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A HOLDER INFINITY LAPLACIAN
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Abstract. In this paper we study the limit as p — oo of minimizers of the fractional W*P-norms.
In particular, we prove that the limit satisfies a non-local and non-linear equation. We also prove the
existence and uniqueness of solutions of the equation. Furthermore, we prove the existence of solutions
in general for the corresponding inhomogeneous equation. By making strong use of the barriers in this
construction, we obtain some regularity results.
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1. INTRODUCTION AND MAIN RESULT

1.1. Setting of the problem

Let © be a bounded open set in RY. Under suitable conditions, it is well-known that if u, minimizes the

integral
[ 1vap
Q

then u, — u as p — oo where u solves the equation

Asu = g ujuu; =0 on
ij=1,...,.N

with u; = (%‘ and u;; = %, which is usually referred to as the infinity Laplace equation. See for instance [1,5]
i i 7

for discussions concerning this passage to the limit. Moreover, u is known to be a local minimizer of the Lipschitz
norm, i.e., a Lipschitz extension. A lot of the known results concerning infinity harmonic functions and Lipschitz
extensions can be found in [3]. Some explicit Lipschitz extensions can be found in [13,17], and these are in general
not infinity harmonic functions. Lipschitz extensions have been given a lot of attention recently, and as possible

applications one has suggested for instance image interpolation (cf. [8]) and brain warping (cf. [14]).
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800 A. CHAMBOLLE ET AL.
In the present paper, we address the following question:
What happens if we replace the space W!?(Q) by W*?(Q) with s € (0,1)?

We study minimizers of the functional

ju(e) — u(w)?
/QXQ dzdy, (1.1)

for o € (0,1]. We see that this is the W*P-norm for s = o — N/p, and the form of the functional suggests that
in the limit we should obtain a local minimizer of the a-Holder semi-norm. The Euler-Lagrange equation of
1
u(@) —uly) " sgn(u(z) —u(y))

this functional is
/Q |z —yl* |z —y[®

Formally, one can see that, as p — oo, this should converge to the equation

p—

dy = 0. (1.2)

Lu=0 in Q (1.3)
with the operator
Lu)m)= sp “W7uE) g s ule) g
yeQ, y#z |y - $| yEeQ), y#z |y - $|

that we call the Holder infinity laplacian. In this paper, we study the Dirichlet problem

Lu = f in Q,
{ u = g on 0. (1.4)

We obtain existence and some regularity results for this problem in general. In the case f = 0, we are also
able to obtain uniqueness and an implicit representation formula of the solution. Moreover, we prove that the
solution is an optimal Holder extension, in the sense that the Holder seminorm in €2 is always less than or equal
to the one for the boundary data given on 9f).

At a first glance one might believe that for o = 1, the Holder infinity Laplace equation is equivalent to the
infinity Laplace equation. This is not the case in general. Indeed, using (ii) in Theorem 1.5 one can quite easily
see that the infinity harmonic function

u(@) = a1 — |,

found by Aronsson (cf. [2]), is not a solution of (1.4) for & = 1 and
Q={-2<z<2-1<y<l}.
Many of these results are also valid in the case when we replace 2 by R™ in the sense that we consider

minimizers of
_ p
[ E I
7L><R7L

with prescribed values v = g in R™ \ © and under some appropriate growth condition on ¢ at infinity. Then the
limiting operator will instead be

sup u(y) — u(x) : uly) —u(z) . cq.

— -+ inf
yER", y#x |y - x|o¢ yER™, yF#x |y - :E|a
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If Q2 £ R™ this operator does not coincide with the infinity Laplace operator. Indeed, the operator above will
change if we change the values of g away from €2, which is not the case for the infinity Laplace operator. Very
recently, in [6], a closely related operator has been studied. There the authors consider a non-local “tug-of-
war” game, which in the limit yields an operator also producing optimal Hoélder extensions. Moreover, when a
parameter is chosen correctly, this operator coincides with the infinity Laplace operator.

1.2. Main results

In all that follows, for a € (0,1], we will denote the a-Holder semi-norm of a function f defined on A ¢ RY

by
7) —
fone sp M@0
z,y€EA,x#Y |=T - y|
We also recall the notation

CO(A) = {f € C(A), IfllL=(a) + [flasa < o0},

where C'(A) is the set of continuous function on A.
The first main result in this paper states that what we expect actually happens when we pass to the limit
p — 00, as long as the integrals make sense.

Theorem 1.1 (limit equation as p — o0). Let a € (0,1] and if o« = 1 assume N > 2. Consider a bounded
Lipschitz domain Q in RN, and boundary data g € C%*(0Q). For any p > 2N/a, there exists a unique
minimizer u, of (1.1) satisfying uw = g on 0. Moreover, as p — 00, we have up — Uso uniformly in Q and
Uoo € C0%(Q) is a viscosity solution of (1.3).

Remark 1.2. The reason why we haven’t treated the case « = N = 1 is simply that the Euler-Lagrange
equation (1.2) is not well defined in a pointwise sense in this case.

Remark 1.3. If o = o, — as < 1, the proof can easily be adapted to obtain a result similar to Theorem 1.1.

Remark 1.4. The reader might wonder why the assumption that Q is a Lipschitz domain is necessary. The
reason is that we at some point need to apply a fractional version of the Sobolev embedding, which, to the
authors knowledge, is known only in the case when € is a bounded Lipschitz domain.

More generally we can consider the inhomogeneous Dirichlet problem

Lu=f in £,
{u:g on 01, (1.5)

for which the notion of viscosity solutions is given in Definition 4.1. Then, when f = 0, there exists a represen-
tation formula for u.

Theorem 1.5 (existence for general f, partial uniqueness). Let o € (0, 1], Q be a bounded open set, g € C(0R)
and f € C(Q) N L>(Q).
(i) (Existence) Then there exists a viscosity solution u € C(Q) of (1.5).
(ii) (Partial uniqueness) Assume f = 0. Then the viscosity solution u € C(Q) of (1.5) is unique and is
defined implicitly by the following:

9(@) if z€0Q
u(z) = , (1.6)
a with £y(a)=0 if veQl

where
t(a) = sup gy) —a . 9@ —a
yeoq |y —z|*  yeoa |y — x>
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Remark 1.6. The solution defined by (1.6) is the same as the Lipschitz extension introduced by Oberman
in [16] for the distance d(z,y) = |x — y|*.

Remark 1.7. It is not clear whether the uniqueness holds for general functions f or not. For the inhomogeneous
infinity Laplace equation, the uniqueness is only known to hold if f does not change sign, see [12], where also
a counterexample to the uniqueness for f changing sign is provided.

Finally we are also able to obtain the following regularity results, where we use the notation
diam Q = sup{|z — y|, z,y € Q}.

Theorem 1.8 (regularity). Let o € (0,1], Q be a bounded open set, g € C(0%), f € C() N L>(Q) and
u € C(2) a viscosity solution of (1.5).

(i) For any K CCQ and any 0 < B < «
[uls.x < Cla, B, | fllL=(9); 9]l L= (), diam Q, dist(K, 9$)).
(ii) If g € COP(0R) for 0 < B < a then
[u]g.o < C(a, B, fll L (0), [9] 3,00, diam Q).
(iil) Assume that f = 0. Then for each ball B CC 2
[ul1,B < C(a,||g]|L=(a0), diam Q, dist(B, 92)).

(iv) If f =0 and g € C**(09) then
[U]a,Q = [g]a,aQ-

Remark 1.9. Part (iv) in Theorem 1.8 shows in particular that when f = 0, the solution is an optimal Holder
extension of g on €. This is also the limit solution given by Theorem 1.1.

Remark 1.10. The uniqueness and the optimal C%“-regularity of the solution remain open for general func-
tions f.

Remark 1.11. Parts of Theorem 1.5 remain true when the distance |z — y|* is replaced by a more general
distance of the type d(z — y), see Section 12.2.

