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MEAN-FIELD OPTIMAL CONTROL

Massimo Fornasier1 and Francesco Solombrino1

Abstract. We introduce the concept of mean-field optimal control which is the rigorous limit process
connecting finite dimensional optimal control problems with ODE constraints modeling multi-agent
interactions to an infinite dimensional optimal control problem with a constraint given by a PDE of
Vlasov-type, governing the dynamics of the probability distribution of interacting agents. While in
the classical mean-field theory one studies the behavior of a large number of small individuals freely
interacting with each other, by simplifying the effect of all the other individuals on any given individual
by a single averaged effect, we address the situation where the individuals are actually influenced also by
an external policy maker, and we propagate its effect for the number N of individuals going to infinity.
On the one hand, from a modeling point of view, we take into account also that the policy maker is
constrained to act according to optimal strategies promoting its most parsimonious interaction with
the group of individuals. This will be realized by considering cost functionals including L1-norm terms
penalizing a broadly distributed control of the group, while promoting its sparsity. On the other hand,
from the analysis point of view, and for the sake of generality, we consider broader classes of convex
control penalizations. In order to develop this new concept of limit rigorously, we need to carefully
combine the classical concept of mean-field limit, connecting the finite dimensional system of ODE
describing the dynamics of each individual of the group to the PDE describing the dynamics of the
respective probability distribution, with the well-known concept of Γ -convergence to show that optimal
strategies for the finite dimensional problems converge to optimal strategies of the infinite dimensional
problem.
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1. Introduction

Recently there has been a strong development of literature in applied mathematics and physics describing col-
lective behavior of multiagent systems [25–27,34,37,38,59], towards modeling phenomena in biology, such as cell
aggregation and motion [9,39,40,50], animal motion [5,13,16,20,21,23,27,43,46,47,54,58,64], human [24,29, 55]
and synthetic agent behavior and interactions, such as cooperative robots [17, 42, 48, 57]. As it is very hard to
be exhaustive in accounting all the developments of this very fast growing field, we refer to [12,14,60] for recent
surveys.

Keywords and phrases. Sparse optimal control, mean-field limit, Γ -limit, optimal control with ODE constraints, optimal control
with PDE constraints.
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Most of these models start from particle-like systems, borrowing a leaf from Newtonian physics, by including
fundamental “social interaction” forces, such as attraction, repulsion, self-drive, orientation and alignment etc.
within classical systems of 2nd order equations, governing the evolution of the status, usually the spatial motion,
of each agent. One fundamental goal of these studies is to clarify the relationship between the interplay of such
simple binary forces, being the “first principles” of social interaction, and the potential emergence of a global
behavior in the form of specific patterns, as the result of the re-iterated superposition in time and group-wise of
such forces. For patterns we do not necessarily mean steady states, as one considers in the study of crystalline
structures, but rather structured evolutions, such as the formation of flocks or swarms in animal motion. Due
to their discrete nature and the direct description of the dynamics in terms of the single agent, such particle
models are also called Individual Based Models. While in some cases, for instance in flocking models [27,28], it is
possible to describe rather precisely the mechanism of pattern formation, for most of the models the description
of the asymptotic behavior of a very large system of particles can become an impossible task. A classical way
to approach the global description of the system is then to focus on its mean behavior, as in the classical
mean-field theory one studies the evolution of a large number of small individuals freely interacting with each
other, by simplifying the effect of all the other individuals on any given individual by a single averaged effect.
This results in considering the evolution of the particle density distribution in the state variables, leading to
so-called mean-field partial differential equations of Vlasov- or Boltzmann-type [49]. We refer to [12] and the
references therein for a recent survey on some of the most relevant mathematical aspects on this approach to
swarm models.

