION

In this section, our goal is to carry out the numerical analysis of the adjoint equation

da

0
3y (z,y)Vy - Vo + —f(ff,y)szJ = in Q

—div [a(z,y) V] + dy

(4.1)
p=0onT

for any v € LP(Q), with 2 < p < p, where y = y,, € W2P(Q) is the solution of (1.1) associated to u € LP(Q).
This analysis is divided into two parts. First we consider a discretization of equation (4.1) by finite elements,
but fixing y in the discrete equation. Second, we replace y by yp, = yn(u) in the discretized equation, to obtain
the complete discretization of (4.1).
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4.1. A partial discretization of equation (4.1)

Throughout this section, we assume that y € W>°(Q). According to Remark 2.6, (4.1) defines an isomor-
phism between Wol’p(Q) and W~1P(Q). Moreover, if v belongs to LP(2) with 2 < p < p, then ¢ belongs to
W2P(Q).

In the finite element space Y}, defined upon 7, we approximate ¢ by the solutions ¢y, of:

Find ¢} € Y}, such that

(4.2)

da

/Qh {a(ﬂ%y)vsﬁh Vo + 6—y(9€, y)Vy - Vo, + (Z—;(m, y)@h‘| ¢h} dr = /Q;L vopdr Vo €Y.

Since the operator above is not monotone, existence and/or uniqueness of a solution are not obvious. To
deal with this lack of monotonicity we invoke an argument similar to the one used in Section 3.
We consider the linear mapping
T:WyP(Q) — Wo(Q), Tw= 4ty —w,
where 1b,, € Wy () N W2P(Q) satisfies the linear elliptic equation

—div [a(z, y) Vipy] + @(I, y)Vy - Vw + ﬂ(m, y)w =01in Q

dy Ay (4.3)
Yy =0onT.

Arguing as in Proposition 3.4 and using that (4.1) defines an isomorphism v < ¢ between I/VO1 P(Q) and
W=LP(Q), see Remark 2.6, we deduce that 7' is an isomorphism. Now we define the Yj-version of T,

Ty, : Wyt (Q) — WoP(Q), Thw = p(w) — w,
where ¢, (w) € Y}, satisfies Vo, € Y},
Oa af
o dy dy
Invoking the W1P(Q)-error estimate of the finite element method for linear elliptic equations [2,12], we get
for any w € W, ?(Q)
1T = Tw)wllywir ) = 1w = Pr(w)llyie o) < Chllbullwza) < Chllw]yirq).
Notice that the term [...] in (4.4) is a fixed element of LP(Q2), since da/dy and Vy are bounded. The last
inequality implies
17— Th”g(w[}vp(g)) < Ch. (4.5)

The constant C' may depend on y, but because y is bounded independently of v € U,4, we have a uniform
bound. For this constant C, we select hg > 0 such that

. -1
ho < {2C1T M wpriey} - (4.6)
Then T}, is an isomorphism and

HT{IHL(W(}'P(Q)) < 2HT_1H£(W01’1’(Q)) Vh < ho. (4.7)
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Now we can prove existence and uniqueness of a solution of (4.2).

Theorem 4.1. For any h < ho and every v € W=LP(Q), 2 < p < p, the variational problem (4.2) has a unique
solution ¢y, € Yy and there exists a constant C' > 0 independent of h such that

lenllwir @) < Cllollw-12@)- (4.8)
0" ()

If v is not an element of L?(2), then the integral in the right hand side of (4.2) must be replaced by the
duality (v, ¢p,) between W~12(Q) and W, P ().

Proof. Let us first prove the existence of at least one solution ¢y, of (4.2). We introduce z;, € Y}, such that
/ a(x,y)Vzp - Vop de = (v, ¢p) Vop € Y. (4.9)
Qh,

Since T}, is an isomorphism, there exists a unique element w € I/VO1 P(Q) such that Tpw = —zp, or equivalently
w = Yp(w) + zp. Now it is obvious that w belongs to Y3, and from (4.4) and (4.9) we deduce that ¢, = w is a
solution of (4.2).