2. ORGANIZATION OF THE PAPER

The structure of the paper is as follows: in Section 3 we try to make ourselves familiar with the operator L
and study some continuity properties of L which later, in Section 4, motivates the introduction of the notion
of viscosity solutions. In Section 5 we give a representation formula of the solution in the case f = 0. In
Section 6 we prove Theorem 1.1. In Section 7 we prove a stability result, showing that certain limits of viscosity
subsolutions are again viscosity subsolutions. In Section 8 we construct barriers, that we use later in Section 9,
where we prove the existence of continuous solutions via Perron’s method. In Section 10 we prove several
regularity results of the solutions. In the end we also give the proof of Theorem 1.8. In Section 11 we prove a
comparison principle in the case f = 0. Using this we can conclude the proof of Theorem 1.5. In Section 12.2
we mention some possible generalizations of the problem and also some open questions that can be of general
interest.
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3. BASIC PROPERTIES OF L

Here we present some properties of the operator L, which is clearly not well defined for all functions. Define

e u () ) ()
) yeﬁ,ziéz ly = (L7u)(@) yeﬁ,yf;«éx ly — x|~

Lemma 3.1 (half relaxed limits for LT and L7). Consider a function u : Q@ — R and also a sequence of
functions (u:)e with ue : @ — R such that

[ue —ulpeem — 0 as e—0.
(i) If u is upper semicontinuous, then

liminf .(LTu.) > Ltu on Q. (3.1)

e—0
(i) If u is lower semicontinuous, then

limsup*(L7u:) < L u on £ (3.2)

e—0

Proof of Lemma 3.1. We give the proof of (3.1). The proof of (3.2) is similar. For any 2o €  and r > 0, let
us set

(L) = swp “WZul)
ye@\B,(wo) 1Y~ Tl

where by definition, we have

(L*u)(ao) = lim (L u)(z0) = sup (L w)(o).

Let us now consider a sequence (z. ). of points of  such that z. — xg. For & small enough, we have |z, — | <
r/2, and then

ue(y) = ue(we) e (y) — ue(ze)

(LTu)(xo) > (L us)(ze) = sup = sup —
" y65\37'/2(3’36) |y o :L'€| yEQ\Br(z0) |y o l‘5|

Using that —u is lower semicontinuous, we see that for any y € Q\B,(zg), we have

f e uly) —ula).
1?1_}61( ue)(ze) = ly — zo|®

This implies
liminf(L u.)(z.) >  sup Lﬁb(zo).
- yED\B, (z0) Y — Tol
Passing to the limit » — 0, we deduce

lminf(Ltug)(z) > sup A UT0)
=0 yeﬁ, y#xzo |y - $O|

for any sequence of points z. converging to xo. This shows (3.1).
This ends the proof of the lemma. ]

We then deduce immediately the following result.
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Definition 3.2 (semicontinuous envelopes). Consider a function v :  — R. Define

v*(x) = limsup v(y)

Yy—x

and
v, () = liminf v(y).
y—x

The functions v* and v, are called the upper and lower semicontinuous envelopes of v.

Definition 3.3 (semicontinuity). We say that v : Q — R is upper semicontinuous (respectively lower semicon-
tinuous) if v* = v (resp. v« = v).

Corollary 3.4 (semicontinuity for L+ and L™). Consider a function u : Q — R.
(i) If u is upper semicontinuous, then
(L*uw)y = LTu on Q. (3.3)
(il) If u is lower semicontinuous, then
(L w)*=L"u on S. (3.4)

The following lemma motivates our choice of test functions when we later will define viscosity solutions.

Lemma 3.5 (continuity of L*¢). Let ¢ € C1(Q). Then LTy € C(R).

Proof of Lemma 3.5. We only do the proof for LTy, the result for L~y following from the equality L=¢ =
—L*(—¢p). Take zo € Q.
Case (i): a € (0,1)

Then for § small there exists a constant C' > 0 such that

lo(y) —@(x)] < Cly —z| forall =,y € Bs(xo) C Q.

We recall the definition for 7 > 0 of the operator for x € Bj/o(xo)

(L:fs&)(:ﬂ) =  sup M
Y€\ B, (z) ly — |

On one hand, by the continuity of ¢, we see that L} ¢ is continuous on Q. On the other hand, we have for
r<0/2

(o - L@ < swp AL e
yEQNB, (wo), y£o Y —Z|*
which shows that the family LI ¢ of functions converges uniformly to Ly as r — 0 on Bg s2(wo). This implies
that LT is continuous.
Case (ii): a =1
Fix ¢ > 0 such that Bs(xzg) C 2. Then there exists a modulus of continuity w such that

IVo(y) = V()| <w(ly —=[) forall =,y € Bs(xo).

Using simply the formula for all z,y € Bs(xo)

o) — olz) = / dt Vol + 1y — 2)) - (y — @),
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we see that if furthermore y # x, then

p(y) — ¢() N T

In particular if 2 € Bj/o(x0), and r € (0,6/2), then B,.(x) C Bs(xo) C Q and

0< s PW e

< —[Vep(z)| < w(r).
yEONB, (), ye 1Y

Remark that
yEQNB, (), y#x |y - 1'|

Now we have

[(LT¢) () = (LT ) (x0)] < (L) (@) — (L) (o)l + [[Vep(@)| — [Vep(o)l] + 2w(r).
From the continuity of L} ¢ and Vo, we deduce that

limsup (L ¢)(2) — (LT ¢)(20)] < 2w(r).
r—xQ
Choosing r — 0, we deduce that
limsup |(LFp)(z) — (LT ¢)(z0)| <0,

T—xo

and then LT is continuous at all points o € €.

This ends the proof of the lemma. (I

4. NOTION OF VISCOSITY SOLUTIONS

We have seen how L behaves when applied to sufficiently regular functions and we are now ready to introduce
the notion of viscosity solutions. This notion follows the usual way of defining viscosity solutions. For a tour
on the theory of viscosity solutions see [9]. For further reading on viscosity solutions of non-local operators, one
can for instance consult [4].

Let

Lu=L"u+ L u
when it is well defined, which indeed is the case for u € C1(Q). We wish to study

Lu=f in Q
(4.1)
u=g on 0f)

with f € C'(R2) and g € C(99).

Definition 4.1 (viscosity sub/super/solution). Let a € (0,1] and f € C(Q).
We say that u is a subsolution (resp. supersolution) of (4.1) if u is an upper semicontinuous (resp. lower
semicontinuous) function from € to R such that

(i) uw < g (resp. u > g) on 09
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(ii) for any test function ¢ € C1(Q) N C(Q) satisfying
u<¢ on  (resp. u> )
and u(zg) = @(xg) for some z( € Q, then

(L) (o) = f(wo) (resp. (Lep)(xo) < f(w0))-

A function u : Q — R is a viscosity solution of (4.1), if and only if u* is a subsolution and w, is a supersolution.

We will say that a function u : Q :— R is a solution (resp sub- or supersolution) of (4.1) in Q if u only
satisfies condition (ii) in Definition 4.1.

Remark 4.2. We see that this definition make sense intuitively, since if u € C1(Q2) and ¢ € C1(Q) N Q touches
u from above at g, we would indeed have

(Le)(xo) = (Lu)(zo).
5. A REPRESENTATION FORMULA

In the homogeneous case, i.e., when f = 0, one can obtain an implicit representation of the solution, as
presented in the following lemma.

Lemma 5.1 (representation formula when f = 0). Let Q be a bounded open set, g € C(9R2). Define for x € Q
the non-increasing (in a) functions

T (a) = su g(y)7—a7 { (a) = inf g(y)i—a, and ly(a) = £ (a) + ¢ (a).
Hoy = sp SVt a) = g DO () = €3 (a) + 45 (a)

Then the function u defined by
g(x) if xedf
u(z) =
a with ly(a) =0 if vell
is a solution of (4.1) which is continuous on Q. Moreover, we have for all balls B CC €, the estimate
[ul1,B < C(a,||g]|L=(a0), diam Q, dist(B, 92)). (5.1)
Before giving the proof of Lemma 5.1, we need the result below.
Lemma 5.2 (| - |* is a distance). For a € (0,1], the function |- |* is a distance, i.e.,
la+ b7 < Ja]” + ],

Proof of Lemma 5.2. The lemma follows from the observation that the function f(r) = r< for r > 0 is concave
and non-decreasing. O

Proof of Lemma 5.1. We follow the ideas in [16]. From the definition of u, we deduce that

infg <wu(zx)<supg forall xe€Q
o9 o0

and then
L, =0, (u(z)) <0< i (u(z)) =L} forall zeQ.
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Step 1: first estimate when L} < L}
Let 1,22 € Q and let in € 0N) be such that

g(wy) = u(wa) = L, |25 — aa|*.
Then
g(@3) —ul@) < Ly, [ef — 21|
This implies
u(we) —u(z1) < L fef — | = L o3 — 22|
< LY (o3 — 2] = |ag — a2])
< Lf |y — x1|*,
where we have used Lemma 5.2 and L} > 0.