On the one hand, in certain circumstances, the formation of a specific pattern is conditional to the initial
datum, being positioned in a corresponding basin of attraction, which sometimes can be characterized, see [16]
for an interesting example of modeling of possible multiple patterns. On the other hand, the choice of the initial
condition outside such a basin of attraction does not give in general any guarantee of stable pattern formation.
Thus it is interesting to question whether an “external player” or “policy maker” can intervene on the system
towards pattern formation, also in those situations where this phenomenon is not the result of independent
self-organization. The intervention may be modeled as an additional control vector field subjected to certain
bounds, representing the limitations (in terms of resources, strength etc.) of the external policy maker.

In the recent work [11] the authors investigated, specifically for individual based flocking models of
Cucker−Smale type [27,28], how sparse controls can be applied in order to always ensure pattern formation, in
this case the emergence of consensus.

For sparse control we mean that the policy maker intervenes the minimal amount of times on the minimal
amount of individual agents. Surprisingly this control strategy turns out not only to be economical in terms
of interactions between the policy maker and the group of agents, but also in terms of enhancing the rate of
convergence to pattern formation.

While the work [11] clarified the basis of sparse stabilization and optimal control for individual based models,
so far it has not been explored how such concepts could be rigorously connected, through a proper limit process
for the number N of agents going to infinity, to continuum models, as in the classical aforementioned mean-field
theory of uncontrolled systems.

In this paper we want to pose the foundations of the discrete/finite dimensional-continuum/infinite dimen-
sional limit for N → ∞ of ODE constrained control problems of the type:

{
ẋi = vi,
v̇i = (H � μN )(xi, vi) + f(t, xi, vi), i = 1, . . .N, t ∈ [0, T ], (1.1)

where

μN =
1
N

N∑
j=1

δ(xi,vi),
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is the empirical atomic measure supported on the agents states (xi, vi) ∈ R
2d, controlled by the minimizer of

the cost functional

ENψ (f) :=
∫ T

0

∫
R2d

(L(x, v, μN (t)) + ψ(f(t, x, v)) dμN (t)(x, v)dt, (1.2)

where ψ : R
d → [0,+∞) is a nonnegative convex function, f(t, x, v) : R × R

d × R
d → R

d is a Carathéodory
function, being an absolutely continuous control vector field with a certain sublinear growth in the variables x and
v, H : R

2d → R
d is a sublinear and locally Lipschitz continuous interaction kernel, and L : R

2d×P1(R2d) → R+

is a continuous function with respect to the product topology generated by the Euclidean distance on R
2d and

the Wasserstein distance W1 on P1(R2d). Let us stress that the optimal control problem (1.1) and (1.2) is
actually nonstandard and its well-posedness does not follow from classical existence arguments such as in ([7],
Chapter 5). We shall prove the existence of controls for (1.1) and (1.2) in Theorem 3.3, based on the compactness
arguments derived in Section 2 for the considered class of feedback control functions. In fact the novelty with
respect to usual closed loop control problems stems precisely from the feedback form of the control in terms of a
locally Lipschitz continuous function f(t, ·, ·) of the state variables (xj , vj), for j = 1, . . . , N . In order to grasp,
although only intuitively, this fundamental difference, let us mention that a relevant choice for ψ, modeling a
situation of particular interest, is ψ(·) = γ| · |, for γ > 0. In this case the minimization of ENψ simultaneously
promotes a choice of an optimal control f , which instantaneously steers the system in the direction of the basin
of attraction as a consequence of the minimization of the term involving L, and the sparsity of f by means of
the L1-norm penalization term

∫
R2d

|f(t, x, v)|dμN (x, v) =
1
N

N∑
j=1

|f(t, xj , vj)|. (1.3)

With this we mean that supp(f(t, ·)) ∩ supp(μN ) is actually expected to be a “small set”. The use of (scalar)
�1-norms to penalize controls dates back to the 60’s with the models of linear fuel consumption [22]. More
recent work in dynamical systems [62] resumes again �1-minimization emphasizing its sparsifying power. Also in
optimal control with partial differential equation constraints it became rather popular to use L1-minimization to
enforce sparsity of controls [15,18,19,35,51,56,63], for instance in the modeling of optimal placing of actuators
or sensors. Let us also mention the recent related work [52] on the optimal design problem for sparse control of
wave equations, where a suitable convex relaxation (see [52], Rem. 1) leads to the transformation of the problem
based on an optimization over characteristic functions of small sets to a problem of minimization over terms of
the type (1.3).

