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OPTIMALITY CONDITIONS FOR SEMILINEAR PARABOLIC EQUATIONS
WITH CONTROLS IN LEADING TERM *

HoNncweEr Lou!

Abstract. An optimal control problem for semilinear parabolic partial differential equations is con-
sidered. The control variable appears in the leading term of the equation. Necessary conditions for
optimal controls are established by the method of homogenizing spike variation. Results for problems
with state constraints are also stated.
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1. INTRODUCTION

We will give necessary conditions of optimal controls for parabolic partial differential equation (PDE, for
short) with leading term containing controls. This is an analogue of the result we got for elliptic PDE with
controls in the leading term [11]. Let us consider the following controlled parabolic PDE of divergence form:

Opz(t,x) — V- (A(t, T, u(t,x))Vz(t,x)) = f(t,x, z(t, x), u(t, x)), in Qp,
z(t,z) =0, on [0,T] x 09, (1.1)
Z(O,:L') = ZO(Z)a in 0,

where Qp = (0,7)xQ, T > 0 and Q C R" is a bounded domain with a smooth boundary 9Q, A : QpxU — R™*"
is a map taking values in the set of all positive definite matrices, f : Qr X R x U — R, with U being a separable
metric space and zo(-) € L>°(Q2). Function u(-), called a control, is taken from the set

U={w:Qp — U|w() is measurable}.

Under some mild conditions, corresponding to a u(-) € U, (1.1) admits a unique weak solution z(-) = z(-;u(-))
which is called the state. We measure the performance of the control by the following cost functional

J(u(-) = A Otz 2(t, ), u(t, 2)) dtda (1.2)

for some given map f°: Qp x R x U — R. Our optimal control problem is stated as follows.
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Problem (C). Find a u(-) € U such that

J@() = inf Ju()) (13)

Any @(-) € U satistying (1.3) is called an optimal control, and the corresponding z(-) = z(-;a(-)) is called an
optimal state. The pair (Z(-),@(-)) is called an optimal pair. When A(t,x,u) = A(t,x), Problem (C) has been
studied by many authors, see [10] and the references cited therein. Works concerning the elliptic cases with
leading term containing controls can be founded in [4-7,11-14], etc. However, it seems that there are only few
works devoted to parabolic cases (see [3,15], etc.).

In this paper, we make the following assumptions.

(S1) Let T > 0 and © be a bounded domain in R" with a smooth boundary 9.

(S2) Let U be a separable metric space.

(S3) Functions A(t,z,v) = (ai;(t,z,v)) take values in the set ST of n x n (symmetric) positive definite
matrices, which are measurable in (¢,2) € Qp and continuous in v € U. Moreover, there exist A > X > 0 such
that for almost all (¢,z) € Qp,

NEP < (At z,0)€,6) <AE?, VEER™ vel, (1.4)
where (-, -) stands for the inner product in R™.
(S4) Functions f(t,z,z,v) and f.(t,x,z,v) are measurable in (¢,z), and continuous in (z,v) € R x U.
Moreover, there exits a constant M > 0 such that
2f(t,z,z,0) < M(2% + 1), V(t,z,z,v) € Qr x Rx U (1.5)
and for any R > 0, there exists an Mgz > 0 such that

|f(t,z,z,0)| + | f.(t,z,2,0)] < Mg, a.e. (t,x,v) € Qr x U, |z| < R. (1.6)

(S5) Functions fO(t,z,z,v) and fo(t,,z,v) are measurable in (¢,7), and continuous in (z,v) € R x U.
Moreover, for any R > 0, there exists a Kr > 0 such that

IfOt, 2, z,0)| 4+ | fO(t, x, 2,u)| < Kg, a.e. (t,z,v) € Qp x U, |z| <R. (1.7)

Our main result is the following.

Theorem 1.1. Let (S1)—(S5) hold and zy € L>=(2). Let (2(-),a(:)) be an optimal pair of Problem (C). Let (-
be the weak solution of the following adjoint equation

—fz.(t,x,i(t,ac),ﬂ(t,x)) (t,x), in Q7, 18
Pt z) =0, on [0,T] x 99, (1.8)
QZ(T7 x) =0, in Q

Then
H(t,x,2(t,2), 9 (t, 2), VZ(t,2), VE(t,2), a(t,0)) — H(t,2, 2(t,2), 9(t, @), V2L, 2), Vi (t,2), 0)
> L[A(t 2, 0) (At 2, 5(t,2)) — Al 2, 0) V2 2)] [ Al 2,0) (Al 2, 5(t,2)) — Alt2,0) V(1)

(A(ta Z, ﬂ(ta Z)) - A(ta Z, ’U))VZ(t, l‘), A(ta Z, U)ié (A(ta €, L_L(t, Z)) - A(ta €, ’U))Vﬂ;(tv ’JJ) >a
Yo eU, ae. (t,z)€ Qp, (1.9)

=

+5 (At z,0)”

N | —
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where

H(ta$7za¢7€anav) = <w,f(t,x,z,v)>—fo(t,m,z,v) - <A(ta$a’u)§)n>7
(t,z, 2,9, &,m,0) € [0, T] x A x Rx R x R" x R" x U. (1.10)

Since the right hand side of (1.9) is always nonnegative, (1.9) implies

H(t,z,2(t @), 0(t,2), VA(t 2), VOt 2), alt, @) = max H (2, 2(t, ), (t 2), VE(E 2), Vot 2), 0),

YoeU, ae. (t,z)eQp. (1.11)

When A(t,z,v) = A(t, x), the right hand side of (1.9) is zero, thus, the result automatically recovers those for
the classical semilinear case without state constraints [10].

Since U is not necessarily convex, it is well-known that people usually use spike variations to derive necessary
conditions for optimal controls. Such a spike variation technique does not directly work for problems with
leading term containing the control. To overcome the difficulty, we adopt the idea of homogenization for PDEs
to carefully select some special type spike variations of controls so that we can have desired “differentiability”
of the state with respect to the control. We can see in [11] that such a method is useful for the cases of elliptic
PDEs. The main idea to treat parabolic case is same to that for elliptic case. However, there are some new
difficulties in studying properties of variational equations.

