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1. Introduction

This paper is devoted to the time optimal control problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
∫ τ

0

dt

subject to τ ≥ 0,

ytt − Δy = χωu in (0, τ) × Ω,

y(0) = y1, yt(0) = y2, y(τ) = z1, yt(τ) = z2 in Ω,

y = 0 on Γ,

‖u(t)‖L2(ω) ≤ γ, for a.e. t ∈ (0, τ).

(P̃ )

Here, γ > 0 is a fixed positive constant and Ω ⊂ R
n with n ∈ {1, 2, 3} is a fixed bounded domain with a

C2-boundary Γ. Further ω ⊂ Ω is a measurable subset and χωu denotes the extension-by-zero operator from
ω to Ω. The initial and terminal states are fixed and – unless specified otherwise – are assumed to satisfy

y1 ∈ H1
0 (Ω), z1 ∈ H1

0 (Ω), y2 ∈ L2(Ω), z2 ∈ L2(Ω),

where, without loss of generality, (y1, y2) �= (z1, z2). We shall analyze a regularization scheme for (P̃ ). In the
present work the procedure is used to derive an optimality system for (P̃ ). We have also used it as the basis for
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methods to solve (P̃ ) numerically. This will be described in a follow-up paper. The optimality system that we
derive is complete in the sense that it contains as many equations as unknowns. It consists of the primal and
adjoint equations, the maximum principle and the transversality condition.

In [3] the geometric form of the transversality conditions in infinite dimensions is derived along the well-
known lines of Lee and Markus [15] in finite dimensions. It states that the terminal state of the adjoint equation
is normal to a supporting hyperplane to the reachable cone at the optimal time and the state (z1, z2). This
form, however, does not appear to be applicable computationally. Rather we aim for an analytical form of
the transversality condition as utilized e.g. in [10], page 88, in the case of time optimal control for ordinary
differential equations. In the case of time optimal control for parabolic problems such a form was obtained by
Barbu in [2]. The technique used there does not appear to be applicable for (P̃ ). It could be applied in the case
where the terminal constraint yt(τ) = z2 is not enforced and ω = Ω. Time optimal control for the wave equation
was also investigated in the work of Fattorini [5, 6], Gugat [8], Gugat and Leugering [9], and Krabs [12, 13].
However, the transversality condition is not addressed in these references.

Time-optimal control problems can be addressed alternatively by solving appropriately defined dual norm-
optimal control problems, which are parameterized by the time τ , see e.g. [7,12]. If for some parameter value τ̂
the norm-optimal control satisfies ‖û‖L∞(0,τ̂ ;L2(ω)) = γ, then (τ̂ , û) is a solution of (P̃ ). However, this equivalence
is established only for the special case ω = Ω. This is due to the fact that the analysis requires the controllability
of the system in arbitrarily small time and the bang-bang property for all time-optimal controls. To the best
of our understanding these requirements are well-established only for the case ω = Ω. Moreover, an example
in [9] shows that the equivalence of time-optimal and norm-optimal control problems cannot be expected in the
general case.

The focus of our work is set on obtaining the optimality system by means of a regularization procedure.
This is intimately related to notions of controllability without constraints on the controls, controllability under
constraints, and the bang-bang nature of optimal controls. While controllability without constraints on the
controls is well understood for the wave equation, and some results which are relevant to the present work are
summarized in Section 2.2, the other two topics are only well-studied in the case that ω = Ω. Any advance on
these issues will also contribute to the understanding of the time optimal control problem.

The remainder of the paper is organized as follows. In Section 2.1 we introduce the abstract form of the wave
equation and recall selected regularity results. Section 2.2 contains a discussion of controllability results as far
as they are relevant for the present paper, we give a sufficient condition for the existence of feasible controls
and for existence of a solution to (P̃ ).

In Section 3 we introduce a family of approximating problems and derive their optimality systems, including
the maximum principle and the transversality condition. We also verify constancy of the Hamiltonian along
optimal trajectories. Then convergence of the primal variables of the approximating problems to a solution of (P̃ )
is shown. Convergence of the adjoint variables is addressed in Section 4. To obtain the maximum principle and
the transversality condition for (P̃ ) as the limit of the approximating family of equations additional assumptions
are needed. We consider two different situations: either the case that the optimal control is bang-bang, or the
case when some a-priori estimate on the family of approximating adjoint solutions holds. This latter condition
is investigated numerically for a special case in Section 6. In a short Section 5 an adapted penalty technique is
considered.

2. Preliminaries

2.1. Abstract formulation

Let us first set forth some concepts for the wave equation⎧⎪⎨
⎪⎩

ytt − Δy = χωu in (0, τ) × Ω,

y(0) = y1, yt(0) = y2,

y = 0 on Γ,

(2.1)
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with τ > 0 fixed, that will be relevant to our work. For certain purposes of treating time optimal problems it is
convenient to perform a transformation of equation (2.1) to the fixed time interval

I := (0, 1).

For instance, this allows to consider numerical realizations with respect to a fixed reference domain. In addition,
to express (2.1) in abstract form we introduce the operators

A :=
(

0 I
Δ 0

)
, B :=

(
0

χω

)
,

and vectors

y0 :=
(

y1

y2

)
, z :=

(
z1

z2

)
, y(t) :=

(
y1(t)
y2(t)

)
.

Then the wave equation (2.1) can be expressed as the first-order evolution equation

yt = τ(Ay + Bu) on I,

y(0) = y0.
(2.2)

The components of the solution y of this equation fulfill (y1)t = τy2 and (y2)t = τ(Δy1 +χωu). For convenience
of notation we introduce the function spaces

Y s =

⎧⎪⎨
⎪⎩

Hs(Ω) 0 ≤ s < 1/2,

Hs(Ω) ∩ {y : y|Γ = 0} s ≥ 1/2,

(Y −s)∗ s < 0,

and the associated vector-valued spaces, which take account of the regularity of the components of solutions y
of (2.2):

Ys := Y s × Y s−1.

The index s indicates that the first component of the vector function y ∈ Ys is in Hs(Ω), whereas the second
component is in Hs−1(Ω). Utilizing this notation the operator A is a continuous linear operator in the following
sense

A ∈ L(Ys, Ys−1).

Moreover, the operator B has the property

B ∈ L(L2(ω),Y1).

For existence and uniqueness of weak solutions of the system (2.2), we have the following well-known result, see
e.g. [14].

Theorem 2.1. Let y0 ∈ Y0, u ∈ L2(I; L2(ω)) be given. Then the first-order equation (2.2) admits a unique
very weak solution y satisfying

y ∈ C(Ī;Y0).

If in addition y0 ∈ Y1 holds, then the first-order equation (2.2) admits a unique weak solution y that satisfies

y ∈ C(Ī ;Y1), yt ∈ C(Ī ;Y0).

If moreover y0 ∈ Y2, ut ∈ L2(I; L2(ω)), then

y ∈ C(Ī ;Y2), yt ∈ C(Ī ;Y1).
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It remains to transform the original time-optimal control problem (P̃ ) to the interval I. We define the set of
admissible controls by

Uad := {u ∈ L∞(I; L2(ω)) : u(t) ∈ U a.e. on I},
with U given by

U = {u ∈ L2(ω) : ‖u‖L2(ω) ≤ γ}.
Using the abstract operators introduced above, problem (P̃ ) can be expressed as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

min τ

subject to τ ≥ 0 and

yt = τ(Ay + Bu) on I,

y(0) = y0, y(1) = z,

u ∈ Uad.