Now, if we were considering the identification uj = f(t, xj , vj) and we were solving a standard optimal control
problem for the non-feedback controls u(t) = (u1(t), . . . , uN(t)), in view of the sparsity promoted by (1.3), we
could easily end up in situations where |uj(t)| = M ∈ R+ and |uj′(t)| = 0 for j �= j′ and (xj(t), vj(t)) arbitrarily
close to (xj′ (t), vj′ (t)), hence violating the assumed Lipschitz continuity of any f for which uj(t) = f(t, xj , vj)
and uj′(t) = f(t, xj′ , vj′). As we will see below, the Lipschitz continuity of a function f cannot be easily relaxed
as an assumption as soon as we wish to consider it eventually as a control for a partial differential equation of
the type (1.6) below.

The general system (1.1) includes, for instance, the sparsely controlled Cucker−Smale type of models of
flocking [11], obtained by choosingH(x, v) = a(|x|)v, where a ∈ C1([0,+∞)) is a nonincreasing positive function,
and L(x, v, μN ) = |v − (

∫
R2d wdμN (y, w))|2 = |v − 1

N

∑N
j=1 vj |2, for which one gets

⎧⎨
⎩
ẋi = vi,

v̇i =
1
N

∑N
j=1 a(|xj − xi|)(vj − vi) + f(t, xi, vi), i = 1, . . .N, t ∈ [0, T ],

(1.4)
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subjected to the optimal control f minimizing the cost functional

ENγ (f) :=
∫ T

0

1
N

N∑
i=1

⎛
⎜⎝
∣∣∣∣∣∣vi −

1
N

N∑
j=1

vj

∣∣∣∣∣∣
2

+ γ|f(t, xi, vi)|

⎞
⎟⎠ dt. (1.5)

The interested reader can compare (1.4) and (1.5) with the more classically formulated sparse optimal control
problem studied in ([11], Sect. 5).

The main result of this work is to clarify in which sense the finite dimensional solutions of (1.1) and (1.2)
converges for N → ∞ to a solution of the PDE constrained problem

∂μ

∂t
+ v · ∇xμ = ∇v · [(H � μ+ f)μ] , (1.6)

controlled by the minimizer f of the cost functional

Eψ(f) :=
∫ T

0

∫
R2d

(L(x, v, μ(t)) + ψ(f(t, x, v))) dμ(t)(x, v)dt, (1.7)

where μ : [0, T ] → P1(R2d) is a probability measure valued weak solution to (1.6). Our arguments will be based
on the combination of the concepts of mean-field limit, using techniques of optimal transport [3], in order to
connect (1.1) to (1.6), and Γ -limit [30] in order to connect the minimizations of (1.2) and (1.7). Accordingly
we call this limit process mean-field optimal control.

Let us stress that some of the relevant ingredients of our theory were already partially available in the
literature. In particular, the rigorous derivation of the mean-field limits to connect (1.1) to (1.6) for situations
where no control is addressed, i.e., when f ≡ 0, has been already considered, for instance, in [10]. Nevertheless,
although it represents a minor extension, the situation where a control f is present in the equations, and it has
potentially a discontinuous nature in time, requires to generalize the results in [10] to solutions of Carathéodory
for (1.1) [32]. We sketch these generalizations in the Appendix for the sake of completeness. In particular,
existence, uniqueness, and stability of weak measure-valued solutions to (1.6) with compactly supported data
will be given in details in Theorems 4.7 and A.8.