To verify the inequality (4.8), we note that there exists a constant C' independent of h such that

lznllwar ) < Cllvllw-1r9);
see [2]. On the other hand, as v, (w) is the finite element approximation of the solution v, to (4.3),
||wh(w)||W01’p(Q) S CwaHwolp(Q) § CHw”WOl*P(Q) = C”Th_lThw”WOl’p(Q)

< 2007 g m o 1wl oy = 2CHT Mg m o ln o -

The first estimate in this chain is a consequence of the estimates of [2] or [12], while the second follows from (4.3).
This inequality, along with the previous one and the definition of ¢, proves (4.8).

Finally, we show the uniqueness. Assume that o, satisfies (4.2) with right-hand side v = 0 and set w = @j,.
Then we have that ¢y, (w) = ¢, and then T,w = ¢, — ), = 0, therefore w = 0 holds. O

Next we estimate the error in W, P (§2).
Theorem 4.2. For any h < ho and v € LP(Q), 2 < p < p, it holds

e = enllwrr) < ChllvliLe, (4.10)

where ¢ and pp, are the solutions of (4.1) and (4.2), respectively.
Proof. Using (4.5) and (4.7) we get

lo = enllwpr @) =T Tule = en)llwpr @) < 20T cowp e @ ITh(e = n)llwp @)
§ 2||T_1||£(W()1,p(g)) {”(Th - T)<p||W01p(Q) + HTSD o ThgthWULP(Q)}

< 20T oy { Chllellw o0 + 1T = Trpnlyaoggy | (4.11)

In view of the definition of 7' and T}, and equations (4.1) to (4.4), after setting z = —Tp = ¢ — ¢, and
zn = —Thon = ©n — Unpn), we see that zj, fulfills (4.9) and z € Wol’p(Q) NW?2P(Q) obeys

—div]a(zr,y)Vz] =v in .
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Therefore, it holds
1T = Thenllwrr ) = 12 = 2nllwrr @) < Chllzllw2r@) < ChllvllLe ).

This inequality, along with (4.11) and the estimate for ¢ in terms of the norm of v in W~=?(Q) implies (4.10). O

We finish this section by estimating the error of ¢ — ¢}, in the LP(€)-norm. To achieve this goal we proceed
along the lines of Section 3. We consider an extension of T' to LP(Q2) denoted by T': LP(Q) — LP(Q),

Tw:wwfw,

where 1), is the solution of (4.3). We should remark that t,, is not in general an element of W2?(Q). Arguing

as in the case of %(u, y), we deduce that T is still an isomorphism. Analogously we extend 7}, to L (©) and
we have, see [2,12],

(T = Th)wll o) = 1w = ¥u(w)lLr(@) < Chllvullyiegy < ChlwlLr),

which implies
1T = Thlleceriy < Ch. (4.12)

For w € W, P(£2), we have 1b,, € W2P(2) and hence we can improve the above estimate by
1E = T)wloey = [ — 6n (@)l < Ch2ulwn@) < CH2lwly o (4.13)
By (4.12), we also deduce an inequality analogous to (4.7),

15 N ecori) < 2077 M ecze @ (4.14)

We can modify the inequalities of (4.11) by the previous inequalities and get

e = enllee@) =115 " Th(e = en)llze@) < 20T 2@ ITa(e = @n) o)
< 2T ewoin {1 = Dl + 1T = Tupnll o |

< 2HT_lHc(WOLP(Q)) {ChQH‘PHW[}*P(Q) + 1T - Th@hHLP(Q)} : (4.15)
Finally, taking z = —T'p and z;, = =T}, as in the proof of Theorem 4.2, we find
1T — Thenllry = 112 — 2allzr) < CR2|12]lw2p) < CR||v]| Lo q)-

The last two inequalities yields the desired result, which is stated in the next theorem.

Theorem 4.3. For any h < hy and v € LP(Q) we have

o = enllLe) < CR||v]lLogo)- (4.16)

Remark 4.4. Many of the constants C' that appeared in this subsection depend on the norm ||yl|y1.0(q), but
they can be chosen independently of the concrete form of y.
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4.2. The full discretization of equation (4.1)

In this section, @ € LP(Q) is a fixed locally optimal control with associated state § € W2?(2) N WP (),
a reference control for which we discretize the adjoint equation. According to Theorem 3.8, there exist hg > 0,
pa > 0 and py > 0 such that, for every h < hg and all u € B, (a) C LP(), equation (3.2) has in Y, N B, (7))
a unique solution yj,(u). Here, B, (9) is the closed ball in W, P(€2). Let us denote by y the state y,, associated
to a fixed element u € B,, (@) and by y;, the discrete state y;(u). Then, according to Theorem 3.9 we also have
that y € B, (y) N W2P(1Q).