Step 2: second estimate when L} < L}
By the assumption on L} we have L > L, . Then

9(xy) —ulzr) = Ly, wy — o]
This implies
u(ze) —u(zr) 2 Ly |wg —x|® = Ly, oy — 22®
> Lo, (|23 — 21]™ — |og — 22]*)
Z L;2|1'2 - 1.1|Ot’
where again we have used Lemma 5.2 and L, < 0. This implies that
u(w1) —u(wg) < —Lg,|we — 21|* = LY |za — 21|

Step 3: estimate of Ltu
Adding the two steps above together, and interchanging the roles of x; and z2 we have

u(wz) —u(m) _ { Li, when L, < L,

|zg — 2] L;"l when le > L;"z.

This implies (LTu)(x1) = L}, .

Step 4: estimate of L™ u
This can be done in a similar way as for LT u.

Step 5: pointwise solution
Finally we get

(Lu)(21) = Lo, (u(z1)) = 0

which is true pointwise. In particular, this implies that u is a viscosity solution of the equation.
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Step 6: local continuity estimate for u
Assume b > a and take a* and bT such that
) _
g:ﬁ: (a) o g(a ) a’
| — a®|®

and similarly for b. Then

b—a _gbt)—a g(b)—b
- < {f(a) — L1 (b).
w5 = et e <@ 60

Hence,
b—a
(F(a) — 5 (b) > —r-
Ha) -~ 1) > s
After similar reasoning for £, one can conclude (using the fact that ¢ (a) is non-increasing in a)
2(b—a)
Ly lp(b) > ——- 2
(@) = ) 2 (52)
But for z,y € B CC ) we also have the inequality
[la(u()) = Lo (u(y)] < o (u(z)) — by (u(y))] + £y (uly)) — Lz (u(y))|
< C(O{, ||g||L°°(6Q)a dlSt(Ba aQ)”I - y|
Hence, with b = max(u(z),u(y)) and a = min(u(z), u(y)) in (5.2) we obtain
diam )< )
ju(z) ~ u(@)] < L6 g o dist (B, 9D e — .
This implies (5.1).
Step 7: u € C(Q)
It remains thus to prove that w is continuous up to the boundary. Assume z,, — x¢ € 992 and let
= _ 9lyr) —u(wn)
63371 - +
' |yn - xnla
for y= € 9. Since £4E >0,
9(yn) < ulaa) < g(y,h)- (5.3)

We also know that
Uy, (u(zp)) = 0.
This implies that the limit of £ is finite if and only if the limit of £, is finite.
If they are both infinite then we must have |y — x,,| — 0. Using this in (5.3) together with the continuity
of g implies u(x,) — g(zo) = u(wo).
If they are both finite then for some constant C

9(0) — u(wn)
|To — 20 |

c> limsupéj > > liminf 7, > —C.

This implies u(z,) — u(zp). This ends the proof of the lemma. O
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6. THE LIMIT p — 00

As mentioned in the introduction we will work with the so called fractional Sobolev space W*P(Q). This
space is equipped with the norm

|U|W”’Q)_|“|LPQ)+(// dady |“ ) |5p(+1)v|p)

We recall the following result which can be found in [10], as Theorem 8.2.

Proposition 6.1 (Sobolev embedding). Let u € W*P(Q) for s € (0,1) and s > N/p with Q a bounded Lipschitz
domain. Then with v = s — N/p we have

HUHCOW(Q) < Cllullwsr (.-

6.1. Proof of Theorem 1.1
A key result throughout this section is the following convexity inequality.

Lemma 6.2 (convexity inequality). For p > 1, there holds
| min(a, ¢) — min(b, d)|” 4+ | max(a, ¢) — max(b,d)|” < |a —b|P + |c — d|P.
For the sake of completeness we indicate a possible proof below. The idea is inspired by [15].

Proof of Lemma 6.2. The proof consists of, except in the obvious cases, observing that if a > ¢ and b < d then
there is 0 such that

c—b=0a-b)+(1—-0)(c—d), a—d=(1—-0)(a—0b)+0(c—d),

and using the convexity of the function ¢(z) = |2|P. The case a < ¢ and b > d can be treated in the exact same
manner. (]

The lemma below justifies the existence and uniqueness of minimizers for p large enough.

Lemma 6.3 (existence and uniqueness of a minimizer). Let a € (0, 1] and assume that Q is a bounded Lipschitz
domain. Consider g € C%*(9) and define the set

X,={ueC®Q), u=g on 0Q}.

Define the minimization problem

I*ulen)g E,(u), (6.1)

where
P

Ep(u) Lxgdzdy‘%

Then for any p > 2N/«, problem (6.1) has a unique minimizer u,. Moreover, for any function ¢ € C (), we

have
/ dzdy
QxQ

up(y) — up()
ly — x|

v {Sgn (up(y) — up(@))

ly — x|

} (oy) — p(x)) = 0. (6.2)
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Proof of Lemma 6.5. We first remark that there is h € X, such that E,(h) < oo which shows that I < oo.
Indeed, we can take one of the extensions from [13,17]

h(z) = s (9(y) — [glaoalz — y|*) € CO*(Q).

Let us now consider a minimizing sequence (u,),. We claim that we can assume |u,| < [|g||L(a0). Indeed, we
have by Lemma 6.2
Ep(max(un, [|9]| L @0))) + Ep(min(un, [[g][L~09))) < Ep(un),

and also min(u,, [|gl|z~0)) € Xy. In the same way we can show that the energy decreases if we cut u, from
below at —||g|| = (s0). Hence, we can assume |u,| < [|g]| L (a0)-
In addition,

Ep(un) < |9 ([Mag)” < Cla, [gla,00)-
From Proposition 6.1, we deduce that

[unllcoq @ < C ((E;D(un)); + |Q|H9||Loo(ag)) < C(a, [gla.09, 9]l (a0))

for vy =a — % > (0. Therefore, up to the extraction of a subsequence, we deduce that u,, converges to a limit

Up in C9B(Q) for B < 7. As a consequence we have up € Xg4. Since the integrand converges a.e. it follows by
Fatou’s Lemma that u, is a minimizer. The uniqueness follows from the strict convexity of the functional and
the fact that u, satisfies the corresponding Euler-Lagrange equation follows by perturbing with a test function
in a standard way. U

Now we will prove that minimizers are actually viscosity solutions, without knowing any regularity of the
minimizer except continuity. For an example where a similar result is proved see [7].

Proposition 6.4 (minimizers are viscosity solutions). Let p > 2a/N and if « = 1 let N > 2. Then the
minimizer of E, is a viscosity solution of the equation

Lyu(z) = /Q

Proof of Proposition 6.4. Take u to be a minimizer of E,. By Proposition 6.1, and the same arguments as in
the proof of Lemma 6.3 we have u € C(Q2). Now we need to prove that u satisfies the viscosity inequality. We
prove that u is a subsolution.

Take ¢ € C*(Q) N C(Q) touching u from above at zo € . Then we want to show that L,p(xg) > 0. Let

7 sen(uly) — u(@))

ly — x|

u(y) — u(x)
ly — x|

dy = 0.

©° = max(u,p —€)

and

v = min(u, — ).
Up to replacing ¢(z) by ¢(z) + d|x — xg|?, we see that for e small, we have p. = u and ¢ = ¢ — & on 9.
Therefore E,(¢:) > E,(u). Moreover, by Lemma 6.2

Ep(¢°) + Ep(ve) < Ep(u) + Ep(p —€) = Ep(u) + Ep(p).
Consequently, E,(¢°) < E,(¢). The convexity of E, then implies

Ep((1—t)p + %) < (1 =) Ep(p) +tEp(¢°) < Ep(p).
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Consider the convex function
f@t) = Ep(p+t(¢" — ).
Then we have

)= 10— ()

> f(0)

p() — o(y)
|z — vy

t
= /L...
2 [ (" = v+ (/Q

-y /Q (¢° — 9 + ) (2)(~ L) (x)da.