(P)

For the derivation of first-order necessary conditions as well as a discussion of controllability issues, we will
frequently need the adjoint equation. It is defined as the evolution equation

−pt = τA∗p on I. (2.3)

Here A∗ is given as adjoint of A:

A∗ :=
(

0 Δ
I 0

)
.

Hence, equation (2.3) is a wave equation in the second coordinate p2 with ∂t p2 = −τ p1 and

(p2)tt = τ2 Δp2.

It will be convenient to introduce the notation

Ps := Y s−1 × Y s,

which will be used for s = 0, 1, 2. The index s with Ys and Ps denotes the regularity of the wave function for
the primal state y and the adjoint state p, respectively. We may note that (Ys)∗ = P(1−s).

If the adjoint equation is complemented with a terminal condition p(1) = p̂ with p̂ ∈ P0, the adjoint equation
is uniquely solvable with solution p ∈ C(Ī ;P0). Moreover, one has regularity results analogous to those for the
primal wave equation expressed in Theorem 2.1.

2.2. Controllability and existence of time-optimal controls

While the focus of this work lies on establishing an optimality system for the time optimal control problem
with a regularization based approach, we also address the issue of existence to (P), relying mostly on existing
results which are adapted to the problem under consideration.

The question of existence of time-optimal controls is intimately linked to the question of (null)-controllability
of the wave equation. The wave equation in its abstract form (2.2) is said to be null-controllable in time τ with
controls in L2(I; L2(ω)) if for every initial value y0 ∈ Y1 there exists a control u ∈ L2(I; L2(ω)) such that the
solution y of (2.2) satisfies y(1) = 0. It is well-known that null-controllability is equivalent to the following
observability statement [16, 19]: there exists c(τ) > 0 such that every solution p of the adjoint equation

−pt = τA∗p on I (2.4)
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satisfies
‖p(1)‖2

P0 ≤ c(τ) τ ‖B∗p‖2
L2(I;L2(ω)). (2.5)

Null-controllability of the wave equation with distributed (or internal) controls holds if the geometric control
condition is satisfied: every ray of geometric optics propagating in the domain Ω hits the subset ω within time
less than τ , see [4]. Due to finite speed of propagation, null-controllability in general holds only if τ > τ̄ , where
τ̄ solely depends on Ω, ω. For the special case ω = Ω, the wave equation is null-controllable for all τ > 0.

Remark 2.2. The additional factor τ in (2.5) appears due to the transformation (0, τ) 	→ I. The observability
inequality in untransformed form reads ‖φ(τ)‖2

L2(Ω) + ‖φt(τ)‖2
H−1(Ω) ≤ c(τ)‖φ|ω‖2

L2(0,τ ;L2(ω)) for all solutions φ

of the adjoint wave equation φtt − Δφ = 0 in (0, τ) × Ω.

The additional control constraints involved in the formulation of the time optimal control problem impose a
serious difficulty. Naturally the question arises, whether for a given initial value y0 ∈ Y1 there exists a control
u ∈ Uad such that the solution y of (2.2) satisfies y(1) = 0. Here, we have the following result [1, 17]: if for all
solutions p of the adjoint equation (2.4) the inequality

〈p(0),y0〉P0, Y1 + γτ‖B∗p‖L1(I;L2(ω)) ≥ 0 (2.6)

holds, then there exists a control u ∈ Uad steering the state y from y0 to y(1) = 0.
In the following, we will prove existence of feasible points for problem (P). We will show that for τ large

enough, there is an admissible control u such that all the constraints of (P) are satisfied. The essential require-
ment is that the system is unrestricted null-controllable for some fixed time τ0 > 0. We will use a technique
from [18], which allows us to provide an upper bound on the time τ . This slightly extends [18], Theorem 4.2,
where existence of time-optimal controls for (P) is proven.

Proposition 2.3. Let y0, z ∈ Y1 be given and let τ0 > 0 such that the wave equation is null-controllable,
i.e. (2.5) holds with c(τ0). Let N > 0 be a natural number such that

N ≥ 2c(τ0)γ−1 max(‖y0‖Y1 , ‖z‖Y1). (2.7)

Then there exists a feasible control u for the time-optimal control problem, that drives the system from y(0) = y0

to y(1) = z in time τ := Nτ0. I.e. u ∈ Uad and the corresponding solution y of the wave equation (2.2) with
τ = Nτ0 satisfies y(0) = y0, y(1) = z.

Proof. We first prove that for N > 0 satisfying (2.7) there exists a control u with ‖u‖L∞(I;L2(ω)) ≤ γ
2 , driving

the state y from y0 to y(1) = 0 in time τ = Nτ0.
We begin by proving an upper bound for the observability constant c(Nτ0) following an idea from [18],

Theorem 3.1. Let p be an arbitrary solution of the adjoint equation (2.4) for τ := Nτ0. For j = 1, . . . , N let us
define, in decreasing order, the functions pj as the solution of

−(pj)t = τ0A∗pj on I, pj(1) = pj+1(0)

with pN+1(0) := p(1). Then for t ∈ [(j−1)τ0, jτ0] we have p(t) = pj(t/τ0− (j−1)), in particular p(0) = p1(0).
Due to energy conservation ‖p(0)‖P0 = ‖p(1)‖P0 = ‖pj(1)‖P0 holds.

Since the system is null-controllable for time τ0, it holds for all j = 1 . . .N , cf. (2.5), that

‖pj(1)‖2
P0 ≤ c(τ0) τ0 ‖B∗pj‖2

L2(I;L2(ω)).

Summing this inequality for j = 1 . . .N , and using the relation between p and pj , we obtain

N‖p(1)‖2
P0 =

N∑
j=1

‖pj(1)‖2
P0 ≤ c(τ0) τ0

N∑
j=1

‖B∗pj‖2
L2(I;L2(ω))

= c(τ0) τ0N‖B∗p‖2
L2(I;L2(ω)),
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which proves
‖p(1)‖2

P0 ≤ c(τ0) τ0‖B∗p‖2
L2(I;L2(ω)).

This inequality implies an upper bound c(Nτ0) ≤ N−1c(τ0) for the observability constant c(Nτ0).
Now, let us turn to establish (2.6). By the properties of the adjoint wave equation, we have

‖p(1)‖2
P0 ≤ c(τ0) τ0‖B∗p‖2

L2(I;L2(ω))

≤ c(τ0) τ0‖B∗p‖L1(I;L2(ω))‖B∗p‖L∞(I;L2(ω))

≤ c(τ0) τ0‖B∗p‖L1(I;L2(ω))‖B∗‖L(P0, L2(ω))‖p(1)‖P0 .

Since ‖B∗‖L(P0, L2(ω)) ≤ 1, we find

‖p(1)‖P0 ≤ c(τ0) τ0‖B∗p‖L1(I;L2(ω)). (2.8)

Using (2.8) and conservation of energy, we obtain

〈p(0),y0〉P0, Y1 +
γ

2
Nτ0‖B∗p‖L1(I;L2(ω)) ≥ −‖p(0)‖P0‖y0‖Y1 +

γN

2c(τ0)
‖p(1)‖P0

=
(

γN

2c(τ0)
− ‖y0‖Y1

)
‖p(1)‖P0 ≥ 0

where we used assumption (2.7). Hence, by the constrained controllability results [1, 17], cf. (2.6), there exists
a control u1 with ‖u1‖L∞(I;L2(ω)) ≤ γ

2 that steers the system from y0 to y(1) = 0 in time τ = Nτ0. Similarly,
one proves existence of a control u2 with ‖u2‖L∞(I;L2(ω)) ≤ γ

2 that steers the system from the initial state
y(0) = 0 to y(1) = z in time τ = Nτ0. Due to linearity of the wave equation, the control u1 +u2 has the claimed
properties. �

Proposition 2.3 establishes the existence of feasible controls, from which existence of time-optimal controls
easily follows. We summarize the above discussion as a theorem that gives a sufficient condition for the existence
of a solution to (P).