We also assume that kg < hg, where hg is defined in (4.6).

Here, we consider the fully discretized equation associated with equation (4.1),

Find ¢j € Y}, such that

/ {G(Iayh)VQOh -V + @(xayh)vﬁyh Veon + g(fﬂ,yh)%} ¢h} dz = / vgpdr Vo € Y.
o Ay dy o

(4.17)
The goal of this section is to estimate ¢ — ¢, where ¢ is the solution of (4.1). Throughout this section, we
assume that v € LP(Q) for n < p < p. To derive these estimates we introduce " € W?2P(Q) C C*(Q), the
solution of

da

0 .
oy (2, yn)Vyn - Vo' + —f(x, yn)p" = v in Q,

—div [a(x, yh)VgDh} + By

(4.18)
" =0onT.

This is the adjoint equation (4.1), but now with y, substituted for y.
We prove the following result:

Theorem 4.5. Assumen < p < p and h < hg. Then, for all v € LP(Q), the solutions ¢ and @p to (4.1)
and (4.17), respectively, obey the estimate

o = @nllLe(n) + hlle = enllwre,) < CR*||v]|Le()- (4.19)

Proof. (i) Estimation of ¢ — ¢". First, we note that llyn|lw1.(0) is bounded by a constant independently
of h. Indeed, using the interpolation operator II;, : C(Q) — Y3, an inverse inequality, estimates (3.12) and well
known properties of I, we get

lynllwie@) = lynllwre,) < llyn — Tayllwre ) + 1Thy = yllwie @) + [9llwiee @)
< C {h_l_% lyn — nyll oy + [Thy — y||W1’°°(Qh)} + llyllwr. ()
< C {h_l_g lyn = yllrny + 1y = TayllLoa,] + My — yl\wm(m)} + lyllwr. )
< O +D)lyllwer()-

Since p > n, we deduce the desired boundedness. Therefore, we can use Theorems 4.2 and 4.3 to deduce

o™ = enllLrn) + Rlle™ — enllwio@,) < CR2 0] Loa) (4.20)

for any h < hg.
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In view of this inequality, to estimate ¢ — py, it is enough to consider p — . Subtracting the equations (4.1)
and (4.18) we obtain

—div [a(z, y) (Ve — V)] + Z—Z(m, YVy - (Vo — V') + g—i(ﬂ%y)(% -¢"

— div [(ala,yn) — ale,y) V"] + [g—Z@,thyh - g—;@,ym] Vet {g—gu,m - g—gmw S (421)

(ii) Estimation of the right-hand side of (4.21) in W~"(£2). We mention first that the boundedness of {yn }n<n,
in W'°°(Q) implies the boundedness of {¢"},<p, in WP(Q) € C*(2). The bound for |¢||ly2.s(q) depends on
|| Lr (o). Hence, from (2.5) we deduce

0 0
H [0_5(9%%) - a_z(ﬂ%y)] " < Clly = wnllze() < CH |0l o) (4.22)

L ()

The last inequality is obtained as follows: Consider the splitting

ly — ynllze) < ly — ynllorn) + 1YllLr@\0n)-

Inequality (3.12) provides the estimate for the first item. For the second, we take into account that for any
z € Q\ Q, we can get a point zr € I' such that |z — zr| < Crh2. Then we have for any w € W, ™ (Q)

w(z)] = [w(z) —wlar)| < wlwie@le —2r] < Crllw]w=@h?,

therefore
[yll Lo @0y < Cliyllwr @) h*|2\ Qu|"P < Ch;
this yields (4.22).
For the first item in the right-hand side of (4.21), we get from (2.1)
Hle [ alx yh) (1'; y))v¢h] HW—l,p(Q) < H(a(:c,yh) - a(xay))vwhHLl’(Q)
< Clly = ynlle@llvll o) < Ch?||v]|Lr(g)- (4.23)

Finally, we estimate the last item of the right-hand side,

a da
< || 5 (=, yn) — —(x,y)] Vyn V'

W-1r(Q) H [33/ Ay
Oa
n Ha—yu,y)(wh vyt

da
H[ (z,yn)Vyn — a—y(x y)Vy} A

WL (Q)