[e3

: (Sgn(ﬁw ;If(y))) ((¢" —p +e)(@) = (¢" — ¢ +e)(y)) dyd

P Csgn(p(x) — o(y)
( ) dy) dz

|z — y|*

p(z) — p(y)
|z —y|~

Now we argue by contradiction. If L,p(z9) < 0, then by continuity, which holds under our assumptions,
because of Lebesgue’s dominated convergence theorem, there is a small ball B,(x¢) such that L, < 0 in
B, (z¢). Moreover, when ¢ is small then supp(p® — ¢ +¢€) C By(xo). We also observe that ¢° > ¢ — ¢ and in
particular (¢° — ¢ 4 €)(xg) = . Hence, from the continuity of u, we see that there is a ball Bs(z¢) C B, (o)
such that ¢ — ¢ +& > 0 in Bs(xg). Therefore,

0> /Q(sf —p+e)(@)(—Lpp)(z)dx = /B (¢° — o +e)(@)(—Lpp)(z)dx

r(xﬂ)

> / (6" — ¢+ &) (&) (~ Lyg)(@)dz > 0,
Bs(xo)

which is a contradiction.
In the same way it can be proved that u is a viscosity supersolution. U

To prove Theorem 1.1 we need the following technical result, whose proof is given in Section 6.2.

Lemma 6.5 (convergence of the LP-norms). For ¢ € C1() let

_ #y) —o(ap)
N T

and
_ #ly) — pxo)
f(y)* |y—$0|0‘

where x, — x9 € Q) as p — 00. If a =1 assume in addition N > 2. Then

()

lim =
ly — ap|?

p— 00

= HerHLOO(Q)’
Lr(Q)

where f;t = max(+£fp,0). The same also holds for f, .
Now we are ready to pass to the limit in the equation.

Proof of Theorem 1.1. Since
By(up) < [QP[R]5 o
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we have with ¢ = 2N/a + ¢ for § > 0 that

2(p—q)

Eq(up) < BFIQI77 < [h]] ol

By the same arguments as in the proof of Lemma 6.3 we can prove that |u,| < ||g||~(q). Therefore, by Propo-
sition 6.1, u, is uniformly bounded in C%7(Q) with v = o —2N/q > 0. Hence, for a subsequence, again labelled
u,, we have u, — u in C(Q).

Consider a test function ¢ € C1(Q) N C(Q) such that
us @,
u(zg) = p(xg) for some xy €,

and assume towards a contradiction that

(Lp)(zo) < 0. (6.3)
Up to replacing ¢ by ¢ + | — x0|? for § small enough, we can furthermore assume that o is a point of strict
maximum of u — ¢. Then

sup (up — @) = (up — @) (zp) = My

with
Tp — To, Mp— 0.

This shows that
up < @p 1= My + @,

up(zp) = p(Tp)-

By Proposition 6.4, u,, is a viscosity solution, therefore

0 < (Lpwp)(xp) = (Lpp)(Tp)-

We recall that

B ely) — plap)
0< (chp)(xp)*Q/Qdy ' |y — zp|®

Pl {sgn (p(y) - 80(%))}.

ly — xp|®

Written in another way we have

< oY) = olxy) >+ N ( ) = ¢l) )
|y*5‘3p|a+ﬁ B |y*m10|a+ﬁ

Lr=1() Lr=1(Q)

Lemma 6.5 now implies that we can pass to the limit in this inequality. Hence, we obtain

o o (S5550)) o o (2220

Since  is O at z it is clear that =(L¥p)(x) > 0. Combined with the last inequality this implies,

(Lg)(x0) = 0,

which contradicts (6.3). In the same way it can be proved that w is a supersolution.
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By (ii) in Theorem 1.5 the solution w is unique, so the whole sequence converges to the solution. Moreover,
by (iv) in Theorem 1.8 we have

[U]a.g = [9]a,00-
This ends the proof of the theorem. O

6.2. Proof of Lemma 6.5
In order to prove Lemma 6.5 we first need the following result.

Lemma 6.6. For p € C1(Q) let
o(y) — o(zp)
fo(y) =
! ly — xp|®
" (v) — olzo)
y) — o(x
fly) = L0
ly — ol
where x, — x9 € ) as p — oco. In addition, let

£ = max(£fp,0)

and assume
sup ft > 0.
Q

Then for any
0<t<supfh
Q

there is a pg < oo and ¢ > 0 such that
|{fz;|r > t}‘ > e,
for all p > po. The same also holds for f, .

Proof of Lemma 6.6. For oo < 1 this is obvious since f}, will be uniformly continuous and then also f; . Therefore
we treat only the case @ = 1. By arguments identical to those in the proof of Lemma 3.5 one can prove that

sup f,7 — sup 7. (6.4)
Q Q

Since ¢t < sup, f1, there is a sequence z, such that f; (zp) >t + ¢ for € small enough. We split the proof into
two cases.
Case 1: z, — xo.

By Taylor expansion we have t +¢/2 < |V(xg)| for p large enough. We also have for all y

fo(y) > V(o) - |‘Z — i; — Oly—a,| (1) = 0jz, | (1)-

Therefore, if we choose p large enough and y such that oj,_,,|(1) + 0}, —4,|(1) < €/4 and

Yy—Tp
ly — ap|

Veo(zo) - 2 |Ve(xo)| — /4

then f,(y) > t. Clearly, this set of y:s has positive measure, independently of p, as long as p is large enough.

Case 2: z, — 2 # xp.
In this case, for p large enough, there is a § such that f;r is uniformly continuous in Bj(zp), uniformly also
in p. Consequently there is ¢, independent of p, such that f;r >t in Bs(zp). O
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Proof of Lemma 6.5.

Case 1: supg, f+ > 0.
Take
0<t<supft
Q

and let
Alt,p) =1{f > t}.
By Lemma 6.6, for p > po, |A(t,p)| > ¢ > 0 with ¢ independent of p. Therefore

+)P
/ L = t”/ L, ¢ .
aly —pl® Atp) [y —zp|* — (diam (92))*

This implies

+ :
Lﬁ >t (;) .
a7 | g \(diam (D)
For the other side of the inequality we have
(f3 )" 1
— < sup(f+)p/ ———— < Csup(f;)P.
/Q|yzp|a a P Jaly—apl o P
Thus
+ 1
P < Cvsup f —sup fT, (6.5)
|y - xpl P Lp(Q) Q
where we have used (6.4) for the convergence. All together we have
- 1y : 1y N
t < liminf = < limsup = <supfT,
vy =l gy e [l = 2l g
for all

0<t<supft.
Q
This implies the desired result.

Case 2: supg fT = 0.
Then (6.5) implies the result. O

7. LIMITS OF VISCOSITY SOLUTIONS

In this section we prove the result that says that limits of subsolutions are again subsolutions.

Proposition 7.1 (stability of subsolutions).
(i) Consider a family (F.). of sets F. of subsolutions of (4.1) in Q and define for any xo € Q

u(zg) = lim sup ue (),
e—0, z.—x0, u:EF:

which we assume to be bounded from above. Then W is a subsolution of (4.1) in €.
(ii) Moreover, in the special case where the sets F. = F are independent of €, then we have

u=v" with ©(x)=supu(z) foral zcQ.
uel
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In fact, we will only be using the second statement of this proposition, but we give the full result since it can

be of general interest.
To prove the proposition, we will need the following:

Lemma 7.2 (perturbation by a small parabola). Let p € C1(Q) and define for some xo € Q and § € R

() = p(x) + d(z — z0)*.

|

Then, with the notation R = diam Q) we have
(LP)(z) — (Le)(z)| < 4|6|R*™®  for every = € Q.
Proof of Lemma 7.2. Consider points y,x € Q\ {zo}. We deduce

3y — x0)% — §(x — x0)?
ly — x|

y—x .
|6|‘7|y—x|“ (y 4+ x — 2x0) §2|5|R2 .

This implies for z € Q\ {zo}
(L¥9)(2) — (L) (2)] < 2/6|R**
and then
(L?)(2) — (L) ()] < 4|5| R~
This ends the proof of the lemma.

Proof of Proposition 7.1.