Theorem 2.4. Let y0, z ∈ Y1 be given. If there is τ0 > 0 such that the wave-equation is null-controllable,
i.e. (2.5) holds, then the time-optimal control problem admits a solution.

Proof. Due to Proposition 2.3 there exists a feasible control of problem (P). Existence of solution follows by
standard subsequential limit arguments. See also [18], Theorem 4.2. �

For constrained problems the notion of bang-bang controls is frequently of importance. Here we call a control
ũ bang-bang if ‖ũ(t)‖L2 = γ for almost all t ∈ I. For (P) it is well-known that in the case ω = Ω all time-optimal
controls are bang-bang [7], Theorem 6.12.3, page 304, and that ‖ũ(t)‖L2 assumes the value γ for all but finitely
many t ∈ I. In this context also the maximum principle was established in [7], but the transversality condition
was not addressed. To the best of our knowledge, it is an open problem under which conditions time-optimal
controls are bang-bang when ω �= Ω.

3. A family of regularized problems

In this section we discuss a family of regularized problems that is obtained by penalization. Their optimal-
ity condition is derived and convergence of the primal variables is proven. There are several motivations to
investigate such a regularization. Besides its intrinsic merit, the regularized formulation lends itself to obtain a
first order optimality system and it is an appropriate starting point to derive numerical methods for the time
optimal problem (P). The regularization that we use consists in employing a cost term for the control and the
realization of the terminal constraint as a penalty term. We note, that the control cost term may be quite natural
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in applications and need not necessarily be viewed as a regularization term. The use of the terminal penalty is
further commented on in Remark 4.8 below. Smooth and non-smooth, but exact, penalization techniques of the
terminal constraints were also employed in [8] for norm-optimal control problems. There for spatial dimension
one, convergence rates with respect to the penalty parameter are investigated.

For ε > 0 we consider ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min Jε(τ, u) = τ
(
1 +

ε

2
‖u‖2

L2(I;L2(ω))

)
+

1
2ε

‖y(1) − z‖2
Y0 ,

subject to τ ≥ 0 and

yt = τAy + τBu, on (0, 1],

y(0) = y0,

u ∈ Uad.

(Pε)

Here and below the norm on Y0 = L2(Ω) × H−1(Ω) is chosen to be

‖v‖2
Y0 = ‖v1‖2

L2(Ω) + ((−Δ)−1v2, v2)L2(Ω),

where w = (−Δ)−1 v2 is the solution of

−Δw = v2 in Ω, w = 0 on Γ.

Problem (Pε) can be investigated without controllability assumption, but to guarantee convergence of its
solution to a solution of (P), it is, of course, required to assume that (P) admits a solution. We therefore
assume throughout the remainder of this paper:

Problem (P) admits a solution. (H1)

We have existence of solutions of (Pε) under our standing assumptions on the problem data.

Proposition 3.1. Problem (Pε) admits a solution.

Proof. Let (τn, yn, un) denote a minimizing sequence. Since Jε is bounded from below, the sequence τn is
bounded, and it therefore admits an accumulation point τ̃ . Since un ∈ Uad for all n, the sequence {un} is
bounded in L∞(I; L2(Ω)). By Theorem 2.1, the sequence yn is bounded in C(Ī;Y1) ∩ C1(Ī ;Y0). Choosing a
weakly converging subsequence of {un} in L2(I; L2(ω)) and of yn in L2(I;Y1)∩H1(I;Y0) there exists (τ̃ , ỹ, ũ)
such that we can pass to the weak subsequential limit in{

(yn)t = τn(Ayn + Bun)
yn(0) = y0

to find that
ỹt = τ̃ (Aỹ + Bũ)
ỹ(0) = y0.

Weak lower semi-continuity of Jε implies that (τ̃ , ũ) is a solution to (Pε). �

In the sequel, (τε,yε, uε) denotes a solution of the penalized problem (Pε) for ε > 0.

Theorem 3.2. Assume that (H1) holds and let {(τε,yε, uε)}ε>0 denote a family of solutions of (Pε). Then we
have that

τε → τ∗, for ε → 0+,
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and (yε, uε) is uniformly bounded in (C(Ī ;Y1) ∩ H1(I;Y0)) × L∞(I; L2(ω)). Moreover, for each weakly-star
converging subsequence {(yεn , uεn)} with

yεn ⇀∗ ỹ in L∞(I;Y1) ∩ H1(I;Y0), uεn ⇀∗ ũ in L∞(I; L2(ω)),

the limit (ỹ, ũ) is a solution of the original time-optimal control problem (P).
If ũ is bang-bang, then the convergence (yεn , uεn) → (ỹ, ũ) is strong in (C(Ī ;Y1)∩H1(I;Y0))×L2(I; L2(ω)).

Proof. Let (τ∗,y∗, u∗) denote a solution of (P). Since it is feasible for the penalized problem we have

τε

(
1 +

ε

2
‖uε‖2

L2(I;L2(ω))

)
+

1
2ε

‖yε(1) − z‖2
Y0 ≤ τ∗

(
1 +

ε

2
‖u∗‖2

L2(I;L2(ω))

)
. (3.1)

This implies that lim supε>0 τε ≤ τ∗ and hence {τε : 0 < ε < M} is bounded for each M ∈ (0,∞).
Due to the control constraints and Theorem 2.1, the set {yε, uε}ε∈(0,M ] is bounded in

(C(Ī ;Y1) ∩ H1(I;Y0)) × L∞(I; L2(ω)).

Let us choose a subsequence εn → 0 such that τεn → τ̃ , uεn ⇀∗ ũ in L∞(I; L2(ω)), yεn ⇀∗ ỹ in L∞(I;Y1) ∩
H1(I;Y0) as n → ∞. Arzela-Ascoli’s theorem and the compact embedding Y1 in Y0 imply that we can choose
εn such that yεn → ỹ in C(Ī ;Y0) as εn → 0. By (3.1)

yε(1) → z in Y1.

It further follows that ỹ solves
ỹt = τ̃Aỹ + τ̃Bũ,

ỹ(0) = y0, ỹ(1) = z.

Since Uad is weakly closed, we have that ũ ∈ Uad. Hence, (τ̃ , ỹ, ũ) is feasible for the time-optimal control
problem with τ̃ ≤ τ∗. Since τ∗ was the minimal time, τ̃ = τ∗ and (τ̃ , ỹ, ũ) is a solution of the time-optimal
control problem. The minimal time τ∗ is unique, and consequently the whole family τε converges to τ∗ as
ε → 0+.

If ũ is bang-bang, then we have by feasibility of uεn and weakly lower-semicontinuity of norms

‖ũ‖L2(I;L2(ω)) = γ ≥ lim sup ‖uεn‖L2(I;L2(ω)) ≥ lim inf ‖uεn‖L2(I;L2(ω)) ≥ ‖ũ‖L2(I;L2(ω)).

This implies norm convergence limn→∞ ‖uεn‖L2(I;L2(ω)) = ‖ũ‖L2(I;L2(ω)) and the strong convergence, as stated,
is obtained. �

As already discussed in Section 2, the assumption on the bang-bang nature of all time-optimal controls holds
for the case ω = Ω.

Corollary 3.3. Under the assumptions of the previous theorem, we have

‖yε(1) − z‖2
Y0 ≤ ε

(
2|τε − τ∗| + O(ε)

)
for ε → 0+.