Additional tools are certain compactness arguments in Lq((0, T ),W 1,∞
loc (R2d,Rd)) for the derivation of a limit

for the controls (Thm. 2.10 and Cor. 2.11), and compactness arguments in 1-Wasserstein distance for probability
measures in P1(R2d) in order to derive limits of the empirical measures to weak solutions of (1.6). Finally, the
optimality conditions for the limit controls will be derived using lower-semicontinuity arguments for the energy
Eψ(f) in order to obtain the Γ -lim inf condition (Thm. 4.4), and the construction of solutions to (1.6) in order
to define a recovery sequence for the Γ -lim sup condition (Thm. 4.7).

Beside the specific novelty of our model, where we considered collective behavior (sparsely) controlled by an
external policy maker restricted by limited resources, we stress again that the originality of our analysis stands
precisely in the combination of the concepts of mean-field- and Γ -limits, where the reference topologies are those
of P1(R2d) for the solutions and Lq((0, T ),W 1,∞

loc (R2d,Rd)) for the controls. This distinguishes our work from
other conceptually similar approaches where limits of finite dimensional optimal control problems to infinite
dimensional control problems are considered. We refer in particular to two main directions.

The first is the discretization of PDE constrained optimal control problems by means, e.g., of finite element
methods. One defines a suitable finite dimensional time and/or space discretization and shows that corresponding
finite dimensional optimal control solutions converge to the solution of the PDE constrained optimal control
problem. Let us stress that such a type of arguments have been applied mainly for elliptic and parabolic type of
equations, and the tools used are either explicit a priori Galerkin-type error estimates or adaptive discretizations,
driven by a posteriori error estimates in classical Sobolev spaces. Without being able to be at all exhaustive in
describing the vast literature on this well-established methodology, we refer to a classical reference [33] and to
the recent survey paper [53] and the bibliography therein.
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In order to encounter transport equations, one needs to refer to the second main direction conceptually similar
to our approach, i.e., the mean-field games, introduced by Lasry and Lions [41], see in particular ([41], Sect. 2.6),
and independently in the optimal control community under the name Nash Certainty Equivalence (NCE) within
the work [36], later greatly popularized within consensus problems, for instance in [44,45]. The first fundamental
difference with our work is that in (mean-field) games, each individual agent is competing freely with the others
towards the optimization of its individual goal, as for instance in the financial market, whereas in our model
we are concerned with the optimization of the intervention of an external policy maker or coordinator endowed
with rather limited resources to help the system to form a pattern, when self-organization does not realize it
autonomously, as it is a case, e.g., in modeling economical policies and government strategies. Let us stress that
in our model we are particularly interested to sparsify the control towards most effective results, and also that
such an economical concept does not appear anywhere in the literature when we deal with mean-field limits of
large particle systems. Secondly in mean-field games the stochastic component plays a relevant role (also for the
technical derivation of mean-field limits), while in our deterministic model no stochastic terms are necessarily
requested in order to have sufficient regularization for deriving rigorously the mean-field limit.

At this point it is also very important to mention the concept of mean-field type control independently
developed recently by Bensoussan, Frehse, and Yam [6], and addressing similar optimal control problems as (1.6)
and (1.7) in a stochastic setting, with strong emphasis on the actual computation of first order optimality
equations characterizing the controls. We also mention the earlier results of this type [1, 4, 8]. Differently from
these papers, our results focus on the rigorous derivation and the well-posedness of (1.6) and (1.7) from the
individual based model (1.1) and (1.2), combining techniques of optimal transport and variational calculus in a
fully deterministic setting.

The paper is organized as follows: in Section 2 we introduce the class of control functions and we prove
its closedness and compactness properties, and certain lower-semicontinuity results related to the cost func-
tional (1.7). Section 3 is dedicated to the finite dimensional optimal control problem (1.1) and (1.2) and its
well-posedness. In Section 4 we address both the mean-field limit to connect (1.1) to (1.6) and the conditions
of Γ -convergence to connect the minimizations of (1.2) and (1.7), to eventually conclude with Section 5 where
we state our main mean-field optimal control result, which summarizes all our findings. For the sake of a broad
readability of the paper and its self-containedness we also included an Appendix recalling the relevant results
on Carathéodory solutions of ODEs and how they are related via the method of the characteristics to solutions
of (1.6).