Comparing Theorem 1.1 and the corresponding result for elliptic case in [11], we can see that they are similar
when n > 2 and slightly different when n = 1. More precisely, Theorem 1.1 of this paper is very similar to
Theorem 1.1 in [11] for high dimensional cases. In particular, for parabolic case with n = 1, instead of

H(t7 z, 2(t, 1), Y(t, x), 2 (t, ), . (¢, x), ult, ac)) - H(t, x, 2(t, 1), Y(t, x), 2. (t, ), ¥, (t, ), ’U)
- (A(t,x,u(t,x)) — A(t,z,v))?
- A(t,z,v)

Zo (t, )Y, (t, ), Yo eU, ae. (t,z)€ Qr, (1.12)

we have (1.9), i.e.,

H(t,z, 2(t, x), ¥(t, ), 2 (t, ), Vu (t, ), U(t, 2)) — H(t, 2, 2(t, 2), ¥(t, ), 2 (t, ), Ve (£, ), 0)

> (A(t’x’“(fééfljv;‘(t’x’“)) Faatn]’. et ae (ta)ear (1.13)

One can see that (1.12) is similar to the corresponding result for elliptic case with n = 1, while (1.9) (i.e.,
(1.13)) is similar to the corresponding result for elliptic case with n > 2. We mention that for elliptic cases with
n > 2, the corresponding right hand of (1.9) follows from a fact given in Lemma 2.5. While for parabolic case
with n = 1, the right hand of (1.9) (i.e., (1.13)) follows in a different way. In fact, it follows from (1.12) and

H(t,x, 2(t,x),9(t, @), 2 (1, @), (8, x), alt, @) — H (@, 2(8 ), P(t, ), 20 (, @), a (L, ), 0) >0,
YoeU, ae. (t,z)eQp. (1.14)

From the proof of Theorem 1.1, one can see that (1.12) can be yielded from using spike variation along space-
direction and (1.14) can be yielded from using spike variation along time-direction (see (3.24)).

Another difference between parabolic cases and elliptic cases appear in that there are three possible types of
homogenized equations for parabolic cases when taking a different scale for the time and the space variables,
while there is only one type of homogenized equations for elliptic cases. Difficulty occurs in analyzing the
second type of homogenized equations (see the proof of Lem. 2.2 for details). Despite the different types of
homogenized equations, the variational equations are same and we finally get same optimality conditions for



978 H. LOU

the three cases. Nevertheless, we think results of this paper will be useful to analyze the second-order variational
equations, which is a problem more difficult than that for first-order variational equations.

The rest of the paper is organized as follows. In Section 2, we present some preliminary results. Section 3 is
devoted to a proof of our main result. Problem with state constraints will be discussed in Section 4.

2. PRELIMINARIES

In this section, we will give some preliminary results needed in proving Theorem 1.1. For Y = [0, aq]X
[0, 2] x ... [0, ], & function g(z) on R™ is called Y-periodic if it admits period «; in the direction z; (j =
1,2,...,n).

Lemma 2.1. Letr >0, d € (0,1) and (S1) hold. Let h(-) € L*(Qr), and A™(-) = (afj(-)) € L>(Qr; S}) such
that for some A > X > 0,

MEP < (A™(t,2)E,€) < AJE]?,  VEER™, (t,x) € Qr, m =1,2,3,4. (2.1)
Define
f(t,m, it (s}, (1)) €16,1) x[6,1)
2(t,x), i s 1 0, J1),
G(t,x,s,y) = (gij(taxasay)) = (gij(tam7s7y1)) - ASE;:$;: if E}S%: }51%; E {5, 1)) i [[075§, (22)
At @), if ({s},{m}) €[0,6) x [0,0),

where {a} denotes the decimal part of a real number a. For e > 0, let 2°(-) € L*(0,T; H} () be the weak
solution of

Op2°(t,x) — V- {G <t,:c, 5, g) Vza(t,:c)} = h(t, ), in Qp,
2°(t,x) =0, on [0,T] x 04, (2:3)
ZE(va) - Zo(l’), in €,
with zo(-) € L*(Q). Then
2°(4) — z(4), weakly in L*(0,T; HY(S)) (2.4)
with z(+) being the weak solution of
Ozt z) — V- (Q(t,2)Vz(t,z)) = h(t, z), in Qp,
z(t,x) =0, on [0,T] x 09, (2.5)
Z(O,I) = ZO(x)7 in €,
and Q(-) = (qi;(+)) € L>(Qr; ST) being given by
1 1 _
qij(tﬂm) :/ dyl/ (gij(tam7s7y1)+gi1(t7x787y1)ay1¢j(ta1'7S7y1))d57 1 SZ;] S n, (26)
0 0
where ©F(t,x,-) € LQ#(O, 1; W;’Q(O, 1)/R), # means the function is [0, 1] periodic.
Forr < 2, oF(t,,-) is the unique solution of
ayl (glk(ta Z,$, yl) + gll(ta Z,s, yl)ayl @k(ta T, S, yl)) =0. (27)

Forr =2, oF(t,x,-) is the solution of

assak(ta Z, S7y1) - ay1 (glk(taxa Sayl) + gll(t; z, S7y1)ay190k(taxa Sayl)) =0. (28)
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While for v > 2, F(t,,s,y) = " (t,x,y1) is the solution of

1 1
ay1 </ glk(t,$,8,y1)d5+/ gij(taxasayl)ds aylcpk(t7x7y1)> =0. (29)
0 0

Proof. The above proposition is a corollary of Theorem 2.1 in [2], Chapter 2 (see also Rem. 1.1 and “Comments
and Problems” there). The result can also be got by the technique of two scale convergence [1,8]. According
o [2],

qi; (t, ) / dy/ (g” (t,x, s,y —l—Zglk (t,z,5,9)0y, ¢ (t, 7,5 y)) ds, 1<i4,7<n. (2.10)
01]"

For r < 2, F(t,z,-) € Li(O, 1; W#Q((O, 1)™)/R) is the unique solution of

n

Z 8y7, (g’L] (ta z, s, y)(s_]k‘ + 9ij (ta z, s, y)ay] (pk (t7 €, S, y)) = 07 (211)

ij=1

where §;; equals to 1 if ¢ = j and 0 if 7 # j.
For r = 2, ©F(t,x,-) is the solution of

n

8S@k(t,1',s,y) - Z ayl (gij(taxasay)gjk + gij(t,:E,s,y)angak(t,z,s,y)) =0. (212)

Q=1
While for r > 2, o*(t,z,s,y) = p(t,x,y) is the solution of

1
Z 0, Z</ gij(t,z,$,9)0,k ds+/ gij(t,x,s,y) dsangok(t,ac,y)> =0. (2.13)
0

1,j=1

Since G(t, x, s,y) is independent of 32, y3, . . . , ¥, we must have ¥ (t, x, 5,y) = ©*(t, z, s, 31) and consequently,
(2.10)—(2.13) becomes (2.6)—(2.9). O

The following lemma concerns the “derivative” of ¢;; in § = 0.