Preliminary: u is upper semicontinuous
Consider a sequence (z.). such that . — xg as ¢ — 0 and

w*(xo) = Ehi% u(xe).
In particular, for any § > 0, there exists a point x5 such that
u(zg) — 0 <u(xs) and |xs — x0| <6
By the definition of @, there exist a sequence y. and a function u. € F' such that for € = g5 < § we have

u(xs) — 0 < uey(ye,) and |z — ye, | < 0.

Therefore
T (20) — 20 < ey (Yey )y |Yey — 0| <26 and g5 < 0.
Since this is true for any § > 0, this shows that

u* (IQ) < ﬂ(IQ)
and then @ = u*.
Part I: proof that u is a subsolution _
We argue by contradiction and assume that there exists ¢ € C1(Q) N C(Q) such that
u<¢ on

with @W(zo) = w(x0) and (Ly)(z¢) < f(xo) for some zg € 2.
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Step I.1: reducing the problem to a point of strict maximum
Let us set for § > 0

P(2) = p(x) +d(z — 20)°
such that xg is a point of strict maximum of @ — @. From Lemma 7.2 we deduce that

(LP)(x0) < (Le)(wo) +46R*™* < f(x0) (7.1)

if ¢ is chosen small enough.

Step 1.2: coming back to the e-problem
Let us choose a sequence ¢ with z. and u. such that

u(zo) = Ehi?((l) ue(xe).

Then let us set _
M. = sup (ua - @)(x) = (ua - @)(ya) with  y. € .
zeQ
Because z is a point of strict maximum of w — 9, it is classical to realize that M. — 0 and y. — x(. Let us set

P (:C) = M. + ®.
Then we have
Ue < P,
and
“E(ye) =¥ (ye) (7'2)

which implies (LP)(y:) > f(y-), where we have used the fact that Ly, = Lp.

Therefore, by letting y. — x¢ we can conclude that (Lp)(zg) > f(x0). A contradiction to (7.1).

Part II: proof that w =" when F. = F

Step 1I.1: ©w > "
By definition we have
u(xg) = lim sup e ().
e—0, xc—x0, uc€EF
Setting x. = xg, we see in particular that @ > v, and then @* > 7*. Using the fact that @ = ©*, we deduce that
u>vt.

Step T1.2: T < 7"
Let us fix zp € Q and sequences ()., (u:). such that

u(xg) = lir% uc(x:) and x. — .
E—
In particular, for any § > 0, there exist £5 such that
u(xg) — 0 < wuey(xey) <T(xsy) and  |zey — o] < 4.

This implies that 7*(x¢) > (o), i.e.

*

N
IN
<|

Step 11.3: conclusion
We conclude that w = v*.
This ends the proof of the proposition. O
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8. BARRIERS

In order the prove the existence of solutions we need barriers, i.e., sub- and supersolutions. This section is
devoted to the construction of barriers.

Lemma 8.1 (fundamental supersolutions). Consider a bounded open set Q such that 0 € Q. We also choose
R > 0 such that

Q C Bg(0). (8.1)
Then for « € (0,1], the function
¥ (z) = ||
satisfies
0> —0(z) > (LY)(z) for e

where when o € (0,1), we can choose

pt—1
(p—1)*

Proof of Lemma 8.1. We simply estimate (LW)(x) for every = € Q. We first remark that

—o(x):=-1+ <0 with p=R/|z|

- e ol
L U)(z) <liminf —+——— = —1. 8.2
(L W)(a) < limipf B (5.2

On the other hand we have with e = z/|x|

(LTW)(z) = sup 7|y|a,|x|a

yeQ, y#a ly — ]

2" — 1

|z —e|]

sup
2€Q/|z|, z#e

|2 — 1
< sup P
z€RN, 1<|z|<R/|x| |z — el

r¢ —1
= sup ———,
1<r<R/lz (r — 1)

where we have used for the last line the fact that |z — e| > ||z| — |e||. Now we set

r¢ —1
Q(T)-*W

and compute
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In particular for r > 1, we get ¢’(r) > 0 and moreover
g'(r)>0forr>1ifae(0,1). (8.3)

This implies that
(LT0)(z) < g(R/|2])
where g(R/|z|) < g(oco) =1 and moreover g(R/|z|) < 1if o € (0,1). Joint to (8.2), this proves the lemma. [

Lemma 8.2 (fundamental strict supersolutions for o = 1). Let a = 1. Consider a bounded open set § such
that 0 € 0Q2. For e > 0 we set

U, (2) := |z| — e|z|?
Then we have
0> —¢clz| > (LY.)(x) forall x €.

Proof of Lemma 8.2. We proceed as earlier. We have

lyl — elyl? = (2] — elf*)

L V) (x) < liminf = —1+¢lx|. 8.4
( (@) < m iy =2l || (8.4)
On the other hand we have with e = z/|x|
_ 2 _ _ 2
Cw) - sy el = (el = claP)
yeQ, y#x |y*=fE|
—ElP = (1—¢
L lzEP-a-9
€T Jal, e [z —e
(2] —elzl2 - (1 —)"
< sup
€RN, 1<|z| 2] = lell
1 F(r2 _
gsupr 1—2(r 1)

1<r r—1

=sup 1—¢&(r+1)
1<r

=1- 2,

where in the second line we have set
€ =¢lz|
and where in the third line, we have used the fact that |z —e| > ||z] — |e||. Joint to (8.4), this shows that

(LTW.)(z) + (L™ V) (x) < —¢lz] <0

which ends the proof of the lemma. O

We see that the strict sub- or supersolutions we have constructed above are not uniformly strict as we
approach the origin z = 0. However, if we demand less regularity, it is possible to construct strict sub- and
supersolutions that remain strict when approaching the origin. These sub- and supersolutions will be useful
later.
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Lemma 8.3 (less regular strict subsolutions/supersolutions). Consider a bounded open set Q0 such that 0 € 9.
For 0 < 8 < a€(0,1], the function
() = |z|?
satisfies
—0(x) > (LY)(z) for x€Q
where
§(z) = Cla, B)|z]P~* > 0.

Proof of Lemma 8.3. We proceed with the same computations as in Lemma 8.1 and obtain

(L70)(2) <~z

and 5
-1
LTU)(2) < |z|?*su -
(L)) < ol sup T
Now let 5
rP —1
h(r) = ———-

Clearly, g — 0 when r — co. So for R large enough, r > R implies g(r) < 1/2.

Case 1: a € (0,1)
When r < R we have

where we have used (8.3). Therefore,
(LYW)(x) < max(h(R),1/2)|z|?~* < |z|°~°.

Case 2: a =1
We have h(r) — h(1) = § as r \, 1. Moreover, h(r) < 1 for r > 1. Therefore,

sup h(r)=Cy < L.
1<r<R

This implies
(LYW)(x) < max(Cy, 1/2)]z|?~ < |=|P~.
Hence finally, in both cases
(LT)(2) < —C(a, B)la] " O

Lemma 8.4 (natural subsolutions/supersolutions with boundary conditions). Let f € C(Q) N L*>°(Q) and
g € C(09Q). For € (0,a), z0 € RY and a,b € R, we define

Ugg.a,p(T) = a+ bz — :c0|5.

Furthermore, let

Ugo.ab  Jor (xo,a,£b) € (00) x R x (0,00)
such that

FUzg,a,4b > g on 0N

TLugy e+ <E£f in Q

and define for all x € Q

v(z) = uiensf+ u(z), o(x)= seu;l u(x).
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Then v € C(Q) is a supersolution and v € C(Q) is a subsolution of (4.1).
Moreover, we have
v<v on (8.5)
and
v=g=uv on Of. (8.6)

Proof of Lemma 8.4. Let us show that ¥ is a continuous subsolution satisfying (8.6), the proof being similar to
show that v is a supersolution.
Step 1: 7* is a subsolution

From Lemma 8.3, we first deduce that for g € 912 if a and b are chosen properly, then g, . € S™. This
shows that S~ # ). On the other hand if uy, 4, € S~ then

a < g(xo) <supg,
o0

which implies that for all © € S~ we have

u < supg.
a0

Therefore, applying the stability result (Prop. 7.1), and setting F. = S—, we know that

u(x) = lim sup ue(xe) (8.7)
e—0, re—T, UsES™
is a viscosity subsolution. Moreover we have 7% = .