2. The space of admissible controls

2.1. Admissible controls

Let d ≥ 1 be the dimensionality of the control output, n ≥ 1 be the dimensionality of the state variables
(later we will consider n = 2d).

Definition 2.1. For a horizon time T > 0, and an exponent 1 ≤ q < +∞ we fix a control bound function
� ∈ Lq(0, T ). The class of admissible control functions F�([0, T ]) is so defined: f ∈ F�([0, T ]) if and only if

(i) f : [0, T ] × R
n → R

d is a Carathéodory function,
(ii) f(t, ·) ∈W 1,∞

loc (Rn,Rd) for almost every t ∈ [0, T ], and
(iii) |f(t, 0)| + Lip(f(t, ·),Rd) ≤ �(t) for almost every t ∈ [0, T ].

Functions in the class F�([0, T ]) can be also regarded as measurable mappings with values in Banach spaces, as
we clarify in the next two remarks.

Remark 2.2. Every control function f ∈ F�([0, T ]) can be identified with a mapping f : [0, T ] →W 1,∞
loc (Rn; Rd)

where f(t) is simply the function taking the value f(t, x) at x. Let us show now that f ∈ Lq((0, T ),W 1,p(Ω,Rd))
for every open bounded subset Ω ⊂ R

n and 1 < p < +∞, with q being exactly the integrability exponent of �.
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To prove that the mapping is measurable, by separability of W 1,p(Ω,Rd), it suffices to show weak measurability.
Since f is Carathéodory, by density of atomic measures in the weak-∗ topology of measures, the map t→ 〈f(t), μ〉
is measurable for every μ ∈ Mb(Ω,Rd). The former duality pairing is the standard one between continuous
functions and measures. This holds now in particular when μ is a function in L(p∗)′(Ω,Rd), with p∗ the Sobolev
exponent. Since W 1,p(Ω,Rd) is densely embedded into Lp

∗
(Ω,Rd), then L(p∗)′(Ω,Rd) is densely embedded into

the dual space of W 1,p(Ω,Rd) endowed with the weak topology. It follows that t→ 〈φ, f(t)〉 is measurable for all
φ ∈ (W 1,p(Ω,Rd))′, as we wanted. Finally, one easily has by the assumptions that ‖f(t)‖W 1,p(Ω,Rd) ∈ Lq(0, T ),
so that f ∈ Lq((0, T ),W 1,p(Ω,Rd)).

Remark 2.3. Conversely, consider a mapping f : [0, T ] →W 1,∞
loc (Rn,Rd) such that f ∈ Lq((0, T ),W 1,p(Ω,Rd))

for every open bounded subset Ω ⊂ R
n and 1 < p < +∞, the identification f(t, x) = f(t)(x) for all x ∈ Ω

gives us a Carathéodory function. It makes then sense to consider the subset C�,Ω of Lq((0, T ),W 1,p(Ω,Rd))
defined by

C�,Ω := {f ∈ Lq((0, T ),W 1,p(Ω,Rd)) : |f(t, 0)| + Lip(f(t, ·),Rd) ≤ �(t) for a.e. t ∈ [0, T ]}. (2.1)

It easily turns out that C�,Ω is convex. Furthermore, if f ∈ C�,Ω for all Ω ⊂ R
n, it can be identified with a

f ∈ F�([0, T ]).

In the following, functions in the class F�([0, T ]) will be identified with measurable mappings f : [0, T ] →
W 1,∞
loc (Rn,Rd) and vice versa, according to Remarks 2.2 and 2.3, without further specification.
We also point out some closedness properties of the convex set C�,Ω introduced in (2.1).