Lemma 2.2. Letr >0, A > A > 0. Assume A > ay, > A, |bp| < A, |em| <A (m=1,2,3,4). Let § € (0,1)
and

(alvblvcl)v if ({5}’7{9}) € [5a1) X [671)5
(a’27 b27 02)7 if ({S}a {y}) € [Oa 5) X [5a 1)7
(@°(5,9),b°(5,9), " (5,9)) = (2.14)
(as,bs,c3), if ({s},{y}) € [6,1) x [0,9),

(a47b4764)7 if ({S}a{y}) € [0,5) X [0,5)
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1
(ag,b;;,c;;) i (6117171701)
N R O
(a4 b47¢“4) E (az7b2 02)
: v
@] 0 1

Let ¢§(-) € L%(0,1; W#Q(O, 1)/R) be the solution of

9y (1 (s,y) + a®(s,y)9, 43 (s,y)) =0,

#5(-) be the solution of
Ds5(s,y) — 0, (1°(s,y) + a’(5,9)9y 5 (5,)) = 0
and #5(s,y) = ¢3(y) be the solution of

é?y(/o b‘s(s,y)ds—i—/o a5(3,y)dsé)y¢g(y)> =0.

Then there exists a constant C = C(A, \), independent of § € (0,1), such that

1 1
5[ v [ Cmaiemas s BREma)) < ovs

as
Proof. 1. Tt follows from (2.15) that

b (s, ) +a’(5,9)0y 4 (s, y) = p°(s)-
Since ¢$(-) is [0,1]? periodic, we get that

/1 P(s) = b(s,y)
0

a’(s,y)

Solve p°(-) from the above we get

k=1,2,3.

1
dy:/ 9,80(s,y)dy =0,  selo,1].
0

Q_I?Mﬁ ) (s,y) € (6,1) x (6,1),
by — by
T s (s,9) € (0,0) x (d,1),
Dybrls,y) =4 (170t o
A= 02y 1 00, L 7O (5:1) €(0,1) X (0,0),
%(1 —0), (s,y) € (0,6) x (0,0).

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)
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Thus
_57 (Say) € [07 1] X (57 1);

10,63 (s, )| < oA (2.20)
7(1 —9), (s,y) €10,1] x (0,9).

A direct calculation shows that

(b —b1)(cs — 1
as

(bg — bl)(63 — Cl) (b4 - b2)(c4 - 02)
(1 — 5)&3 + daq (1 — 5)(14 + dao
4A? 4A%  12A

—5(1-4)

‘%/01 dy/olca(s,y)ayqb‘{(s,y)der )‘ _ ‘5(2_5)

<0(2—0)— 1-90)— < - (2.21
<46(2-9) 3 +4(1-9) S 5 (2.21)
I1. It follows from (2.16) and the periodicity of ¢(-) that
11
0= [ [ 8 6000,0805.0) + o (5,0)10, 035, sy
o Jo
11
= [ [ 1060 = 00,0500 + o7, 0)10, 635 9) ) ds . 2.22)
Thus,
e 5 2 Lt 5 2
[ [1adeor sy < [ [ depoer dda
o Jo o Jo
!
— 5 [ [ @0 - o6 dsay
o Jo
1 11 3 11 3
< x(/ | 1w b1|2dsdy) (/ / |ay¢3<s,y>|2dsdy)
o Jo o Jo
9V/2AVE 1 1 2
<2 el asay ) (2.23)
A o Jo
Therefore,
2v2AV/5
||ay¢g||1:2([o,1]2) < — (2.24)
On the other hand, (2.20) implies
2AV/5
10y83 | L2(j0,1]2) < 5 (2.25)
Denote ®°(-) = ¢3(-) — ¢{(-), we have
2(1+ V2)AVS
10,9 o ey < ZEFYIAVE, (2.26)
For any ¢(-) € W;f(o, 1), it follows from (2.15)—(2.16) that
1
/ [bé(sa y) + aé(sa y)ayq/)(i(s’y)] 611(10(3/) dy = Oa Vs € [Oa 1]) (227)
0

/0 / B (s, ) + a®(s, )0, 835, )] By o) ds dy = 0. (2.28)
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Thus, 1,1
|| @ewa,0° o0 dsay =0
0 0

1
Therefore / a’ (s,y)8y¢6 (s,y)ds is a constant and consequently,
0
1 11
‘/ a‘s(s,y)ayq)‘s(s,y)ds‘ = ‘/ / a‘s(s,w)ayq)‘s(s,x)dsdx‘
0 o Jo
1 el
= ‘/ / (a‘s(s,x)fal)ayq)é(s,m)dsd:c‘
o Jo

1

1,1 2
</ / |a5(s, x) — a1|2 ds d:c) H8y<I>‘SHLz([O,1]2)
o Jo

IN

SﬁAﬁ.Mﬁ:M(g vy € [0,1].