Step 2: v > g on 02
For any z¢ € 99, and any 0 > 0, we see (using the continuity of ¢) that there exists bs > 0 large enough such
that with as = g(xo) — J there holds
Ugg,as,—bs < g on 0L

Therefore
(x) > g(xg) — 0.
Since this true for any ¢ > 0, this implies that

v(x0) > g(wo)

and then
v>g on ON. (8.8)

Step 3: 7. =7 on Q
Let zg € Q and take a sequence of functions (us)s with us € S~ such that
T =1 .
v(x0) lim ugs(xo)
Now consider a sequence (x.). of points . € Q such that
Uy (z0) = lim (. ).
e—0

Then we have

which implies
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Taking now the limit 6 — 0, we get
V4 ($0) > 5(350)
and then

<

Vy =

Step 4: 7* =7 on _ B

From (8.7), we deduce that for any xg € €, there exist a sequence (y. ). of points y. €  such that y. — xg
and a sequence (uc ). of functions u. € S~ such that

v (20) = gil)%“es(?k)- (8.9)

We write
ue(z) = Uze,ae,—be (z) = ac — belr — I6|ﬁ
with a. € R, b, € (0,00), 2. € IN.

Case b, — >
Since a. < supq g and 7*(z) < supg g we deduce that |y. — xzc| — 0 which shows that

r. — xg and xzg € 0.
On the other hand we have u.(x.) < g(x.) which means

as < g(ze).

Therefore
us(y:) < a: < g(z2).
Passing to the limit as € goes to zero, and using the continuity of g, we deduce from (8.9) that

v"(20) < g(wo) < V(wo)
where we have used (8.8) for the last inequality. This shows in that case that
v* (xo) < E(CCO).

Case b, bounded
Because of (8.9), we see that a. is bounded. Then up to extraction of a subsequence, we can assume the
following:
a: — a €R,

b: — b e [0,00),

Te — Xg.
Therefore, with
U = Uzg,a,—b
we get
¥ (x0) = uo(xo) < (o)
and then we conclude in every case that

o*

=7 on .
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Step 5: intermediate conclusion _
From the previous steps, we deduce that © € C(Q2) is a subsolution.

Step 6: proof of T < v on
Step 6.1: v~ <ut

Let us consider ut = Uyt at bt € Standu™ =u - € S~. By assumption we have

Ty ,a7
u <g<u" on 00 (8.10)

We want to show that
u” <ut on Q. (8.11)

Let us proceed by contradiction. If this is false, then we have

0<sup (u” —ut)=(u" —ut)(yo) for some point yo € N (8.12)
z€Q
and then
V(u™ —u")(yo) =0,
i.e., for x = yq
R ey )
|z — aq | |z — g |

This implies that yo € [z, 2], because b* > 0. Let us call I = (27, 2%) the connected component of [y, z{ ]N<
containing yo. In particular since 3 € (0,1), u~ — u™ is strictly convex on I and reaches it maximum at the
interior point yg € I. This gives immediately a contradiction.

Step 6.2: conclusion B
From (8.12), we deduce that for any = € Q

u- €S
and then
— < . f + —
7o) < inf ut (o) = ula)
Therefore
T <wvon Q. (8.13)
Step 7: proof of 7 =g = v on 9}
Similarly to (8.8), we show that
v < g on 0f)

Therefore from (8.13), we deduce that

and then

This ends the proof of the lemma. O
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9. PERRON’S METHOD

In this section we construct the solutions applying the Perron’s method.

Theorem 9.1 (existence by Perron’s method). Let u~ € C(Q) be a subsolution (resp. u™ € C(Q) be a
supersolution) of (4.1) with continuous boundary data g, satisfying

u” <ut on Q,

u=g=u" on 09.

Define S = {u subsolution of (4.1) such that v~ <u < ut on ﬁ}

and for all xg € Q

u(xg) = limsup  we(xe).
e—0,x:—x0, W €S

Then u is upper semicontinuous on 0 and U is a viscosity solution of (4.1) in Q. Moreover, T satisfies

uw<u<u" on Q. (9.1)
Remark 9.2. From Lemma 8.4, we can set u~ = % and 4+ = u and then Theorem 9.1 provides the existence
of a solution.
Proof of Theorem 9.1.

Step 1: construction of the maximal subsolution on
By assumption we have S # (), because u~ € S. Applying the stability property of subsolutions (Prop. 7.1),
we deduce that @ is a subsolution on . Finally, by construction, we get (9.1).

Step 2: u, is a supersolution on (2
Let us proceed by contradiction and assume that 7, is not a supersolution on (2. Then there exists a test
function ¢ € C*(Q) N C(Q) and a point zg € Q such that

Uy > @ on ﬁ,

9.2)
U (z0) = (T0).

and wu, is not a supersolution at the point x, i.e.
(L) (xo) = 0 + f(z0) > f(z0). (9.3)

Step 2.1: T.(zo) < ut(z0) B
We already know that 7 < u® on Q, and then

If Uy (z9) = ut(z9) and o € Q, then ¢ is a test function for u™ which is then in contradiction with the
supersolution property of ut at xg. Therefore we have

Uy (z0) < ul (20). (9.4)

Step 2.2: preliminary
Similarly to what was done in Step 1 of the proof of Proposition 7.1, we can set for § > 0

ps(2) = p(x) = blz — zof*.
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From the result on perturbations by a small parabola (Lem. 7.2), we deduce that for § > 0 small enough, the
exists a radius p > 0 such that

(Lys) >0/2+ f>f on B,(xg) C (9.5)

In particular, we see that zq is a point of strict minimum of w, — 5. We set for n > 0
uy(z) = max(u(z),n + ¢s(x)).
Let us consider a point yo € €2 and a test function 1 € C1(£2) N C(Q) such that
u, <1 on Q,

uy(yo) = ¥ (Yo)-

Step 2.3: u, is a subsolution on {u, =u}
Let us assume that yo € {u, = u}. Because u,, > @, we deduce that 1) is also a test function for @ at yo and
then w,, satisfies the subsolution property at yo with the test function .

Step 2.4: u, is a subsolution on {u, >} N
When 7 > 0, let us choose » > 0 such that
n = orl. (9.6)
This implies that
0+ ¢s(x) < p(2) <T(w) <T() i @& Bulng) N0
and then
{uy, > 7} C By(x0) C By(xo) C Q,

if we choose 1 small enough such that r given by (9.6) satisfies
r < p. (9.7)

Assume that yo € {u, > u}. Because u, > 1+ @5, we deduce that v is also a test function for 7+ ¢s at yo and
then

(L) (yo) = (L(n + ¢5))(yo) = (L#s)(yo)-
From (9.5) and for the choice (9.7), we see that

(Lws)(yo) = 0/2+ f(yo) > f(yo)-

This shows that u, is a subsolution at yp.

Step 2.5: conclusion _
Therefore u,, is a subsolution on Q. On one hand we deduce from (9.4) that

n+es <ut on Q

for n > 0 small enough, and then

ufgungzﬁ on Q.
This shows that u, € S for 7 > 0 small enough, and then u, <. On the other hand, by definition of @, there
is a sequence of points x. — z( such that

(o) = limu(ze) > lim uy(ze) > limn +¢(z) = 0+ @(a0) = 1+ U (20),

—
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which is a contradiction. We finally conclude that u, is a supersolution on §2, and then u is a viscosity solution
on 2.

This ends the proof of the theorem. O

10. REGULARITY PROPERTIES

10.1. Continuity of subsolutions
First out is the result that all subsolutions are actually continuous.

Proposition 10.1 (viscosity subsolutions are continuous). Let f € C(2) N L>(Q). If u is a subsolution of
(4.1) then u € C().

Proof of Proposition 10.1. The proof is divided into several steps.

Step 1: discontinuity at xg

We proceed by contradiction and assume that there exists a point z¢ € Q and a sequence (z. ). such that for
some ¢ > 0

u(ze) <wu(rg) —35 and 2z, — xp.
Because u is upper semicontinuous, for each point x., there exists r. > 0 such that

u<u(ze)+d <ulxg) —20 on B, (x.). (10.1)

Step 2: construction of a first test function ¢
Because u is upper semicontinuous, for any n > 0, there exists p,, € (0,1) such that

u < u(zo)+1n on By, (x0) C Q.
Consider a test function ¢ € C(Q) satisfying
¢ =u(ro) +n on B, (x0) CCQ,

@o>u on £

Step 3: the first perturbed test function
Let us now consider a function 1 satisfying

¥ € CH(R),
0<9(-2) =9(z) <2,
Y»=0 on R\[-1,1],
P(1/2) =1,

' <0 on (0,1),

$(0) = 2.