Remark 2.4. Fix 1 < p < +∞ and a bounded smooth subset Ω ⊂ R
n. Take a sequence (fj)j∈N in C�,Ω such

that fj(t) converges to f(t) in W 1,p(Ω,Rd) for a.e. t ∈ [0, T ]. Then, for a.e. t the W 1,∞(Ω,Rd) norm of fj(t)
is bounded because of the definition of C�,Ω, so that fj(t) converges to f(t) weakly-∗ in W 1,∞(Ω,Rd) for a.e.
t ∈ [0, T ], and

|f(t, 0)| + Lip(f(t, ·), Ω) ≤ lim inf
j→∞

|fj(t, 0)| + Lip(fj(t, ·), Ω).

It follows that C�,Ω is closed with respect to pointwise a.e. convergence, and therefore in the
Lq((0, T ),W 1,p(Ω,Rd)) norm topology, since any Cauchy sequence in Lq((0, T ),W 1,p(Ω,Rd)) has a pointwise
a.e. converging subsequence. Since C�,Ω is convex, we deduce from Mazur’s Lemma that it is also closed in the
weak topology of Lq((0, T ),W 1,p(Ω,Rd)).

In the following we shall usually fix a horizon time T > 0 and denote F� := F�([0, T ]), omitting the time
interval. The integrability exponent of � will be depending on the cost functional we consider, as we will make
precise in Section 3. In the case of a cost functional of the type (1.5), the one we are mainly interested in, we
will choose q = 1.

2.2. Compactness, closedness, and lower semicontinuity properties

The following compactness result is a sort of generalization of the Dunford−Pettis theorem [2], Theorem 1.38
for equi-integrable families of functions with values in a reflexive and separable Banach spaces. Its derivation is
standard, but we include its proof for the sake of completeness.

Theorem 2.5. Let X be a reflexive and separable Banach space. Let (fj)j∈N be a sequence of functions in
Lq((0, T ), X) with 1 ≤ q < +∞. Let us also assume that there exists a map m ∈ Lq(0, T ) such that ‖fj(t)‖X ≤
m(t) for almost all t ∈ [0, T ]. Then there exist a subsequence (fjk)k∈N and a function f ∈ Lq((0, T ), X) such
that

lim
k→∞

∫ T

0

〈φ(t), fjk(t, ·) − f(t, ·)〉dt = 0, (2.2)
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for all φ ∈ Lq
′
((0, T ), X ′), with q′ the conjugate exponent of q, and

w − lim
k→∞

∫ t2

t1

fjk(t)dt =
∫ t2

t1

f(t)dt, for all t1.t2 ∈ [0, T ], (2.3)

where the limit is in the sense of the weak topology of X and the integrals are in the sense of Bochner.

Proof. Let us first of all recall that, as X is reflexive, it has the Radon−Nikodym property: in particular, given
F ∈ AC([0, T ], X) there exists f ∈ L1((0, T ), X) such that

F (t2) − F (t1) =
∫ t2

t1

f(t)dt, for all t1, t2 ∈ [0, T ].

Let us now define Fj(s) =
∫ s
0
fj(t)dt, and we have

‖Fj(t2) − Fj(t1)‖X ≤
∫ t2

t1

m(t)dt, for all t1, t2 ∈ [0, T ].

Therefore Fj are equi-bounded and equi-absolutely continuous, and by Ascoli−Arzelà theorem, there exist a
subsequence (Fjk)k∈N and a function F ∈ AC([0, T ], X) such that

w − lim
k→∞

(Fjk (t2) − Fjk(t1)) = F (t2) − F (t1), (2.4)

weakly in X for all t1, t2 ∈ [0, T ] (this is a consequence of the separability of X). By the aforementioned
Radon−Nikodym property, there exists f ∈ L1((0, T ), X) such that

F (t2) − F (t1) =
∫ t2

t1

f(t)dt, for all t1, t2 ∈ [0, T ].