W-1p(Q)

The first term is handled by (2.1), the boundedness of y, and " in W1°°(Q) and the estimate (3.12),

da Oa
H[ (2, yn) — ay(x,y)] Vyn Ve

0@ da
H [ (@ yn) = 5-(, y)] Vyn Ve
Y Lr(Q)

S Clly = ynllze@) 10l o) < CR2(|v]| Le(e)- (4.24)

W-1lr(

For the second term, we proceed as follows: First we note that, thanks to Assumption (H2), the mapping

x €N g—;(m,y(m)) eR
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belongs to W1>°(Q). On the other hand, we have V" € W12(Q)". Therefore, the function

Oa

g"(x) = a—y(x,y(x))vwh(w),

is contained in W1P(Q)". Now, take an arbitrary w € Wol’p’ (Q) arbitrary, where p’ = p/(p — 1). Since

Wol’p/(Q) Cc Luv (Q) and the conjugate number of np!

n—p’

. np
Is 755, we have

‘<g_2(:c,y)(Vyh - Vy)Vgah7w>W711p(Q)’W&1p,(Q) = ‘/Q 9"(Vyn — Vy)wda
= } /Q(div d")(yn — y)wdx — /Qgh(yh —y)Vwdz
< |I(divg")(yn — v)l L%(Q)IIwI\L%(Q) + 9" =@ lyn = yllLr@) IVl L ()
< Cllivg"l zus  lom = vl 23 [0l iy + 19" oo = Wl zvienll ol o
< Cliyn = yllzo @ 0l o) lwllwre @) < CR2 ] o llwllyprar ) (4:25)
We have used above that p > n and hence 2np p.

n+p —
Finally, since the adjoint state equation defines an isomorphism between WO1 P(Q) and W—1P(Q) (see Rem. 2.6),
we deduce from (4.21)—(4.25) that

lp = " lwrr@) < CR? |0 Lo (- (4.26)
The estimates (4.20) and (4.26) imply the statement of the theorem. O

5. DISCRETIZATION OF THE CONTROL PROBLEM

Finally, we come to our main goal, the convergence of discretized optimal controls as h — 0. We show that
any strict local solution @ with associated state y can be approximated by a strongly converging sequence of
local solutions @y, of the discrete problems (Py).

To this aim, we fix a strict local reference solution @ € U,q in the sense of LP(Q2), 1 < p < +oo. Strict local
solution means that there exists € > 0 such that

J(u) < J(u) Yu € Uya N Be(), with u # u, (5.1)

where B.(u) is a closed ball in LP().

Denote by y the associated state. To define the discrete problem, we need some further notation. We take
ho > 0, pz > 0 and p; > 0 as in Theorem 3.2. Then we introduce a mapping Gy, : B,, (1) C LP(Q) —
Y, N Bpg (g) by Gp(u) = yp(u) for every h < hg. By applying the implicit function theorem to the mapping Fy,
we deduce with the help of Corollary 3.7 that G, is of class C' in B, (u). Moreover, zj,(v) := G} (u)v is the
solution of the following variational problem:

Find z,(v) € Y}, such that

/Qh [a(m,yh(u))v,zh(v) + g—Z(x,yh(u))zh(U)Vyh(u)} Vo dx (5.2)

1 o, g—;(%yh(u))z;z(v)% do = /Qh vop dz Vo € Yi.
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We will assume that ¢ is chosen so small such that (5.1) holds and

Pu
|Q|1/ﬁ
O<e< . (5.3)
Pu
(B — a)ﬁ*1|Q|(P*1)/P

if p=o0

if p < o0.

Then, for all u € B.(u) and p = oo, it holds

lu— il oy < l? < pa = we By, (@) C LP(Q).
Moreover, we have for all p < oo

lu =l oy < (B— )P~/ lu—al| Y7, < (8 — )P D/70) 0= /P |y — a7

L ()
< (8- a)(ﬁ—l)/ﬁ|Q|(p—1)/pﬁ€1/ﬁ < pa.

In either case, u belongs to B, (a) C LP(Q).
For every h > 0, let Uy, be a subspace of L>°(€);,) and define

Una,h, = Un NUgqg = {up € Up - a < up(x) < B for a.e. x € Q).