A A ’

Nothing that (2.15) implies
1
/ 6% (5, )0y 63(5, ) + 0 (5, 9)0y 3 (5, )3y 835, )] dy = 0, Vs € [0,1],
0

we get from (2.22) that

1 1
/0 /0 a’ (s, )0y ®°(s,9)0y¢5(s,y) ds dy = 0.
Thus denote
b3 — b1 b4 - b2

B S
(1 — (5)&3 + day ’ 28 (

01~ — _ a2
1,8 1-— (5)&4 + 5@27

we have

1 1 1 1
10,82 212005, = / / a8 (5,110, (s, y) 2 ds dy = — / / a8 (5,9)0,° (5,)9y 2 (5, ) ds dy

101 1 46
:7// a‘s(s,y)ﬁyq)é(s,y)@l,,;édsdyf/ / a‘s(s,y)8y®5(s,y)92755dsdy
5 Js s Jo
5
+/ / a’(s,9)0,®°(s,y)01,5(1 — 8) ds dy
o Jo

5 6
+/ / a‘s(s, y)ayqﬁ(s, y)(b2,5 —61,5)(1 —0)dsdy
o Jo

(2.29)

(2.30)

(2.31)

1 1 2A 5 1 2A
<[ [ @ewoei) - Foasdy+ [ | [ as0,0%m ] a0
4 0 0 0

) ) AN
+/ / a’(s,)[0,2°(s,y)| -7(1 —0)dsdy
0 0

2A
§75||3y‘1’6||m([0,1]2;a6) VA

5 5 o
22+ VDA 520 2 .\/KCs(// aé(s,y)|ayq>5(s,y)|2dsdy)
0J0

A A

4(2 4 V2)A3

T

<

6AVA
5 102 e ozian) +
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Thus
1 8A\/_
s 52
10y ®°[| L2 (f0.12) < ﬁlli’?y@ Iz2(10,112;08) < )\\/— (2.32)
Then, (2.30) can be improved as
A 12A
‘/ (5,9)0,®° (s, y) ds‘ <V2AVE - 8}\\/\/__ )\\/\_/_5\/_ Vy € [0,1]. (2.33)

Moreover,

(/01 ‘ /01 8y¢5(s,y)ds‘2dy>2

N

IN

1 1 1 ,
A </ ‘/ (G1X[6,1] (y) + G3X(0,5)(y))6y<1>5(57y)d5‘ dy)
0 0

%(/01 ‘ /01 a’(s,)0,9° (5,y) dS‘Qdy> E
+ % (/01 ‘ /05 ((az —a1)X(s,1)(y) + (aa — az)xo,s) (y))ayq),;(&y) dsr dy)

IN

1
2

12A2V/A S 2
YV 2RS4 / <4A25/ |ayq>6(3,y)|2ds> dy}
i 2
L 12A \/_5\/_ 2A\/_.8A\/_5: 2AVA L »
Therefore,
IR s (b3 — b1)(cs — c1)
‘5/ / A (5,9)0,05(s,y) ds dy+ ‘
0 0 o
L 1 by — by)(cs —
< ‘_/ dy/ cé(say)ay(ﬁi(s’y)ds_’_ ( 3 1)(03 Cl)‘
0 Jo o K

1 1 1
+‘5/ / 06(57y)ay‘1’6(svy)dsdy‘

12A2 s
s[5 [ ] (€6 = s — enxos )99 (. dsdy

IN

+’5/ / (CIX[J,H(Q)+CzX(o,&)(y))5y¢6(s,y)dsdy‘
0 0

12A2 1 1 p0 S
== 0+ ‘g ((CQ — C1)X[s,1] (y) + (ca — Cg)X(oyg)(y))ayq) (s,y)ds dy‘
0 0

1 1 1
* ‘_/ (/ 0,9°(s,y) ds) (erxpsy(v) + eax0.0)(¥)) dy‘
6 0 0

12A2 © 2AV05 Asrhyot 2\ 1
b\ 5+—Hayq’6||L2([o,1]2)+— / ‘/ (9y®5(s,y)ds‘ dy)

12A © 2AV3 SA A 28A2 A
5+\/_8‘/_ 8\/_\/— 56AVA s~

A Yo RNy X2V/A

IN

IN

(2.35)
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IIL By (2.17),
1 1
[ Pemass [ asnasaeim)
0 0
is a constant. Then similar to (2.19), we can get from the periodicity of ¢3(-) that

(b3 — bl)(l — (5) + (b4 — b2)5
6 31— 0)ar + 0%as + (1 — 0)2az + 0(1 — )as ye 1),
Dy d(y) = 2.36
¢3(?/) ) (bg B bl)(l B 6) N (b4 b)s (1 ) 6) _ (0 6) ( )
31— 0)ar + 02az + (1 —0)%as + 0(1 — 0)as Y =0

Thus

L (1-9) [(1 — 8)(bs — by) + (by — bQ)} : [(1 —8)(cs — 1) + 6(ca — c2)
5/0 /0 A (s,y)0yd5(s,y) dsdy = — 50— 0)ar + Py T (1 — 023 1001 0)a; :

One can verify that

(b3 — b1)(cz — 1)
as
(1 — 5)2(()3 — bl)(63 — Cl)
(1 —8)ay +62a2 + (1 —8)2a3 + 6(1 — d)ay
< 12A2 8A3 20A3

_ _ 2
(b3 bl)(C3 Cl) ‘ S 12A 5 n ‘
as A

1 1 1
‘g/ / & (5,y)0y 05 (s,y) ds dy +
0 0

—0< . .
== o+ )\25_ 2 4] (2.37)
A3VA
Combining (2.21), (2.35) and (2.37), we get (2.18) with C = % O

The following result is concerned with the well-posedness and regularity of state equation (1.1).
Lemma 2.3. Let (S1)-(S4) hold and zg € L*>°(Q). Then for any u(-) € U, (1.1) admits a unique weak solution
2(+) € L%(0,T; H}(Q)) N L>=(Q7). Furthermore, there exist a constant K > 0, independent of u(-) € U, such
that

Iz 20,313 () + 12() | (@) < K. (2.38)
Moreover, there exists an o € (0,1), such that for any Qo CC Qr, it holds that
[2()loa(qe) < C(Qo) (2.39)

for some constant C(Qo).
Proof. The result is quite standard. We give a sketch of the proof. Fix u(-) € U. Let m > 0, define
f(t7x7z7u)’ |Z|§m7
Mz, z,u) =< ft,x,—m,u), z < —m,

flt,x,myu), z>m.
For fixed z(-) € L*(Qr), let 2™(+) be the solution of

2™ (t,x) — V- (A(t,z, ult,2)) V2" (t,2)) = f7(t, z,2(t, x), u(t, 2)), in Qp,
2™ (t,x) =0, on [0, x 09,

2"™(0,z) = zo(x), in Q,
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Then there exist a constant C,,, > 0 such that
12" ()l 2 0,7:m2 @) + 12" ()l e (@7) < O (2.40)
Moreover, there exists an 8 = f,, € (0,1), such that for any Qo CC Qr, it holds that
12" (s (@) < Cm(Qo) (2.41)
for some constant C,, (Qo).
Using (2.40)—(2.41), we can see that the map z(-) — z™(-) is continuous and compact from some ball of

L?(Qr) to itself. Thus, Schauder fixed point theorem implies that the map has a fixed point Z™(-). We have
Zm(-) € L*(0,T; H}(Q2)) and

0 Z™(t,x) — V- (A(t,x,u(t,ac))VZm(t,x)) = f™(t,x, Z™(t,x), ult, x)), in Qr,
Z™(t,x) =0, on [0,T] x 09,
Z™(0,z) = zo(x), in Q.