Proof. Inequality (3.1) implies

‖yε(1) − z‖2
Y0 ≤ 2ε|τ∗ − τε| + ε2

(
τ∗‖u∗‖2

L2(I;L2(ω)) − τε‖uε‖2
L2(I;L2(ω))

)
.

Since the set of admissible controls is bounded, the claim follows immediately. �
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Remark 3.4. In numerical practice we find cases where |τε − τ∗| = O(ε). Then ‖yε(1) − z‖2
Y0 = O(ε2).

First order necessary optimality conditions for (Pε) are derived next. To employ the method of transposition
the adjoint state pε is defined as the solution of

−pt = τA∗p, (3.2)

with terminal condition

p(1) =
1
ε

(
yε,1(1) − z1

(−Δ)−1(yε,2(1) − z2)

)
. (3.3)

We note that
pε(1) ∈ P2

and hence by Theorem 2.1 we have the following regularity result for pε.

Corollary 3.5. Let yε ∈ C(Ī;Y1). Then (3.2)–(3.3) admits a unique solution pε ∈ C(Ī;P2) ∩ C1(Ī;P1).

After these preliminaries we obtain the first order necessary condition for (Pε).

Theorem 3.6. Let (τε,yε, uε) be a local solution of (Pε). Then there exists pε ∈ C(Ī ;P2) ∩ C1(Ī ;P1) such
that the following optimality system holds:⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂tyε = τεAyε + τεBuε, yε(0) = y0,

− ∂tpε = τεA∗pε, pε(1) =
1
ε

(
yε,1(1) − z1

(−Δ)−1(yε,2(1) − z2)

)
(εuε + B∗pε, u − uε)L2(I;L2(ω)) ≥ 0, for all u ∈ Uad,

1 +
ε

2
‖uε‖2

L2(I;L2(ω)) + 〈Ayε + Buε, pε〉L2(I;Y0), L2(I;P1) = 0.

(3.4)

The optimal control uε has the additional regularity

uε ∈ C(Ī ; L2(ω)) and ∂tuε ∈ L∞(I; L2(ω)).

Moreover, if y0 ∈ Y2 then
yε ∈ C(Ī ;Y2) ∩ C1(Ī ;Y1).

We refer to the four assertions in (3.4) as primal- and adjoint equations, optimality- and transversality condition.
We note that B∗pε is the restriction operator to ω given by (B∗pε)(x) = pε,2(x) for x ∈ ω.

Proof. Let us take u ∈ Uad and set h = u − uε. Further let ỹ ∈ C(Ī;Y1) denote the solution to the sensitivity
equation with respect to u of the primal equation, i.e. to

∂tỹ = τε(Aỹ + Bh)

ỹ(0) = 0.

Then the directional derivative ∂uJε(τε, uε)h at (τε, uε) in the admissible directions h satisfies ∂uJε(τε, uε)h ≥ 0
and it is given by

∂uJε(τε, uε)h = ετε(uε, h)L2(I;L2(ω)) + (ỹ(1),pε(1))L2(Ω)

= ετε(uε, h)L2(I;L2(ω)) +
∫ 1

0

d
dt

(ỹ(t),pε(t))L2(Ω) dt

= ετε(uε, h)L2(I;L2(ω)) + τε

∫ 1

0

(〈Aỹ + Bh,pε〉 − 〈ỹ,A∗pε〉
)
dt

= τε(εuε + B∗pε, h)L2(I;L2(ω)) ≥ 0,
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proves the optimality condition. Similarly let ŷ denote the solution of the sensitivity equation of the primal
equation with respect to τ > 0, i.e. of

∂tŷ = τεAŷ + Ayε + Buε

ŷ(0) = 0.

Then

0 = ∂τJε(τε, uε) = 1 +
ε

2
‖uε‖2

L2(I;L2(ω)) +
1
ε
〈yε(1) − z, ŷ(1)〉Y0

= 1 +
ε

2
‖uε‖2

L2(I;L2(ω)) + (ŷ(1),pε(1))L2(Ω)

= 1 +
ε

2
‖uε‖2

L2(I;L2(ω)) +
∫ 1

0

d
dt

(ŷ(t),pε(t))L2(Ω) dt

= 1 +
ε

2
‖uε‖2

L2(I;L2(ω)) +
∫ 1

0

(〈τεAŷ(t) + Ayε(t) + Buε(t),pε(t)〉Y0, P1 − (ŷ(t), τεA∗pε(t))
)
dt

= 1 +
ε

2
‖uε‖2

L2(I;L2(ω)) +
∫ 1

0

〈Ayε(t) + Buε(t),pε(t)〉Y0, P1 dt

which proves the transversality condition. The third condition in (3.4) is equivalent to

uε(t) = PU

(
−1

ε
χωpε,2(t)

)
for almost all t ∈ I,

which implies that, after modifying uε on a set of measure zero in I, we have uε ∈ C(Ī; L2(ω)), hence the
point-wise representation holds everywhere on the closed interval. Here PU denotes the canonical projection
in L2(ω) onto U . With Lemma 3.7 below, we conclude ∂tuε ∈ L∞(I; L2(ω)), which in turn gives the higher
regularity yε ∈ C(Ī ;Y2), under the additional requirement that y0 ∈ Y2. �
Lemma 3.7. Let q ∈ C1(Ī ; L2(ω)) be given. Then u defined by

u(t) = PU (q(t))

is in C(Ī ; L2(ω)) with ∂tu ∈ L∞(I; L2(ω)) and

‖∂tu‖L∞(I;L2(ω)) ≤ 2‖∂tq‖L∞(I;L2(ω)).

Proof. The definition of U implies that

u(t) =
q(t)

max(1, ‖q(t)‖L2(ω)/γ)
,

which proves that u ∈ C0,1(Ī; L2(ω)). Then the weak time derivative of u satisfies

∂tu(t) =

⎧⎨
⎩

∂tq(t) ‖q(t)‖L2(ω) ≤ γ

γ
‖q(t)‖2

L2(ω)
∂tq(t)−(q(t),∂tq(t))L2(ω)q(t)

‖q(t)‖3
L2(ω)

‖q(t)‖L2(ω) > γ.

Due to the regularity of q we have ∂tu ∈ L∞(I; L2(ω)). �

The following corollaries concern themselves with the pointwise transversality condition of the regularized
problems which we express in term of the Hamiltonian

H(y, u,p) = 1 +
ε

2
‖u‖2

L2(ω) + 〈Ay + Bu,p〉Y0, P1 ,

for (y, u,p) ∈ Y1 × L2(ω) × P1.
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Corollary 3.8 (pointwise transversality). Let y0 ∈ Y2 and let (τε,yε, uε) be a local solution of (Pε) with
associated adjoint state pε. Then we have

H(yε(t), uε(t),pε(t)) = 0 for all t ∈ Ī .

Proof. Due to the regularity of yε and pε, we have yε ∈ C1(Ī;Y1), Ayε ∈ C1(Ī ;Y0) = C1(Ī; (P1)∗), and
pε ∈ C1(Ī;P1). Hence the mapping t 	→ 〈Ayε(t), pε(t)〉(P1)∗, P1 is continuously differentiable. Additionally,
the optimality conditions imply

(εuε(t) + B∗pε(t), ∂tuε(t))L2(ω) = 0 (3.5)

for almost all t ∈ I. Let us introduce the function

g(t) =
ε

2
‖uε(t)‖2

L2(ω) + 〈Ayε(t) + Buε(t),pε(t)〉(P1)∗, P1 .