Moreover, by the weak limit (2.4) and lower-semicontinuity of the norm of X ,

‖F (t2) − F (t1)‖X ≤ lim inf
k→∞

‖Fjk(t2) − Fjk (t1)‖X ≤
∫ t2

t1

m(t)dt,

hence the modulus of absolute continuity of F is again
∫ t2
t1
m(t)dt and, by the Lebsegue theorem for functions

with values in Banach spaces ([31], 2.9.9), we obtain ‖f(t)‖X ≤ m(t) for almost every t ∈ [0, T ]. It follows that
f ∈ Lq((0, T ), X). As

w − lim
k→∞

∫ t2

t1

fjk(t)dt =
∫ t2

t1

f(t)dt,

weakly in X for all t1, t2 ∈ [0, T ], we actually have

w − lim
k→∞

∫
A

fjk(t)dt =
∫
A

f(t)dt,

for all A open subsets of [0, T ], and therefore for all Borel subsets A of [0, T ]. Hence for any simple function
φ(t) =

∑m
i=1 φiχAi(t) where φi ∈ X ′, we have φ ∈ L∞((0, T ), X ′) and

lim
k→∞

∫ T

0

〈φ(t), fjk(t)〉dt =
∫ T

0

〈φ(t), f(t)〉dt,

where now the convergence is of real values, and one concludes the proof by density of such simple functions in
Lq

′
((0, T ), X ′) and an application of the dominated convergence theorem taking into account the q-integrability

of m. �

The following local compactness property is fundamental to our analysis.
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Theorem 2.6. Let Ω be a bounded, smooth, and open subset of R
n and let 1 < p < ∞ and 1 ≤ q < +∞.

Assume that (fj)j∈N be a sequence of functions in Lq((0, T ),W 1,p(Ω,Rd)) such that

|fj(t, 0)| + Lip(fj(t, ·), Ω) ≤ �(t) ∈ Lq(0, T ), for almost every t ∈ [0, T ], for all j ∈ N.

Then there exist a subsequence (fjk)k∈N and a function f ∈ Lq((0, T ),W 1,p(Ω,Rd)) such that

w − lim
k→∞

fjk = f, (2.5)

weakly in Lq((0, T ),W 1,p(Ω,Rd)), and

|f(t, 0)| + Lip(f(t, ·), Ω) ≤ �(t), for almost every t ∈ [0, T ]. (2.6)

Proof. By an application of Theorem 2.5 for X = W 1,p(Ω,Rd), there exist a subsequence (fjk)k∈N and a function
f ∈ Lq((0, T ),W 1,p(Ω,Rd)) such that (2.5) holds. It remains to show (2.6). Defining C�,Ω as in (2.1), (2.6) is
equivalent to saying that f ∈ C�,Ω. The conclusion is therefore immediate, since C�,Ω is closed with respect to
the weak topology Lq((0, T ),W 1,p(Ω,Rd)) by Remark 2.4. �

An immediate consequence of the previous theorem is the following weak compactness result in F�.

Corollary 2.7. Let 1 < p < ∞. Assume that (fj)j∈N be a sequence of functions in F� for a given function
� ∈ Lq(0, T ), 1 ≤ q < +∞. Then there exist a subsequence (fjk)k∈N and a function f ∈ F�, such that

lim
k→∞

∫ T

0

〈φ(t), fjk(t, ·) − f(t, ·)〉dt = 0, (2.7)

for all φ ∈ Lq
′
([0, T ], H−1,p′(Rn,Rd)) such that supp(φ(t)) � Ω for all t ∈ [0, T ], where Ω is a relatively compact

set in R
n. Here the symbol 〈·, ·〉 denotes the duality between W 1,p and its dual H−1,p′ .