Put
U(2) = (le) and M= sup [VE(z)],

T€RN
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and define for A > 0

UY = U((x—x)/N).

Te

Choosing the sequence 7. such that r. — 0 as € — 0, we know that for £ small enough we have

B,.(z.) C B, a(x0). (10.2)
We then define

u? = ulwo) +n —n¥y,
and we set

Ae =sup A, with A, := {)\ >0, u< u? on Bpn(xo)}.
From (10.1), we deduce that if X € (0,r.], then A € A, if n < . Moreover for
e = 2|z, — 0]

we have u¢(zo) = u(xo) and therefore \. ¢ A.. Moreover we have Bx_ (%) C B3ja,—a,|(20) C Bay, ja(z0)

because of (10.2). Therefore for any 0 < A < A, we have

u? = u(zo) +7 in a neighborhood of 0B, (x). (10.3)

Thus, there exists A\c € (r-, A] and y. such that

u<ud on B,, (o),
(10.4)
u=ul: at y. € B\ (z:) CC B,, (o),

and due to (10.1) we can see that y. & By_(z.). See Figure 1 for a possible situation. We now define

ud > u(zo) —n  if x € B, (w0),
pe(r) = _
© if ze Q\Bp?7 (x0).
This can also be written as
pe = — ).

Because of (10.3), we see that . € C*(Q) and satisfies

Voe| < Mn/X. on By (xz:) CC Bpn (o)
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FIGURE 1. One possible situation of the chosen test functions.

and in particular we have with A\, < A, = 2|z. — x| < 1/2 for ¢ small enough

(LF ) (ye) sup , sup

yEQNBA, (), y#ye Y — yel yEQ\ B, (z:) Y — el

IN

sup , sup

. =02 (y) + e (ye) e(y) — o(ye) + 1P (ye)
yEQNBi, (z:), y#ye ly —yel* yEQ\Bx, (zc) Y = ye|*

IN

705 (ye) )

Mn
max <W7 (LFo)(y=) + o)e

IN

max 2Mn + 211
(e @00+ 5)

2M _
sup  (LT)(x) + o )Z with M = max(M,1).
meBPn (z0) €

IN

Step 4: the second perturbed test function
Define (with 6 > n)

O, = — (6 — 77)\1"255 < ©e
which by (10.1) and (10.4) satisfies
P (ye) = ulye) = = (ve),

u< o,.
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Therefore

(LY 0.)(ye) < (LTe)(ye) < sup (LTo) +
Bi(zo)

(he)™

Step 5: estimate of L~ P,

We have Bo(en) — (o)
— e(Te) — Pelle
L Q) (ye) < ——/———
(L™ ®)(ye) P
Using the fact that ®.(z:) = u(zo) + 1 — 20, Po(ye) = 0e(ye) > u(xo) — n and (10.4), we get
2(0 —n)

(L™ ®c)(ye) < *W'

Step 6: conclusion -
For the choice n < /(M + 1) and using the fact that A\ — 0 as € — 0, we see that

(LO:)(y-) = (L™ @) (ye) + (LT @) (ye) < f(ye)

for € small enough. This is in contradiction with the fact that u is a subsolution.
This ends the proof of the proposition. O

As a consequence we obtain the continuity of the solutions constructed by Perron’s method.
Corollary 10.2. The solutions constructed in Theorem 9.1 are continuous on Q.

Proof of Corollary 10.2. By the previous proposition, any subsolution and thus any solution is continuous inside
Q. By construction, since the solutions is trapped between v~ and u™, the solution is then also continuous up
the boundary. 0

10.2. Uniform regularity
First we present a comparison result for certain sub- and supersolutions in “domains minus a point”.

Lemma 10.3 (comparison). Let xg € Q0 and assume that u is upper semicontinuous and that in the viscosity
sense there holds
Lu>f in,
{ Lv<f inQ\{zo},
with the boundary condition
u<vondQU{xo}.

Ifve CHQ\ {zo}) NC(Q), then u < v in .
Proof of Lemma 10.3. We argue by contradiction. If the assertion does not hold, then there is a point y €

Q\ {z0} so that u — v attains a positive maximum at y. If v € C(Q), v will essentially be a test function for u
which gives a contradiction. If we assume only v € C1(Q\ {x0}) the result can be obtained by approximation. [J

We remark that due to this result combined with Lemma 8.3, we can compare solutions to “Holder cones”
of the type C|z|? for B < a < 1. Furthermore, if we are dealing with the homogeneous equations, we can take
B = a due to Lemma 8.1 (and for & = 1 we had the special construction in Lem. 8.2).

Proposition 10.4 (bound in L*®). Let f € C(2) N L>®(Q), g € C(9N) and u be a viscosity solution of (4.1).
Then there is C(c, ||g]|Loe(90), | fll Lo (0), diam Q) such that

lull Lo (o) < C.
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Proof of Proposition 10.4. Fix 8 € (0,«) and xg € 99, and let
v(x) = a+ bz — x0°,

where
a > |[gllz= (a9
and b is chosen so that
Lo < —| fllL=(s-
This is possible if § < « due to Lemma 8.3, choosing b such that

—bC(a, B)(diam Q)7 < —|| f[| (0.

Then we are in the situation of Lemma 10.3 which implies * < v in €. Similarly we can obtain a bound from
below. 0

Proposition 10.5 (partial regularity of solutions to the inhomogeneous equations). Let f € C(Q) N L>(Q)
and u be a continuous viscosity solution of (4.1). Then for all 0 < 8 < «, for all compact sets K CC € and
with d = dist(K, 9Q) we have

2l 1z oy (diam 27
<
wmj«_nwx< e ,

where C(a, 3) is defined in Lemma 8.3. If moreover, g € C%P(99). Then

[u]g.0 < max | [|g]|co.s | £l oo () (diam €2)>—F .
3,9 > gllco.8(60)s C(a,ﬂ)

Proof of Proposition 10.5. For the first part, take x¢o € K and

i C||U||Lw(9)

7 |z — xo®

v(x) = u(wo)
with C' > 2 and so that Lv < f in Q\ {zo}. This C can be chosen uniformly with respect to the point xy € K.
It is sufficient to assume Cllul
Ul Loo(Q2 . _
T()C(aaﬁ)(dlam D)= > || fll L (-
Then for x € 02 we have

Cllull

Cllull (o) o (Q)

u(@) = o) = u(z) - u(wo) — —— LDz — 0|7 < 2full (o) -

Hence, by Lemma 10.3, u < v everywhere. Similarly we can obtain a bound from below of u(z) — u(xo). This
concludes the first part.
For the second part, let 2y € 92 and

v(x) = u(xo) — Clz — zo|°.

Clearly, v(z) < u(x) for any z € 9Q and Lv > f when C is large enough (since g € C%* and due to Lem. 8.3).
Indeed, choose C' such that

C > [glpoo and CC(a,f)(diam 2)"~* > || fl|L=(0)- (10.5)
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Thus, Lemma 10.3 implies v(z) < u(x) for all z € . Written differently, we have for any g € 9Q and x € Q,
u(z) < u(z) + Cla — xo|® = w(zo).
Thus, Lemma 10.3 applied with w implies (becase of (10.5))
u(y) < u(@) + Cle —y|”,

for any z,y € Q. Applying the same arguments to —u, implies a similar bound from below of u(y) — u(z), and
thus the proof is finished. O

Proof of Theorem 1.8. Part (i) follows from Lemma 5.1, part (ii) follows from Proposition 10.5 and part (iii)
follows from Proposition 10.5.

For part (iv), the result follows from the exact same arguments as in the proof of Proposition 10.5 with
8 = a and C = [¢g]a,00, using Lemmas 8.1 and 8.2. The reason why we can do this for the a-barriers is simply
that we do not need to compare with solutions having big or small operators L, since we are dealing with the
homogeneous case.

Alternatively, one can apply the estimate in Proposition 10.5, taking f = 0 and letting 8 — «. ]

Remark 10.6. As remarked by Luis Silvestre, when f = 0, we obtain an optimal Holder extension of g, for all
exponents (3 < «, and this holds also true for A...