We assume the following approximation property:
(H5) For every u € Uaq N C%1(Q), there exists a sequence {uy }n~o with uy, € Ugd,n such that

lim flu = unllz=(2,) = 0- (5.4)

For every h < hg, the discrete control problem is defined as follows:

. min i (un) = / Ly )0, )) A
up, € Uga,n N Be(a),

where yp(un) = Gp(un) € Y N By, (7).

Strictly speaking, the functions u;, € U} are not defined in the whole domain €2, therefore the assumption
up, € B.(u) is not entirely precise. However it is clear that the definitions of y (u) and Jj(uy,) only requires the
values uy(z) for z € Q. Therefore any extension of uy, to  that remains in the ball B. (@) avoids this formal
difficulty. In practice, we only compute the values of u in 2 and we are interested in the behavior of these
values when h — 0. The simplest way of extending every element wuj, € Uj, to 2 is the setting up(z) = a(x) for
every x € Q\ Q. This will be assumed in the sequel.

Common choices of U}, are piecewise constant controls or piecewise linear and continuous controls associated
with the triangulation 7;,. In both of these cases, the assumption (H5) is satisfied for p < co and in the first
case it even holds for p = co. Moreover, also the choice of undiscretized controls U;, = L>°();,) is interesting
and useful in practical computations (c¢f. the concept of variational discretization by Hinze [8]), and (H5) is
fulfilled for every 1 < p < oco.

Since Jp, is a continuous functional and the set of admissible controls Uyq,, N B.(u) is compact in U, and
non-empty (at least for 4 small enough), then (P%) has at least one optimal solution. To check that Uyq,, N Be ()
is non-empty it is enough to notice that 4 € C%1(2) by Theorem 2.7 and to invoke hypothesis (H5). Then we
get a sequence {up}n>o such that up € Uapa,n and ||t — upl[p= () — 0. Thus up € Uaqn N B.(u) for every h
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small enough. Let us formulate the optimality conditions satisfied by these local minima. Taking into account
Theorem 4.1, we obtain the following results, which are the discrete counterparts of Theorems 2.4 and 2.5:

Theorem 5.1. For every h < hy, the functional Jy, : B, () N L>=(Q) — R is of class C', and its derivative is
given by

s = [ (Gt + on(w) ) v 65.5)

where p(u) € Yy, is the unique solution of the adjoint state equation

/Q h [au,yh(u))wh(u) Vo + g—Zu,yh(u))m(u) - vmum] do + /Q h g—;u,yh(u»%(um do

:/ g_L(xvyh(UM)%dx on € Yo (5:6)
Q, 9Y

From this expression for the derivative, we deduce the first-order necessary optimality conditions for the
discretized problem in a standard way.

Theorem 5.2. Let uy, be a local solution of (P5). Then there exist two functions gy and @y in Yy such that

/Q [a(x, gn(x))VGh - Von + f(x, gn(x))dn] de = /Q Ungndz Von €Y (5.7)
/Qh [a(x,yh)V% -V + g—Z(fU,ﬂh)Vﬂh ' V@h%} dz + /Qh g—z(%?h)@h% dz
:/ g—L(m,gjh,ﬂ)d)h dx Von €Yy (5.8)
Q, %Y
/Q (g—i(m, Un, Un) + ¢h> (un — up)de >0 Vup € Uaa,n N Be(a). (5.9)

From (5.9), we can derive explicit expressions for ay,, if Uy, is the space of piecewise constant functions or if
Uy, = L*(Qp,). In the first case, arguing as in [1], we deduce from (5.9) that

Up|p = Proj[ah,Tﬁh,T] (gth) VI € T, (5-10)

where sp,|,. is the unique real number satisfying the equation

/T (g_i(f,yh(x), Shiz) + sﬁh(ac)) dr =0

and
ap,r = max{aq, ma%cﬂ(:c) —¢} and Bpr = min{g, miITl u(zx) + e}
kS re
In the case Uy = L>°(Qy,), proceeding as in Theorem 2.7, we deduce from (5.9) that
ﬂh(I) = PrOJ[aa(;c),ﬁE(;c)](gh(x))a (511)
where 3p, () is the unique solution ¢ of the equation

OL (o (). ) + @(a) = O (5.12)
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and
o (2) = max{a,a(z) — ¢}, F°(2) = min{B,a(z) + ).
For piecewise linear controls, we do not have an analogous representation formula.
Now, we obtain a convergence result for the solutions of problems (P5). To this aim let us recall that all
feasible controls u of (P§) belong to B-(u) C B,, (@) and, by definition, it holds y,(u) € B, (¥); see Theorem 3.2,
the definition of G}, at the beginning of Section 5 and the definition of (P5).