Noting that (S4) holds, we can modify the proof of Theorem 7.1 of Chapter 3 in [9] to get that
1Z™ (L) < C

with C' being independent of m. Let m > C, we see that (1.1) admits a unique weak solution z(:) €
L2(0,T; HY(Q)) N L*>(Qr) and (2.38) holds. Finally, by (1.6),

|f(t,z, 2(t, x),u(t, z))] < Mg. (2.42)
Thus, (2.39) follows from Theorem 10.1 of Chapter 3 in [9]. O
Lemma 2.4. Let § € (0,1), 7 >0,

Om1, if ({s},{z1}) €[6,1) x [4,1),
5m27 lf ({S}a {1'1}) S [075) X [5’ 1)7

m(l, T) = ,x) € Q. 2.43

im(f:) m3, if ({s},{z1}) €[6,1) x [0,9), (,2) € r (2.43)
5m47 if ({S}a {1'1}) S [075) X [0’6)7

Then (m(ﬁ, ) (m = 1,2,3,4) converges weakly to ji,, in L2(Qr) with

pr=(1=0)7 p2=p3=06(1-0), pi=205"

Proof. Such results are quite well-known and can be proved by modifying the proof of Riemann’s lemma. One
can verify easily that for any rectangle ' C Qp,

e—0" Jo,

t
lim Xr(t, )1 (—, —) dtdx = ,ul/ Xr(t,z)dt dz.
" € Qr

Since the set of all linear combinations of characteristic functions xx(-) is dense in L?(Q7), we get that (; (Eir, =)

converges weakly to iy in L?(€27). The remains are similar. O
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Lemma 2.5. Let n > 2. Let £, € R™ be two nonzero vectors. Then

T T _|§||77|+§T77 (2.44)

)

lz|=1 2

where ET denotes the transpose of a matriz E.

The proof of above lemma is easy. See [11], for example.

3. PROOF OF THE MAIN THEOREM

In this section, we present a proof of our main theorem. The proof is divided into several steps. Let
a(+) € U be an optimal control and Z(-) be the corresponding optimal state. Let r > 0, ua(-), us(-), us(-) € U be
fixed.

3.1. Homogenizing spike variation of the control

Let § € (0,1) and € > 0. For any (t,z) = (t,x1,2,...,%,) € Qr, define

alte), if (£} {2) € 5,1) x [5.1),
uz(t,z), if ({1} {2}) €0,0) x [4,1),
u’(t, x) = (3.1)
us(t, ), if (&} {2} €[6,1) x[0,9),
ualt,a), if (£3,{2)) € [0,8) x [0,0).
Then u®¢(-) € U. Let 2%(-) be the state corresponding to u®(-), i.e.,
8tz‘s’5(t,:c) - V. (A(t, x, u‘s’e(t,x))v,z‘;’e(t,x)) = f(t, x, z‘s’e(t, x), u‘s’e(t, x)), in Qr,
2%¢(t,x) =0, on [0,7T] x 99, (3.2)
2%2(0,2) = zo(x), in Q.
By Lemma 2.3, there exists constants K > 0 and « € (0,1), independent of §, e, such that
2%l 2o m2 @) + 127 Ol L @r) < K (3.3)
and
12°%[lce(qo) < C(Qo) (34)

for any Qo CC Qp with some constant C(Qy).

By (3.3), for fixed § € (0, 1), we can extract a subsequence (still denoted by itself) such that z%¢(-) converges
to a function 2°(-) weakly in L2(0,T; H}(2)) as ¢ — 0. By (3.4) and Arzeld-Ascoli’s theorem, z%(-) converges
uniformly to 2°(-) in C(Qo) for any Qo CC Q7. Then, it follows easily from

127 ()l pee () < K

that 2%¢(-) converges strongly to 2°(-) in L?(Qr) and almost everywhere in Q7.
By (1.6) and (3.3),

2, 2%t x),u” (t,2)) — f(t, @, 2° (8, @), u® (8, 2))| < Mi|22(t @) — 2°(2)). (3-5)
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On the other hand, by Lemma 2.4, for any h € L?(Q7), when € — 07,

ft, x, z‘s(t, x), u‘s’e(t, x))h(t,z)dtdz — (1 — 5)2 ft, x, z‘s(t, x),u(t,x))h(t,z)dt dz
Qr Qr

+ (1 —9) ft,z, 20(t, ), ua(t, ) h(t, z) dt dz + 6(1 — &) ft,z, 20(t, ), us(t, ) h(t, z) dt dz
Qr Qrp

+ 62 ft,z, 20(t, ), ug(t, ) h(t, z) dt dz.
Qr

Combing the above with (3.5), we get that along a subsequence € — 07T,
f(t,x, 2% (t, ), ude (t, 2) o1 — 8)2f (t, z, 20 (t, ), a(t, ) + 8(1 — 8) f(t, z, 20 (t, ), ua(t, x))
+6(1 = 8)f(t,,2°(t, ), uz(t, ©)) + 6> f(t, 2, 2°(t, ), ua(t,x)), weakly in L*(Qr).
Let
RO (t, ) = f(t,z, 2%5(t, ), u® (t, x)) — (1 — 0)2 f(t,x, 20 (t, ), a(t, z)) — 6(1 — &) f (¢, x, 2°(L, ), ua(t, x))
—86(1 = 0)f(t,z, 2°(t, ), us(t, ) h(t, x) — 62 f(t, x, 2°(t, ), ua(t, x))

and 7%¢(-) be the solution of

025 (t,x) — V- (A(t, @, u® (1, 2))VE* (¢, 2)) = BO%(t, ), in Qr,
2%¢(t,x) = 0, on [0,T] x 09, (3.6)
7%€(0,2) =0, in 0.
Then
/ |2°4(T, z)| dx—i—)\/ (V2o (t,2)|* dt da g/ 205 (¢, 2)h5 (L, ) dt da. (3.7)
Qr