Differentiating w.r.t. t, we obtain for almost all t ∈ I

∂tg(t) = (εuε(t) + B∗pε(t), ∂tuε(t))L2(ω) + 〈Ayε(t) + Buε(t), ∂tpε(t)〉(P1)∗, P1 + 〈A∂tyε(t), pε(t)〉(P1)∗, P1 ,

which proves that ∂tg ∈ L2(I). Taking into account (3.5), we obtain

∂tg(t) = 〈Ayε(t) + Buε(t), ∂tpε(t)〉(P1)∗, P1 + 〈A∂tyε(t), pε(t)〉(P1)∗, P1

=
1
τε

(〈∂tyε(t), ∂tpε(t)〉(P1)∗, P1 − 〈∂tyε(t), ∂tpε(t)〉(P1)∗, P1

)
= 0.

Hence we find ∂tg(t) = 0 on I, and g(t) = constant on I. The last equation in (3.4) implies that this constant
equals −1. This implies the claim since (P1)∗ = Y0. �

The transversality condition of Corollary 3.8 for t = 1 can be simplified using the explicit expression for
pε(1).

Corollary 3.9. Let y0 ∈ Y2 and let (τε,yε, uε) be a local solution of (Pε) with associated adjoint state pε.
Then we have

(Ayε(1), pε(1))L2(Ω)2 = 〈z, A∗pε(1)〉L2(Ω)2 .

If additionally z ∈ Y2, then we obtain

(Ayε(1), pε(1))L2(Ω)2 = 〈Az, pε(1)〉(P0)∗, P0 . (3.6)

Proof. Using the definition of pε(1) and of the operator A, we find

(Ayε(1), pε(1))L2(Ω)2 = (yε,2(1), pε,1(1))L2(Ω) + (Δyε,1(1), pε,2(1))L2(Ω)

=
1
ε
(yε,2(1), yε,1(1) − z1)L2(Ω) − 1

ε
(yε,1(1), yε,2(1) − z2)L2(Ω)

= −1
ε
(yε,2(1), z1)L2(Ω) +

1
ε
(yε,1(1), z2)L2(Ω)

= −1
ε
(yε,2(1) − z2, z1)L2(Ω) +

1
ε
(yε,1(1) − z1, z2)L2(Ω).

Again by the definition of pε(1), we have

(Ayε(1), pε(1))L2(Ω)2 = 〈Δpε,2(1), z1〉H−1(Ω),H1
0 (Ω) + (pε,1(1), z2)L2(Ω).

If z ∈ Y2, then Az ∈ Y1 = (P0)∗, which finishes the proof. �
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Remark 3.10. The relationship between primal and adjoint variables as well as z, expressed in equation (3.6)
is remarkable in its own right. In fact, if the regularized problem (Pε) had been defined with the terminal
conditions as constraint y(1) = z, rather than as penalty, then this would again result in (3.6). This issue will
be further addressed in Remark 4.8.

Combining Corollary 3.8 for t = 1 and (3.6) we obtain a form of the transversality condition where the duality
pairing depends on z rather the ε-dependent quantity yε.

Corollary 3.11. Let the assumptions of the Corollary 3.8 be satisfied and assume that z ∈ Y2. Then the
transversality condition at t = 1 is given by

1 +
ε

2
‖uε(1)‖2

L2(ω) + 〈Az + Buε(1), pε(1)〉(P0)∗,P0 = 0. (3.7)

4. Optimality system and transversality condition

Here we are concerned with the asymptotic behavior of (3.4) as ε → 0+. For the primal equation this was
addressed in Theorem 3.2. We aim at obtaining a first order necessary optimality system for the original time
optimal control problem. This will involve the primal and adjoint equations, the maximum principle involving
the optimal control, and, the transversality condition, which, to the best of our knowledge has received little
attention so far for time optimal control of the wave equation.

Throughout this section, we will impose (H1) and the regularity assumptions

y0, z ∈ Y2, (H2)

which were used in Corollary 3.11, and which will be referred to in the proofs of the section. We will further
rely on the observability condition, which was already discussed in Section 2.2.

We start with two lemmata.

Lemma 4.1. For each t ∈ Ī we have

(uε(t),B∗pε(t))L2(ω) = −ε‖uε(t)‖2
L2(ω) − γ‖εuε(t) + B∗pε(t)‖L2(ω) (4.1)

and
(uε, B∗pε)L2(I;L2(ω)) = −ε‖uε‖2

L2(I;L2(ω)) − γ‖εuε + B∗pε‖L1(I;L2(ω)). (4.2)

Proof. In the inactive case 1
ε‖B∗pε(t)‖L2(ω) ≤ γ, we obtain from (3.4) that uε(t) = − 1

εB
∗pε(t), and thus

(uε(t),B∗pε(t))L2(ω) = −1
ε
‖B∗pε(t)‖2

L2(ω) ≥ −γ‖B∗pε(t)‖L2(ω).

Since (uε(t),B∗pε(t))L2(ω) = −ε‖uε(t)‖2
L2(ω) and εuε(t) + B∗pε(t) = 0, we find (4.1) for the inactive case.

In the active case 1
ε‖B∗pε(t)‖L2(ω) > γ, the optimality condition (3.4) implies uε(t) =

− γ
‖B∗pε(t)‖L2(ω)

B∗pε(t). Moreover

ε‖uε(t)‖2
L2(ω) + γ‖εuε(t) + B∗pε(t)‖L2(ω) = εγ2 + γ

(
1 − εγ

‖B∗pε(t)‖L2(ω)

)
‖B∗pε(t)‖L2(ω)

= γ‖B∗pε(t)‖L2(ω) = −(uε(t),B∗pε(t))L2(ω),

which proves (4.1) for the active case. Equality (4.2) follows from (4.1). �

The following lemma employs assumption (H2), which is assumed to hold throughout this section.
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Lemma 4.2. There exists ε̄ > 0 and δ > 0 such that ‖pε(1)‖P0 ≥ δ for all ε ∈ (0, ε̄],

Proof. If the claim was false, then there exists a sequence {εn}∞n=1 with lim
n→∞ εn = 0 and lim

n→∞ ‖pεn(1)‖P0 = 0.

From (3.7) we have

1 +
εn

2
‖uεn(1)‖2

L2(ω) + (Δz1, pεn,2(1))L2(Ω) + 〈pεn,1(1), z2〉H−1,H1 + (χωuεn(1), pεn,2(1))L2(Ω) = 0.

Since by assumption z ∈ Y2, all addends tend to zero except for the first one. This is impossible. �

In the following theorems we consider, according to Theorem 3.2, a weakly-star convergent subsequence of
{(τε, yε, uε)}ε>0, denoted by the same symbol with

(τε,yε, uε) ⇀∗ (τ∗, ỹ, ũ) in R × (L∞(I;Y1) ∩ H1(I;Y0)) × L2(I; L2(ω)), (4.3)

as ε → 0∗, where (τ∗, ỹ, ũ) is a solution of (P).
Convergence of the solutions of the regularized optimality system to a solution of the optimality system

for (P) will now be derived under essentially two different types of conditions. The first one is the bang-bang
property of the control to (P), and the second one a boundedness condition on

{
pε(1)

‖pε(1)‖P0

}
ε∈(0,1]

in P1.

Theorem 4.3. Suppose that (2.1) is controllable for some T < τ∗ and that ũ is bang-bang. Then there exists a
non-trivial p̃ ∈ C(Ī ;P0) such that⎧⎪⎨

⎪⎩
ỹt = τ∗Aỹ + τ∗B ũ, ỹ(0) = y0, ỹ(1) = z,

− p̃t = τ∗A∗p̃,

(B∗ p̃, u − ũ)L2(I;L2(ω)) ≥ 0 for all u ∈ Uad.