Theorem 5.3. Let up, h < ho, be a family of solutions of (P5) and let y, = yn(un). Then under the
approximation assumption (H5) there holds the convergence property

T, {[[ — in| 20y + 115 = Gnllmrr () + 115 = Gnll (g } = 0. (5.13)
Moreover, if Uy, = L™ (Qp,) or Uy is defined by piecewise constant controls, then also
%il}l%”ﬂ*ﬂh”[loo(ﬂh) =0. (514)

To prove this theorem, we need some preparatory lemmas.

Lemma 5.4. For every pair u,v € Uyq with v € Bpﬁ (), the following estimates hold:

lyu = yn(@)llz2@0) + llow = ern@)llL2i,) < C(R* + [lu—vllL2()) (5.15)
9w = yn @)@ + low = en@)ll1 @, < Ch + [lu—vllL2(0) (5.16)
19 = yn ()l Lo @) + llou = er(0)l[L(@,) < Clh + [Ju = vl L2(q)- (5.17)

Proof. First, we estimate y,, — yn(v). To show (5.15), we consider (3.3) and argue as follows:

v = yn(@)llz2(20) < llvw = va(©)llz2(@0) + I9u = voll 220, < C(OF + [lu = v]L2@))-

The last term is obtained by the mean value theorem (see Rem. 2.3),

lYu = yollm20) < Sl[épl] G (v + t(u —v)|l 2cz2),m2 ) |v — vl L2(0) -
te|0,

Analogously, we prove (5.16). To show (5.17), we apply inequality (3.12) in the following way:

lYu — yn (V)| Lo @) < Yo = Yn ()| Lo ) + [1Yu = Yoll Lo ()
< Clyo — yn()lwrr@n) + 19 — Yollmz) < C(h+ lu—vl|L2@)).

Finally, using (4.19), the estimates for the adjoint states follow by the same steps as above. The only
difference is the estimation of ¢, — ¢,. For this purpose, we subtract the equations satisfied by both functions
and get

5] 0
—div [a(xayu)(v@u - VSDU)] + a_;l(xayu)vyu : (V‘Pu —Vy,) + a_zjj(xayu)(@u — )

= —div (a(e.) ~ oo ) Vel + | 5000V = 5o V| Vet |5 = G| o
Now, we estimate ||¢, — ¢u| r2(0) by the L2(€2)-norm of the right hand side. We use the assumptions (H2) and
(H3) along with the above estimates for y,, —y,. Moreover, we invoke the boundedness of ¢, that is independent
of v, since v € Uyq and Uyq is a bounded subset of L>°(Q), but it may depend on @ and p;. Then it is a simple
exercise to obtain that

lpu — @ull a2y < Cllu — vl L2(@)- -
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Lemma 5.5. Let u € Uyq be given and let a sequence {up}n>o with up € Usa,n N B, (1) converge weakly to u,

%imo d(u—up)de =0 Vo € L=(Q). (5.18)
—VJQy
Then it holds that
Lim fllyu = yn(un)llzo @) + 19u = ynlun)llm @i} =0, (5.19)
J(u) < lign igf Jn(up). (5.20)
If, in addition,
lim lu(z) — up(z)|dx =0,
h—0 Qn

then limp_o Jp(up) = J(u).

Proof. Recall that all elements uj, € Uy, were extended to © by up(z) = a(z) in Q\ Q. Therefore, {up}tnr>o C
B, (1) is bounded in LP(Q) and there exists a subsequence converging weakly in LP() to some element
@ € B,,(u). Relation (5.18) implies @ = u, hence we have u;, — u in LP(Q). Let us write y, = yn(up)
and y = y,. From the definition of y;(us) = Gu(up) we find that {yn}tr<n, C By, (§) C WyP(Q), therefore
there exists a subsequence converging weakly to some element y € Bpg (y). The compactness of the inclusion
WP () € L°() implies that this convergence is strong in L>(Q).