As 2%¢(-) converges strongly in L?(Qr), 25¢(-) converges strongly in L?(Q7) too. Consequently, it follows from
(3.7) that

%) = 0, strongly in L2(0,T; Hy(S2)). (3.8)
By Lemma 2.1,
29() = %5 (1) — 20(1), weakly in L?(0,T; Hy(S2)) (3.9)

with 2°(-) being the weak solution of

02 (t,x) — V- (Q‘s(t,x)Vz‘s(t,x)) = (1—=06)f(t,x,2°(t, x), a(t, z))

+6(1 = 08)f(t,x, 2°(t, ), ua(t, z))
+5(1 - 5)f(ta T,z (ta :L')a U3(t,l‘)) (310)
+02f(t, 2, 2°(t, ), ug(t, z)), in Qp,

29(t,z) =0, on [0,T] x 09,

26(0a :L') - Zo(l'), in €,
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where Q°(-) = (qu()) € L*(Qr;ST) is given by

1 1
qz'éj(tax) :/ dyl/ (ggj(tam7s7y1)+g;§1(ta1'7S7y1)ay190](t7x787y1))d5; 1 S%] § n (311)
0 0
and
aij(t,x,ﬂ(t,w)), if ({S}, {yl}) € [5a 1) X [67 1),
(gél(t T yl)) _ aij(t,l‘,’LLQ(t,:L')), if ({S}a {yl}) € [0,5) X [57 1); (3 12)
N aij(t,$,“3(t,$)), if ({S}a {yl}) € [5’ 1) X [075)’
a’L] (t,x,U4(t,£L')), if ({S}a {yl}) € [0,5) X [075)
For r < 2, o*(t,z,-) € Lf‘yﬁ(O7 1; W#Q(O, 1)/R) is the unique solution of
a’yl (gzlsk(ta €, 8, yl) + gtlsl(ta z, s, yl)aylsak(ta z,s, yl)) = 0. (3'13)
For 7 = 2, ©F(t,x,-) is the solution of
assak(ta T, S, yl) - ay1 (gfk(tv Z,s, yl) + gfl(ta T, S, yl)aylcpk(tv Z,s, yl)) =0. (314)
While for r > 2, @*(t, x,s,y) = ¢*(t,z,y1) is the solution of
1 1
0, ( [ ofittaisn)ds s [ gt s ds 8y1so’f<t,x,y1>> ~0. (315)
0 0
Combining (3.9) with (3.8), along a subsequence, we obtain
2%5(0) = 2°(+), weakly in L2(0,T; HE(Q)). (3.16)

Note that for fixed & € (0, 1), since any subsequence of 2%¢(-) has a further subsequence converging to the same
29(-) weakly in L2(0,T; HE(Q)), 2%(-) itself must converge to 2°(-) weakly in L2(0,T; H}(Q)).
In addition, by the optimality of @(-), we have

e—0*t

J(@(-)) < lim J(u™()) =J° = /Q ((1 —0)2fOt, @, 20 (t, ), a(t, ) + 6(1 — &) fOt, z, 2°(t, ), ua(t, x))
+0(1—=0)fO(t,x, 20 (t, ), us(t, z)) + 62 fO(t, z, 2°(t, x), ua(t, :L'))) dtdez. (3.17)

3.2. Linearized state equation

We now would like to let § — 01. Denote
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Then it follows from (3.10) that

atZzi(t’ 1,) S v2 (A(t, z, ’l_l,(t, IL’))VZ(S(t,J;)) RV <Q5(t; CE') - A(tyl”ﬂ(t; CU)) Vzé(t,l‘)>

5
(1-9 / fo(t,z, 2(t, x) + s(2°(t, ) — Z(t, ), a(t, z)) ds Z° (t, x)
+(1-4) (f(w,z (t2) ua(t, ) = f(t,w, 2t @), at, @) ) (3.18)
+ (1 =0)( ft,z,2°(t, ), us(t, x)) — f(t,x, Z(t, x ,a(t,x)))
+5(f(t,:c,25(t,x),U4(t,:c)) _ f(t,x,Z(t,:c),ﬂ(t,x))), in Qp,
Z‘s(t,ac) =0, on [0,T] x 092,
7°(0,x) =0, in Q.

y (S3),
lai;(t, z,v)| <A, V(t,z) € Qr; veU; 1<i,j<n.
Thus, it follows from (3.11) and Lemma 2.2 that as § — 0T,

qu (t,x) — ai;(t, x, at, x))

1
4 (3.19)
converges in L>®() to
0ii(t, x) = a;;(t, x,us(t, x)) + ai; (t, x, us(t, ) — 2a45(t, z, u(t, x))
o [ali(ta z, u3(ta Z)) - ali(tv xz, L_L(t, Z))] [alj (ta T, u3 (tv l‘)) — Q15 (tv &x, L_L(t, Z))]
ar1(t, x,uz(t, z)) ’
1<4,5<n. (3.20)

On the other hand, z°(-) is bounded uniformly in L2(0,7; H}(€2)). Thus, we can prove step-by-step that as
§ — 0%, Z%(-) is bounded uniformly in L2(0,T; H}(92)), 2°(-) converges to z(-) strongly in L2(0,T; H}(£2)), and
Z5(-) converges to Z(-) weakly in L2(0,T; H}(Q)) with Z(-) being the weak solution of

QZ(t,x) — V- (Alt,z,u(t,))VZ(t,x)) = V- (O(t, 2)Vz(t, z))
+fz( z,2(t, ), u(t ) Z(t,x) + f(t,z, 2(t, ¥), ua(t, v))
(tx Z(t,x), uz(t, v)) — 2f(t,x, 2(t, »), u(t, r)), in Qr, (3.21)
Z(t,x) =0, [ ,T] x 09,