(4.4)

If, moreover B∗p̃(1) �= 0, then

(a) if {pε(1)} is bounded in P0, then

1 + 〈Az + Bũ(1), p̃(1)〉(P0)∗,P0 = 0; (4.5)

(b) if {pε(1)} is unbounded in P0, then z �= 0 and

〈Az + Bũ(1), p̃(1)〉(P0)∗,P0 = 0. (4.6)

Proof. Let us assume at first that
{pε(1)} is bounded P0.

Then {pε} is bounded in C(Ī ;P0). Hence there exists a L∞(I;P0)-weakly∗-subsequential limit p̃ ∈ C(Ī;P0).
Utilizing the governing equation for pε we find that (pε,1)t = −τεΔpε,2, (pε,2)t = −τεpε,1, and hence we
can apply an Arzela-Ascoli argument to {pε} considered as family in C(Ī;P−1) to argue that subsequentially
pε → p̃ in C(Ī;P−1). In particular this implies that pε,2(1) → p̃2(1) in H−1(Ω), and, possibly on a further
subsequence

pε,2(1) ⇀ p̃2(1) in L2(Ω). (4.7)

Let us show that the weak limit p̃ satisfies (4.4) and (4.5). Passing to the limit in the first and second equations
of (3.4) and using (4.3) and Corollary 3.3 we obtain the first two equations of (4.4). Since under the bang-bang
assumption we have strong subsequential convergence of {uε} to ũ in L2(ω) we can pass to the limit in the
maximum principle inequality of (3.4) to obtain the maximum principle in (4.4).
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We next argue that p̃(1) or, equivalently, that p̃ is nontrivial. Due to controllability with T < τ∗ there exists
ε̂ ∈ (0, ε̄] such that for ε ∈ (0, ε̂] the system is controllable for all τε, and there exists a constant c̄ such that

‖pε(1)‖2
P0 ≤ c̄‖B∗pε‖2

L2(I;L2(ω)) ≤ c̄‖B∗pε‖L1(I;L2(ω))‖B∗pε‖L∞(I;L2(ω)). (4.8)

Combining this estimate with Lemma 4.2 we obtain for ε ∈ (0, ε̂]

δ2 ≤ c̄‖B∗pε‖L1(I;L2(ω))‖B∗pε‖L∞(I;L2(ω)). (4.9)

By Lemma 4.1 we obtain

γ‖B∗pε‖L1(I;L2(ω)) = γ‖−εuε + εuε + B∗pε‖L1(I;L2(ω))

≤ γε‖uε‖L1(I;L2(ω)) + γ‖εuε + B∗pε‖L1(I;L2(ω))

= γε‖uε‖L1(I;L2(ω)) − ε‖uε‖2
L2(I;L2(ω)) − (uε,B∗pε)L2(I;L2(ω)).

Combined with (4.9) this implies that for ε ∈ (0, ε̂]

δ2 ≤ c̄

γ
‖B∗pε‖L∞(I;L2(ω))

(
γεσε‖uε‖L1(I;L2(ω)) − εσε‖uε‖L2(I;L2(ω)) − (uε,B∗pε)L2(I;L2(ω))

)
.

The first and the second addend in the brackets on the right hand side tend to zero for ε → 0+, and the third
addend is convergent. If the weak subsequential limit of pε in L2(I; L2(ω)) was zero this contradicts the above
inequality and hence p̃ is nontrivial.

We next argue that (4.5) holds. Since by assumption B∗p̃(1) is nontrivial and since p̃ ∈ C(Ī;P0) there exists
a left-sided neighborhood Ũ of 1 such that B∗p̃(t) �= 0 for t ∈ Ũ . Hence

ũ(t) = −γ
B∗p̃(t)

‖B∗p̃(t)‖L2(ω)
for t ∈ Ũ

and in particular ũ is continuous from Ũ to P0 and hence ũ(1) is well-defined. We have

γ = ‖ũ(1)‖L2(ω) ≥ lim sup ‖ũε(1)‖L2(ω) ≥ lim inf ‖ũε(1)‖L2(ω) ≥ ‖ũ(1)‖L2(ω) = γ,

and hence
uε(1) → ũ(1) in L2(ω). (4.10)

We can now pass to the limit ε → 0+ in (3.7) to obtain

1 + 〈Az + Bũ(1),p(1)〉(P0)∗,P0 = 0,

where we use (4.7) and (4.10). This ends the proof of part (a).
We now turn to the case that {pε(1)} is unbounded in P0. In this case we consider

p̃ε =
pε(1)

‖pε(1)‖P0
·

This sequence contains a weakly convergent subsequence in P0 with limit p̃(1) ∈ P0. Let p̃ε and p̃ ∈ C(I;P0)
denote the solutions of the adjoint equations with terminal conditions p̃ε(1) and p̃(1), respectively. We can now
proceed in exactly the same manner as above for case (a) to verify (4.4). To verify non-triviality of p̃ which in
this case is the L∞(I;P0)-weakly∗-subsequential limit of p̃ε we modify (4.8) which leads to

1 = ‖p̃ε(1)‖2
P0 ≤ c̄‖B∗p̃ε‖2

L2(I;L2(ω)) ≤ c̄‖B∗p̃ε‖L1(I;L2(ω))‖B∗p̃ε‖L∞(I;L2(ω)),
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for ε ∈ (0, ε̂]. By Lemma 4.1 we have

(uε, B∗ p̃ε)L2(I;L2(ω)) = −εσε‖uε‖2
L2(I;L2(ω)) − γ‖εσεuε + B∗p̃ε‖L1(I;L2(ω)),

where σε = 1
‖pε(1)‖P0

, which is is bounded due to Lemma 4.2. This implies that

γ‖B∗p̃ε‖L1(I;L2(ω)) = γ‖−εσεuε + εσεuε + B∗p̃ε‖L1(I;L2(ω))

≤ γεσε‖uε‖L1(I;L2(ω)) + γ‖εσεuε + B∗p̃ε‖L1(I;L2(ω))

= γεσε‖uε‖L1(I;L2(ω)) − εσε‖uε‖2
L2(I;L2(ω)) − (uε,B∗p̃ε)L2(I;L2(ω)).

Combining the last two estimates we find for ε ∈ (0, ε̂]

1 ≤ c̄

γ
‖B∗p̃ε‖L∞(I;L2(ω))

(
γεσε‖uε‖L1(I;L2(ω)) − εσε‖uε‖L2(I;L2(ω)) − (uε,B∗p̃ε)L2(I;L2(ω))

)
.

The first and the second addend in the brackets on the right hand side tend to zero for ε → 0+, and the third
addend is convergent. If the weak subsequential limit of B∗p̃ε in L2(I; L2(ω)) was zero this would contradict
the above inequality and hence B∗p̃ and in particular p̃ are non-trivial.

From (3.7) after taking the quotient with ‖pε(1)‖P0 , which tends to infinity for ε → 0, we obtain

〈Az + Bũ(1), p̃(1)〉(P0)∗,P0 = 0.

If z = 0 then 〈Bũ(1), p̃(1)〉(P0)∗,P0 = −γ‖p̃2(1)‖L2(ω) = 0, which gives a contradiction. �

Theorem 4.3 provides sufficient conditions guaranteeing that the optimality system (4.4) is qualified, i.e.
p̃ �= 0. Moreover

ũ(t) = −γ
B∗p̃(t)

‖B∗p̃(t)‖L2(ω)
for B∗p̃(t) �= 0.

The requirement that system (2.1) is controllable for some T < τ∗ is a plausible one: since controllability
refers to controls without control constraints whereas the optimal time τ∗ must be achieved with constrained
controls, in most cases it can be expected that the smallest time for which unconstrained controllability holds
is typically strictly smaller than τ∗.