Now it is easy to pass to the limit in the equations satisfied by y; and to conclude that § = y, = y. Moreover,
we deduce by standard arguments that the convergence is strong in H!(). Since all the subsequences have the
same limit, (5.19) holds. Inequality (5.20) follows as usual by the convexity of L with respect to third variable.

The last assertion of the lemma is an immediate consequence of (5.19). O

Proof of Theorem 5.3. We mention again that @y (z) = @(z) in Q\ 4. The uniform boundedness of {@s}r>0 in
L>(9) yields the weak convergence i, — @ in LP(Q) to some % € Uyq N B (1) for some subsequence denoted in
the same way. Let us prove that @ = 4. Taking into account that u € C%!(Q) and assumption (H5), we deduce
the existence of a sequence {up}p>0 with up, € Uyqn such that

li U — o =0.
lim 12— unl <0,

The controls uy, are admissible for (P$) for all sufficiently small h. By Lemma 5.5, we get

J(a) < 1i£nigf Jn(tp) < limsup Jp(ap) < limsup Jy, (up) = J(@).
- h—0 h—0

These inequalities, along with (5.1), imply that @ = @ and

fIL1—>InO Jn(up) = J(a). (5.21)
Once again Lemma 5.5 yields the convergence of the states {7 }n>0 as claimed in (5.13). The convergence
of the controls is proved as in [1], p. 223. From the identity (5.21) and assumption (2.6), the convergence in
L>(8p,) is got as in [1], pp. 223-224 when U, is defined by piecewise constant functions.
In the case U, = L>*(9), the uniform convergence follows from the representations of @ and uj given
by (2.22) and (5.12), along with the definitions of 5§ and 5, as solutions of (2.21) and (5.11) and estimates
provided in Lemma 5.4. We also use the fact that

af(z) < u(z) = Projj, g(8(7)) < B°(x) = u(z) = Projjae (a),ge(2) (5(2))-
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Now we proceed in the following way, using again the assumption (2.6) and the mean value theorem applied to
the function (OL/0u)(x, yn(x),-): For any x € Q,

[u(z) — an(z)| = [Pr0jjac (2, 8¢ (2)) (5(2)) — Projjae (2,82 (2)) (5 (2))] < |8(x) — Sn ()|

< | (@, (a), 5(a)) Z—ﬁ(:c,yh(w),Sh(x))\

< 5 { |Gt i@, 50) - G 560150 + 1o - gallmian } 0 -

Since the controls {@y}r>0 are uniformly bounded in L*(f2), the convergence @, — @ in L?(Q2) implies the
convergence in LP(Q) for all p < co. Hence @, belongs to B:(u) for all sufficiently small h. Therefore, the
control uy, is a local minimum of problem

Py) min Jp (up) := /Qh L(z,yp(u)(x), up(z)) dx

up, € Uad,n

for every sufficiently small h.

For p = co the statement remains true if U, = L°(£2;,) or if U}, is space of the piecewise constant functions
associated with the triangulation 7;, because the convergence @, — u is uniform in these two cases; see
Theorem 5.3. In the case of piecewise linear and continuous controls, we can approximate strict local minima
of (P) in the sense of the L”()-topology only if p < co. We do not know the answer for p = co. The difficulty
is that a simple representation formula for @y does not hold as in the other two cases.

Remark 5.6. The variational inequality (5.9) can be simplified. If @y, is a local minimum of (Pj), then (5.9)

can be formulated as

oL

/ (%(x,ymuh) + @h) (up —up)de >0 Vup € Uaan (5.22)
Qh,

and the values aqp, Srp and af, 5° used in (5.10) and (5.11) can be replaced by « and 3 respectively.

Based on our error estimates for the finite element approximation of the state and adjoint state equations, we
have been able to prove the strong convergence of the discretized control problems. Another natural question is
to estimate the distance of discretized controls to associated locally optimal controls of (P). This needs second
order optimality conditions. Related error estimates will be derived in a forthcoming paper. Roughly speaking,
we prove the following estimates:

If U}, consists of piecewise constant functions associated with the triangulation 7, then

||’l_l, — ’l_l,hHLz(Qh) < Ch.
If U}, is a set of piecewise linear continuous functions, then
i — anl g < CHY2.

Finally, for the case U, = L>°(Q},) it holds

1@ = anll 2,y < CH*.
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