Z(0,z) =0, n €,

where
O(t,z) = (0;(t,x)) = A(t,z,ua(t, ) + At z, uz(t, ) — 2A(t, x, u(t, z))

[A(t,x,ug(t,ac)) - A(t,ac,ﬂ(t,ac))]elel [A(t x,us(t,x)) — A(t,ac,ﬂ(t@))}. (3.22)
el A(t,z,usz(t,x))er

From (3.17), we have

5 _ J(u(-
0< tm LI / NEEE R RO
+f0(t,x,2(t,x),u2(t,x)) + fo(t,x,é(t,x),ug(t,x))

—2f0(t, z, 2(t, @), alt, z))) dt dz. (3.23)
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3.3. Duality
Let t(-) be the solution of the adjoint equation (1.8). Then (3.23) becomes

0< /QT [fo(t,x,i(t,x),ug(t,x)) + fO>t,x, 2(t, ), us(t, ©)) — 2f°(t, 2, 2(t, x), u(t, x))
+ (8tw(t,x) + V- (At 2, a(t,2)) VPt ) + fo(t 2, 2(t 2), 4t ) zz(t,x))Z(t, m)} dt dz
= /QT [fo(t,x,i(t,x),ug(t,x)) + fOt 2, 2(t x), us(t, ) — 2f°(t, =, 2(t, ), u(t, )
+ ( — 0, Z(t,x) + V- (A(t, 3, u(t, 1))V Z(t, 7)) + f-(t, 2, 2(t, 2), alt, 2)) Z(t, x))z/?(t, x)} dt dz
— /QT [fo(t,:c,é(t,:c),uQ(t,x)) + Ot 2, 2(t, ), us(t, @) — 2£°0(t, @, 2(t, x), a(t, x))

= (a2t @) ua(t,2) + [ (L, 24, 2), us(t,2)) = 2f (2, 2L, @), At 7)) ) $(t, @)
+{(O(t,z)VE(t,x), Vi (t, ) }dtda:
v

(s 200, 00 00)9@) = £, 20, 2), 80, 2)) — (Al 2,8, 2) V30, 2), V(0,2) )
(f(t,x, 2), us(t,0)(@) — LO(t,2,2(t,2), ua(t,2)) = (Al 2, us(t,2))VE(E 2), Vi(t,2)) )

— (flt, 2, 2(t, @), uz(t, 2))b(x) — fO(t, 2, 2(t, ), us(t, z)) — (At z,uz(t, 2))VZ(t, x), Vi (¢, )))
R )T (At @, us(t, @) — A(t, @, u(t, ) ere] (A(t,z, us(t, x)) — A(t, @, u(t, » ) P(t, x)
e] Atz us(t,z))er }dtd:c

/QT

- H(ta z, f(t, :L')a l/j(ta l‘), VZ(t, ’JJ), Vl/}(tv ’JJ), US(ta l‘)) - (I)(A(ta Z, UB(ta Z))
- A(t,:E,ﬂ(t,:E)),A(t,:c,u;;(t,:c)),VZ(t,x),Vg/;(t,x),el)] dtdz, (3.24)

—

2H (t, 2, 2(t,2), ) (t, x), VE(t, ), Vi (t, 2),ult, 2)) — H(t, 2, 2(t, 2), ¥ (t,2), VE(t, 2), V(t,7), ua(t, @)

where H is defined by (1.10),

nT AvvT A¢

(A, B.Emv) = T (A4, B,&,n,v) € 8" x 87 x R" x R" x R" (3.25)

and 8™ is the set of all n x n real symmetric matrices.

3.4. Maximum condition

By a standard argument [10], it follows from (3.24) that

2H (t, x, 2(t, ), (¢, x), VE(t, x), Vi (L,
+H(t x, 2(t, :c) U(t,z), Vz(t,z), Vi(t
Vo,we U, ae. (t,2)

t,x), ult, )) > H(t,x,E(t,a:),QZ(t,x),VZ(t,at),Vl/;(t,a?),w)
( ) ) +@(A(t,l‘,’0) *A(t,:L',ﬂ(t,l’)),A(t,x,v),VZ(t,ﬂC),V”(/;(t,l‘),el),
€ (3.26)
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Further, it is easy to see that (3.26) is equivalent to the following two inequalities:

H(t7 z, 2(t,x),Y(t, ), VZ(t, ), Vib(t, z), ult, a:)) > H(t7 z, 2(t,x),(t, ), VZ(t, ), Vi (t, ), v),
Yo eU, ae. (t,x)€Qpr (3.27)

and
x), VZ(t, ), Vi (t, x),v)

( ) Vw(tax),ﬁ),
YoeU, ae. (t,x)€Qp. (3.28)

H(t,x,2(t,x),9(t,x), VZ(t,2), Vot @), alt, ) > H(t,x, 2(t, ), Pt
+ ®(A(t,z,v) — A(t, z,u(t, z)), A(t, z,v), Vz

Moreover, we can generalize (3.28) to the following:

H(t,x,2(t,x),9(t,x), Vz(t,2), Vi (t, x), alt,x)) > H(t,z,2(t,2),9(,2), VE(L, 2), Vi (t, x),0)
+ @(A(t,:c,v) — A(t,z,u(t,x)), A(t, z,v), VZ(t, ),V?/J(t,:c),e),
YweU ecS" Y ae. (t,x) € Qr,

where 577! = {z € R" | |z| = 1}. Now, for given (¢, z,v), we denote

Alt,z,v)%e
|A(t z,v)ze| 399
&= A(t,z,v) %[ A(t,x,a(t,ac))]VZ(t,x), (3:29)
n = A(t, z,v) %[A — A(t, @, u(t, )| Vi(t, z).
When e runs over S*~1, y will run over S"~!. Then (3.27) and (3.28) become
H(t,x,Z(t,x),@(t,x),Vi(t,ac),Viﬁ(t,ac),ﬂ(t,a:))—H(t,a:,Z(t,x),iﬁ(t,a:),VE(t,x),VQZ(t,a?),v)
> sup max (fTuuTn, 0) . (3.30)
[pnl=1
By Lemma 2.5, one can get that
&l +&Tn
SIS 4 >
sup €T pupTn = > ifn > 2,
lul=1 £ ifn=1.
Thus T
sup max (ETuuTn,O) = [&lln[ € . (3.31)
lul=1 2
Combining the above, we obtain (1.9). This completes the proof of Theorem 1.1. O

We can see that the limit equation (3.10) of homogenizing spike variation equation (3.2) may be different for
different r. More precisely, (3.10) has essentially three different cases corresponding to r < 2, r =2 and r > 2,
respectively. However, the variational equation (3.18) is independent of » > 0. Thus, the final result (Thm. 1.1)
can be got by choosing r € (0,2). Such a choice will lead to a simple proof of Theorem 1.1. But, if we did that,
we would not know whether we can get other conditions from cases of » > 2. This is not satisfied.