Theorem 4.4. Suppose that (2.1) is controllable for some T < τ∗ and that {pε(1)} is bounded in P1. Then
there exists a non-trivial p̃ ∈ C(I;P1) such that⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ỹt = τ∗Aỹ + τ∗B ũ, ỹ(0) = y0, ỹ(1) = z,

− p̃t = τ∗A∗p̃,

(B∗ p̃, u − ũ)L2(I;L2(ω)) ≥ 0 for all u ∈ Uad,

1 + 〈Az + Bũ(1), p̃(1)〉(P0)∗,P0 = 0.

(4.11)

Proof. The equations in the first two lines of (4.11) can be verified as in the proof of Theorem 4.3.
To prove the maximum principle in (4.11), we have to show the convergence (B∗pε, uε)L2(I;L2(ω)) →

(B∗p̃, ũ)L2(I;L2(ω)). Since {pε(1)}ε is assumed to be bounded in P1 we have weak convergence of another
subsequence pε(1) ⇀ p̃(1) in P1, which implies weak* convergence of pε ⇀∗ p̃ in L∞(I;P1) ∩ H1(I;P0)
to p̃ ∈ C(I;P1) ∩ H1(I;P0). Arzela-Ascoli’s theorem and the compact embedding P1 in P0 imply that
pε → p̃ in C(I;P0) as ε → 0. Hence for a subsequence

(B∗pε, uε)L2(I;L2(ω)) → (B∗p̃, ũ)L2(I;L2(ω)). (4.12)

This allows us to pass to the limit in the third line of (3.4) to obtain the third line of (4.11).



332 K. KUNISCH AND D. WACHSMUTH

Non-triviality of p̃ is argued exactly as in the proof of Theorem 4.3 part (a).
Finally we pass to the limit in (3.7). If on the one hand B∗p̃(1) = 0, then we have (uε(1),B∗pε(1)) → 0 =

(ũ(1),B∗p̃(1)). If on the other hand B∗p̃(1) �= 0, then there exist ε̃, δ, α such that ‖B∗pε(t)‖L2(ω) ≥ α > 0, for
all ε ∈ (0, ε̃), t ∈ [1 − δ, 1]. Then uε(t) = γ B∗pε(t)

‖B∗pε(t)‖L2(ω)
→ γ B∗p̃(t)

‖B∗p̃(t)‖L2(ω)
strongly in L2(ω) as ε → 0+ for all

t ∈ [1 − δ, 1]. Hence (uε(1),B∗pε(1))L2(ω) → (ũ(1),B∗p̃(1))L2(ω) holds. We can now pass to the limit in (3.7)
to obtain the transversality condition. �

Remark 4.5. If |τε− τ∗| = O(ε), which can be observed in certain numerical experiments, see Section 6 below,
then due to Corollary 3.3 and the relation ‖pε(1)‖P1 = 1

ε‖yε(1)− z‖Y0 the sequence {pε(1)} is bounded in P1.

In order to pass to the limit in the integrated form of the transversality condition we need additionally to
assume that ũ is bang-bang.

Corollary 4.6. If in addition to the assumptions of the previous theorem ũ is bang-bang then

1 + 〈Aỹ + Bũ, p̃〉L2(I;(P1)∗),L2(I;P1) = 0.

Proof. If ũ is bang-bang, then uε → ũ strongly in L2(I; L2(ω)) by Theorem 3.2 in addition to (4.3). Moreover, we
have yε → ỹ strongly in C(I;Y1). Hence, it holds Ayε +Buε → Aỹ+Bũ strongly in L2(I;Y0) = L2(I; (P1)∗).
If {pε(1)}ε∈(0,1] is bounded in P1, then we have pε ⇀ p̃ in L2(I;P1). Hence, we can pass to the limit in the
last equation of (3.4) to obtain the claim. �

Finally we have constancy of the Hamiltonian along optimal trajectories.

Corollary 4.7 (pointwise transversality). If in addition to the assumptions of the previous theorem ũ is bang-
bang and y0 ∈ Y2 then

H(ỹ(t), ũ(t), p̃(t)) = 0 for almost all t ∈ Ī .

Proof. From Corollary 3.8 we recall that

1 +
ε

2
‖uε(t)‖2

L2(ω) + 〈Ayε(t) + Buε(t),pε(t)〉Y0, P1 = 0, (4.13)

for all t ∈ (0, 1). As in the proof of Corollary 4.6 we use that ũ is assumed to be bang-bang. Then uε → ũ strongly
in L2(I; L2(ω)), and hence yε → ỹ strongly in C(I;Y1) and Ayε → Aỹ strongly in C(I;Y0) = C(I; (P1)∗).
From the proof of Theorem 4.4 we have a subsequence for which pε → p̃ in C(I;P0). Since {pε(t)} is bounded
in P1 for ε → 0 for every t ∈ I we have pε(t) ⇀ p̃(t) in P1 for ε → 0 for each t ∈ I. Hence, we can pass to the
limit in (4.13) for almost every t ∈ I to obtain the claim. �

Remark 4.8. Our formulation of the regularized problems (Pε) realizes the terminal constraint by means of
penalty. We could alternatively consider⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

min τ(1 +
ε

2
‖u‖2

L2(I;L2(ω)))

subject to τ ≥ 0, and

yt = τAy + τBu, on (0, 1]

y(0) = y0, y(1) = z, u ∈ Uad,

(4.14)

where the terminal condition is kept as explicit constraint. For every ε > 0 problem (4.14) has a solution
(τε, yε, uε) which satisfies the monotonicity properties, for 0 < ε0 < ε1,

τ∗ ≤ τε0 ≤ τε1 ≤ τ∗
(

1 +
γε1

2

)



ON TIME OPTIMAL CONTROL OF THE WAVE EQUATION, ITS REGULARIZATION AND OPTIMALITY SYSTEM 333

and
‖uε1‖L2(I;L2(ω)) ≤ ‖uε0‖L2(I;L2(ω)) ≤ ‖u∗‖L2(I;L2(ω)),

which can be verified with arguments analogous to those in [11]. Developing a Lagrangian theory for (4.14),
however, is impeded by the fact that the constraints in (4.14) are not differentiable in the natural norms.
Specifically we define

e(τ, u) : R × L2(I; L2(ω)) → Y1

given by e(τ, u) = y(τ, u)(1) = (y(τ, u)(1), yt(τ, u)(1)). Note that e is not differentiable with respect to τ . In
fact, eτ (τ, u) would be the solution to

ỹt = τAỹ + Ay + Bu

ỹ(0) = 0

evaluated at 1. Since Ay ∈ C(I;Y0) only, this does not guarantee that ỹ(1) ∈ Y1, in general.

5. Adapted penalty method

In the previous section, optimality conditions are presented that are satisfied by accumulation points of
solutions (τε,yε, uε) to (Pε). This does not yet guarantee that every solution (τ∗,y∗, u∗) to (P̃ ) satisfies such a
condition. Here, we present a partial result addressing this question. To this end, we utilize an adapted penalty
technique.

For a fixed solution (τ∗,y∗, u∗) to (P̃ ) we consider
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min Ĵε(τ, u) = τ
(
1 +

ε

2
‖u‖2

L2(I;L2(ω))

)
+

1
2ε

‖y(1) − z‖2
Y0 +

τ

2
‖u − u∗‖2

L2(I;L2(ω)),

subject to τ ≥ 0 and

yt = τAy + τBu, on (0, 1],

y(0) = y0,

u ∈ Uad.