In fact, following the proof of Proposition 10.5, one realizes that something similar holds for a general operator
A (non-local or local) under quite mild assumptions on A, if we can find a strict supersolution (away from the
origin) v regular enough to be admissible as a test function such that

v(x) =v(|z]),v(0) =0,v >0 and |g(x) — g(zo)| < Cyrv(z — xp).
Then if Au =0 in Q and v = g on Jf2 there holds for all x,zy € Q
lu(z) — u(zg)| < Cyrv(z — xp).

11. UNIQUENESS

Finally we prove a uniqueness result under the same assumptions as in Lemma 5.1. The idea is to compare
sub- and supersolutions to the solution given by the representation formula in Lemma 5.1, which then yields in
the uniqueness.

Lemma 11.1 (convolution and Lipschitz with respect to the distance |- |%*). For o € (0, 1] assume that

%SL for ally,x € B;(0).

In addition, let p. be a mollifier ([ pe =1 and p. > 0) with support in B.(0). Then u. = p. * u satisfies when
e<r

ue(y) — ue(x)

<L foral y,x€ B,_.(0).
ly —z|*
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Proof of Lemma 11.1. For all z,y € B,_.(0), we have with y =z + h
ue(x + h) —ue(x) = (pexu)(x + h) — (pe * u)(x)
= [d2pe(2) {ule + h— 2) — ue — 2)}
< [ dzp.(=)LInJ"
= L|h|~.
This shows exactly the expected result. O

Proposition 11.2 (comparison when f = 0). Under the hypotheses of Lemma 5.1, take u to be the therein
implicitly defined solution and v a subsolution (resp. a supersolution) of (4.1). Then u > v (resp. u < v).

Proof of Proposition 11.2. We give the proof for the case when v is a subsolution, the proof being similar when
v is a supersolution.
Step 1: preliminaries

We first observe that we can apply steps 1-4 of the proof of Lemma 5.1 to obtain

(L*u) (@) = £ (u(2). (11.1)

Assume that
M =sup (v—u) >0

[9)
and consider the set

Ko={z€Q, v(z) —u(z) = M}.

Because v € C(Q) and v is upper semi continuous, we see that the compact set K satisfies
Ky cc Q.
For some fixed § > 0 small enough, let us consider a compact d-neighborhood Kgr of K| satisfying
Ky CC K ccQ

and a d-neighborhood 25 of 2. We first extend u on {25 by a continuous function still denoted by u. Since u
is continuous on € this can be done thanks to a theorem of Lebesgue, found in [11]. In fact there is also an
explicit extension
text (%) = nf (w(z —y) +u(y)),
yeQ
if w, the modulus of continuity of w on £, is assumed to be continuous. If w is a distance, then eyt is
C“-continuous, otherwise it might have a slighty worse modulus of continuity.
Then consider a mollifier p.(x) and set
Ue = Pe * U
and
M. =sup (v—u.)>M/2>0
Q
where the bound from below holds for & small enough. Moreover we also have

K.:={zeQ, v(z) —u(z) = M.} CCK] ccQ
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for £ small enough. We then deduce that
v < Mg +u: =t @,
v=¢, on K.
On the other hand, by the upper semi continuity of v, there exists a neighborhood V of 9§ in Q such that for

¢ small enough
v<u.+M/8 on V CQO\Kj;.

Let 1 € C*™(RY) such that
Yv=1 on 09,

Y»=0 on Q\V,

Then set

which satisfies
U < P,

v=p. on K.

Therefore for any z. € K., ¢, is a test function for v at z., and then
0 < (Lde)(xe).

Step 2: limit for L™ _
Up to extraction of a subsequence, we have x. — z¢ € (2. Moreover u. converges to u uniformly on 2, and

M
then M, — M. From Lemma 3.1 (ii), we deduce with ¢g = M + u — Zw that

limsup (L™ @) (ze) < (L™ @0)(x0)

R I

g 9W) = M/ - uao)

T yeon ly — o|®
< (L7u)(xo) —dp with 9y = M . (11.2)
4supycoq |y — xol®
Step 3: limit for LT
We have
(L+§55)(Ie) < (L+()06)(x6) = (L+U’€)(I6)' (11'3)

For any x € Q let us set
—u(x
L-zi- — sup 9(y) i )
yeoo |y — |
From the continuity of u, we deduce that the map = +— L} is continuous on €. In particular for any n > 0,

there exists r > 0 such that
ILF — Lt <n forall z e B.(x)CC .
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We also recall that due to (11.1), for all € Q we have
u(y) —u(z) < Lfly —z|* forall yeQ
and then for all z € B,.(x0)

u(y) —u(z) < (LI +n)ly —z|* forall ye Q.

0

Up to choosing 0 small enough, we can always assume that the extension u on s satisfies for all = € B,.(z0)

u(y) —u(z) <aly —2z|* forall yeQs with a= (L} +2n).

0

Lemma 11.1 implies for £ small enough that
ue(y) —ue(z) < aly—x|* on By s(xo).
Now, choose & small enough such that |x. — 2| < /4. Then we have
(LJFUE)(:EE) < max | a, sup Lusixs) :
Ye\B, a(ae) 1Y~ Tl
Therefore we deduce from the uniform convergence of u. towards u that
lim sup(L T u.)(z.) < max | a, sup Lﬁb(io) =a=L} +2n.
e—0 YEQ\B,/4(z0) [y — ol
Since this is true for any n > 0, we obtain

limsup(LT . )(z.) < limsup(Ltue)(z.) < L+O = (L u)(xo). (11.4)

xr
e—0 e—0

Step 4: conclusion
From (11.2)—(11.4), we deduce that

limsup(L@e)(ze) < (Lu)(xo) — o =0—3dp with o > 0.

e—0

This is in contradiction with the property Lu = 0 satisfied by u pointwisely.
This ends the proof. O

Remark 11.3. In the proof above, the essential key is the fact that the supremum and the infimum in L*u
are attained on 0f) for the solution given by the representation formula in Lemma 5.1.

Proof of Theorem 1.5. Part (i) follows from Theorem 9.1, Remark 9.2 and Corollary 10.2, while part (ii) is an
immediate consequence of Proposition 11.2. O

12. GENERALIZATIONS
12.1. Replacing 2 with R"

We remark here that we can replace €2 by R™ and instead consider the problem

Lgru = fin Q
u=gin R"\Q
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where
Lonu= s “Wul@ o uly) —ul@)
yeRn, y£z Y —T|* yeRm yre |y — x|
and g grows at most like |z|? with 8 < « at infinity. For this problem, the corresponding of Theorem 1.5 and
Theorem 1.8 will also hold true with 9 replaced by R™ \ Q. The crucial result is Lemma 8.3, which allows us
to compare with functions of the type |z|”.

12.2. More general moduli of continuity

Many of the results in this paper can be generalized when we replace |x — y|® with some other modulus of
continuity.
Consider a function w : RY — [0, 00) such that

{ w(r) >0=w(0) forall xecRN\ {0},
wlr+y) <w(@)+w(y) foral z,ycRV.

Define for x € Q
(Louw)(z) = sup L7084 g uly) —ul@)
ye§7 yFx w(y - x) YyeEQ, y#x w(y - x)
For this case, in [16] a representation formula (Lem. 5.1) is found when f = 0, and also the analogue of
(iv) in Theorem 1.8 for the solution given by the representation formula, with the C%“-regularity replaced by
C“-regularity.
It seems plausible that one can, following the ideas of the present paper, extend the following results to hold
for the operators L,:
— The existence via Perron’s method (Thm. 9.1), when f has compact support.
— The comparison (Prop. 11.2), again under the assumption in Lemma 5.1.

13. OPEN QUESTIONS

Some questions that remain unanswered in this paper that could be interesting to study in the future are
listed below.
— The uniqueness for general functions f.
— Is the C"%regularity valid for general f, disprove or prove?
— What happens if we instead consider higher order operators of the form

_ o W) —u@) —Vu(@) (@ —y) L uly) — (@) — Vu(z) - (2 —y)
Fule) = 5\{5} |z —y|t+e " ﬁ\{i} |z —y[+e

)

with a € [0,1]. Will this yield in C*“-extensions?
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