Concerning the method to construct spike variation, we have mentioned that special forms of spike variation
are needed to get good expressions of the limit equations as (3.10). When we introduce (3.1), it is natural



992 H. LOU

to expect that u4(-) has no essential effect on the final result. The effect of ua(-) is in time scale. One can
see that essentially, us(-) works as a spike variation as A(-) being independent of u. Difficulties caused by A(-)
containing u appear when ug(+) is introduced.

Remark 3.1. If we follow the idea of sequential laminates (see Tartar [16]), we can generalize (3.10) and (3.17)
by constructing more general homogenized equations with their leading terms satisfying

Q(s(ta 1') - Z(ta Z) + 5(A2(ta Z) + AS(tv l‘) - 2A(ta :L')) - 5(A3(ta 1') - Z(ta :L')) (A3 (tv x))i
x P (A3(t,2)) "% (As(t, x) — A(t,2)) + o(5),

[N

where

At,x) = A(t,z,u(t,x)), As(t,z) = A(t,x,uz(t,x)), As(t,z) = A(t,x,us(t,x))
and

PesA B{WeS|W>0,ttW =1}
n n
= {Zakgkgl;r'al;aQw--aan € [07 1]7&1)&27"'7&71 € Snil;zak = 1}
k=1 k=1

Consequently, we can generalize (3.21)—(3.23) with (3.22) being replaced by
O(t,z) = As(t,x) + As(t,x) — 2A(t, z) — (As(t,z) — A(t,z))
x (As(t,x)) 2P (As(t,z)) *(As(t,z) — A(t, z)). (3.32)

It follows from
sup €' Pn= sup £ xx'n
PeA lz|=1

that (3.21), (3.23) and (3.32) still lead to Theorem 1.1.

4. PROBLEM WITH STATE CONSTRAINTS

In this section, we will consider the cases of state constraint. We will only state the results since the proofs
are completely similar to those of elliptic cases.

(S6) Let Z be a Banach space with strictly convex dual Z*, F : L2(0,T; H}(Q2)) — Z be continuous Fréchet
differentiable, and E C Z be closed and convex.

As in Chapter 5 of [10], many state constraints can be stated in the following type:

F(z(-) € E. (4.1)

Let Paa be the set of all pairs (z(-), u(+)) satisfying (1.1) and (4.1). Any (z(:),u(+)) € Paa is called an admissible
pair. The set Upg = {u(-) € U | (z(;u(-)),u(-)) € Paa} is called the set of admissible controls. Our optimal
control problem with state constraint is:

Problem (SC). Find a control u(-) € Uaq such that

Ja() = inf I(u(). (4.2)

To state necessary conditions for optimal controls of Problem (SC), we need to recall the notion of finite
co-dimensionality (see Chap. 4 of [10], for example).
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Definition 4.1. Let X be a Banach space and X be a subspace of X. We say that X is finite co-dimensional
in X if there exist x1,x2,...,x, € X, such that

span {Xo, x1,...,x,} = the space spanned by {Xo,z1,...,z,} = X. (4.3)

A subset S of X is said to be finite co-dimensional in X if for some xy € S, span (S — {z¢}) = the closed
subspace spanned by {z — zg|z € S} is a finite co-dimensional subspace of X and @ .S = the closed convex hull
of S — {x0} has a nonempty interior in this subspace.

Let (2(+),@(-)) be an optimal pair of Problem (SC). Let Z = Z(-;u(-)) € L*(0,T; H}(2)) be the unique weak
solution of the variational equation (3.21) and define the reachable set of variational system (3.21) as

R = {Z(,u()) ‘ ua(+),us(-) € L[}. (4.4)

Now, let us state the necessary conditions of an optimal control to Problem (SC) as follows:

Theorem 4.2. Let (S1)—(S6) hold. Let (Z(:),u(-)) € Paa be an optimal pair of Problem (SC). Let
F'z()R-E={{-n|{e F'(z()R, ne E}

be finite co-dimensional in Z. Then there exists a triple (1o,(-), p(-)) € R x L%(0,T; H}(Q)) x Z* satisfying

0 =0,
(to, () # 0, (4.5)
(10, 9(-) # 0, if F'(z(+))* is injective,
(0(),n—F(z(-)) z- 2 <0, Vn € E, (4.6)
w(t,x) +V (A t,x, u(t,x) V?/;(li, z)) = = fO(t, x, Z(t, x), u(t, z))
B —f(tz, 2(t ), a(t, )t z) + F'(2(:)*p, in Qrp, (47)
P(t,x) =0, on [0,7T] x 99, :
(T, x) =0, in €,
H(t, x, 2(t, x),Y(t, ), VZ(t, ), Vib(t, z), ult, a:)) — H(t, x, 2(t, x),¥(t, x), VE(t, ), Vip(t, ), v)
> %|A(tv ,v) "2 (Alt, 2, a(t, z)) — A(t,2,0))VE(E 2)| |At 2, 0) "2 (At 2, a(t, @) — At 2,0)) Vi (t, o)
+% (A(t,z,v)" 2 (A(t, z, a(t,z)) — At,z,0))VE(t, 2), A(t,z,0) "2 (AL, 2, u(t, ) — A(t, z,v))Vd(t, z)),
Yo eU, ae. (t,x)€ Qr, (4.8)
where

H(t7 x? 271/)757777 v) = <1Z)7 f(t’zﬂz7v)>+ wofo(t7 x? Z7v) - <A(t7 x? v)€777>’
(t,x,z,9,&,m,0) €0, T] x A xR xR xR" xR" x U. (4.9)
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