(P̂ε)

Note that the adapted penalty formulation (P̂ε), differently from (Pε), uses the solution u∗. Thus it is not suited
for numerical realization of the time optimal control problem.

Proposition 5.1. For every ε > 0 there exists a solution (τε,yε, uε) of (P̂ε) and (τε,yε, uε) → (τ∗,y∗, u∗) as
ε → 0+ strongly in R× (C(Ī ;Y1)∩H1(I;Y0))×L2(I; L2(ω)). Moreover there exists pε ∈ C(Ī ;P2)∩C1(I;P1)
such that the following optimality system holds:⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂tyε = τεAyε + τεBuε, yε(0) = y0,

− ∂tpε = τεA∗pε, pε(1) =
1
ε

(
yε,1(1) − z1

(−Δ)−1(yε,2(1) − z2)

)
∈ P2,

(εuε + B∗pε + uε − u∗, u − uε)L2(I;L2(ω)) ≥ 0, for all u ∈ Uad,

1 +
ε

2
‖uε‖2

L2(I;L2(ω)) +
1
2
‖uε − u∗‖2

L2(I;L2(ω)) + 〈Ayε + Buε, pε〉L2(I;Y0), L2(I;P1) = 0.

(5.1)

Proof. For the most part we can follow the proofs of Theorems 3.2 and 3.6 and we only provide the necessary
changes. Since (τ∗,y∗, u∗) is feasible for (P̂ε) we have

τε

(
1 +

ε

2
‖uε‖2

L2(I;L2(ω))

)
+

1
2ε

∥∥yε(1) − z‖2
Y0 +

τε

2

∥∥uε − u∗‖2
L2(I;L2(ω)) ≤ τ∗

(
1 +

ε

2
‖u∗‖2

L2(I;L2(ω))

)
. (5.2)

This implies that (τε,yε, uε) → (τ∗,y∗, u∗) in R × (C(Ī ;Y1) ∩ H1(I;Y0)) × L2(I; L2(ω)). Arguing as in the
proof of Theorem 3.6 we find (5.1). �
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Let us note that a result similar to Corollary 3.8 cannot be expected, since the optimal control problem (P̂ε)
is non-autonomous. This is due to the fact that the cost function Ĵε(τ, u) can be written as

Ĵε(τ, u) =
∫ 1

0

f0(t, u(t), τ) dt + g0(y(1)),

where the integrand f0 depends on t ∈ I via the penalty term that involves u∗. In order to derive a result
similar to Corollary 3.11, one could aim at adapting techniques for non-autonomous optimal control problems
for ordinary differential equations, which is beyond the scope of this paper.

Let us now present the resulting necessary optimality condition under conditions similar to those of Theo-
rem 4.4.

Theorem 5.2. Let (τ∗,y∗, u∗) denote a solution to (P̃ ). Suppose that (2.1) is controllable for some T < τ∗

and that {pε(1)} is bounded in P1. Then there exists a non-trivial p∗ ∈ C(I;P1) such that⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

y∗
t = τ∗Ay∗ + τ∗Bu∗, y∗(0) = y0, y∗(1) = z,

− p∗
t = τ∗A∗p∗,

(B∗ p∗, u − u∗)L2(I;L2(ω)) ≥ 0 for all u ∈ Uad,

1 + 〈Ay∗ + Bu∗, p∗〉L2(I;Y0), L2(I;P1) = 0.

(5.3)

Proof. Since {pε(1)}ε is assumed to be bounded in P1, we have weak convergence of a subsequence pε(1) ⇀
p∗(1) in P1, which implies weak* convergence of pε ⇀∗ p∗ in L∞(I;P1) ∩ H1(I;P0) to p∗ ∈ C(I;P1) ∩
H1(I;P0). Using convergence of (τε,yε, uε) → (τ∗,y∗, u∗) as proven in Proposition 5.1, we can pass to the limit
ε → 0+ in (5.1) to obtain (5.3). From the last equation of (5.3) it follows that p∗ �= 0. �

6. Numerical experiment

We report on a numerical experiment to solve the time-optimal control problem by means of the regularized
problem (Pε). It shows that {pε(1)} is bounded in P1, i.e. the the essential requirement of Theorem 4.4 to
obtain the transversality condition in (4.11) in the limit ε → 0 can be fulfilled. A more detailed report on the
numerical approach and further examples will be given elsewhere.

We chose Ω = (0, 1)2, and the control bound was set to γ = 3. The target state was z1 = z2 = 0 and the
initial state was given as y1(x1, x2) = x1x2(1 − x1)(1 − x2), the initial velocity was set to y2 = 0. The control
domain was chosen to be ω := Ω \ [0, 0.1]2. This implies that the geometric control condition of [4] is satisfied.
In particular, we have null-controllability of the wave equation for all τ >

√
2

10 ≈ 0.1414. Moreover, due to
Theorem 2.4, see also [18], Theorem 3.1, the time-optimal control problem is solvable for these data.

The spatial domain was discretized using a uniform triangulation, and the time interval was split into equidis-
tant subintervals. We will report on the results for the following hierarchy of discretizations: (N, M) = (50, 10),
(200, 20), (800, 40), and (3200, 80), where N is the numbers of triangles and M the numbers of time intervals.
The resulting mesh size h is h = 2/

√
N , the resulting length of the temporal subintervals Δt = 1/M .

We utilized a path-following strategy to drive ε from the initial value ε0 = 0.1 towards zero. This iteration
was stopped as soon as the terminal residual satisfied ‖yε(1) − z‖Y0 ≤ 10−3. The algorithmic details will be
given independently.

We report on the convergence for ε → 0. In Figure 1 we show the convergence of τε for different discretizations.
Moreover, we depict the evolution of |τε − τ∗| for the finest discretization, where we use as value for τ∗ the
optimal time for the smallest regularization parameter εi, i.e. τ∗ = τεi . In Table 1 we report on the convergence
of τε and ‖yε(1) − z‖Y0 for the finest discretization. We observe the convergence rate

|τε − τ∗| = O(ε).
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Table 1. Convergence history.

ε τε |τε − τ∗| ‖yε(1) − z‖Y0

1.0000 × 10−1 3.7339 × 10−1 1.0692 × 10−2 2.3722 × 10−2

5.0000 × 10−2 3.7802 × 10−1 6.0621 × 10−3 1.0028 × 10−2

2.5000 × 10−2 3.8024 × 10−1 3.8405 × 10−3 4.5856 × 10−3

1.2500 × 10−2 3.8233 × 10−1 1.7519 × 10−3 2.0920 × 10−3

6.2500 × 10−3 3.8344 × 10−1 6.3668 × 10−4 1.0169 × 10−3

3.1250 × 10−3 3.8408 × 10−1 5.1393 × 10−4
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Figure 1. τε vs. ε for different discretizations; |τε − τ∗| vs. ε for finest discretization.
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Figure 2. ‖pε(1)‖P1 vs. ε for different discretizations.
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As argued in Remark 4.5 this implies that

‖yε(1) − z‖Y0 = O(ε),

which can be seen in the table as well. This convergence rate implies that {pε(1)} is bounded in P1, where
pε are the solutions of the undiscretized problem. In Figure 2, we plotted the evolution of ‖pε,h(1)‖P1 for the
solutions of the discrete problems for the 4 different discretizations, and we observe that the P1-norms of pε,h(1)
are bounded uniformly with respect to ε and with respect to the discretization. This suggests that the a-priori
estimate of Theorem 4.4 is satisfied for this example, i.e. that (4.11) holds in the limit ε → 0.

Acknowledgements. We are grateful to Prof. Hans-Josef Pesch for pointing out an error in an earlier version of the paper.
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