Proof. By considering an invading countable sequence (Ωh)h∈N of bounded, smooth, and open subsets of
R
n and using a diagonal argument, one shows that there exist a subsequence (fjk)k∈N and a function

f ∈ Lq((0, T ),W 1,p(Ωh,Rd)) such that w − limk→∞ fjk = f weakly in Lq((0, T ),W 1,p(Ωh,Rd)) for all h ∈ N,
and

|f(t, 0)| + Lip(f(t, ·),Rn) = sup
h∈N

|f(t, 0)| + Lip(f(t, ·), Ωh) ≤ �(t), for almost every t ∈ [0, T ].

Hence actually f ∈ F�. In order to conclude the validity of (2.7), it is now sufficient to observe that if Ω is
relatively compact, then there exists h ∈ N such that Ω ⊂ Ωh. �

Remark 2.8. By duality and Morrey’s embedding theorem for n < p <∞, if ψ(t) is actually measure valued,
then it is also H−1,p′-valued. This observation is used silently in the proofs of the results which follow.

Remark 2.9. The existence of a subsequence of indexes jk independent of t so that fjk(t, ·) converges to f(t, ·)
weakly inW 1,p

loc (Rn,Rd) for all t ∈ [0, T ] is in general false. It suffices to think of the sequence fj(t, ζ) = sin(2πjt)ζ
which, however, converges to 0 in the sense of (2.7) as a consequence of the Riemann−Lebesgue Lemma.

In the following we consider the space P1(Rn), consisting of all probability measures on R
n with finite first

moment. On this set we shall consider the following distance, called the Monge–Kantorovich–Rubistein distance,

W1(μ, ν) = sup
{∣∣∣∣
∫

Rn

ϕ(x)d(μ − ν)(x)
∣∣∣∣ : ϕ ∈ Lip(Rn), Lip(ϕ) ≤ 1

}
, (2.8)

where Lip(Rn) is the space of Lipschitz continuous functions on R
n and Lip(ϕ) the Lipschitz constant of a

function ϕ. Such a distance can also be represented in terms of optimal transport plans by Kantorovich duality
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in the following manner: if we denote Π(μ, ν) the set of transference plans between the probability measures
μ and ν, i.e., the set of probability measures on R

n × R
n with first and second marginals equal to μ and ν

respectively, then we have

W1(μ, ν) = inf
π∈Π(μ,ν)

{∫
Rn×Rn

|x− y|dπ(x, y)
}
. (2.9)

In the form (2.9) the distance W1 is also known as the 1-Wasserstein distance. We refer to [3, 61] for more
details.

Theorem 2.10. For a given � ∈ L1(0, T ), let (fk)k∈N be a sequence of functions in F� converging to f in the
sense of (2.7). Let μk : [0, T ] → P1(Rn) be a sequence of functions taking values in the probability measures
with finite first moment, and μ : [0, T ] → P1(Rn) such that

sup
t∈[0,T ]

∫
Rn

|x|dμk(t, x) = M <∞, (2.10)

and
lim
j

W1(μk(t), μ(t)) = 0, for all t ∈ [0, T ]. (2.11)

Then

lim
k

∫ t̂

0

〈ϕ, fk(t, ·)μk(t)〉dt =
∫ t̂

0

〈ϕ, f(t, ·)μ(t)〉dt, (2.12)

for all ϕ ∈ C1
c (Rn,Rd) and for all t̂ ∈ [0, T ].

Proof. Let us again fix p > n. Once we fix ϕ ∈ C1
c (Rn,Rd), by the assumption fk ∈ F we have

Lip(ϕfk(t, ·)) ≤ �(t)‖ϕ‖∞ + ‖∇ϕ‖∞‖fk(t, ·)‖L∞(B(0,R))

≤ �(t)
(
‖ϕ‖∞ + ‖∇ϕ‖∞(1 +R)

)
,

where R > 0 is such that supp(ϕ) � B(0, R). It follows that

lim sup
k

∣∣∣∣∣
∫ t̂

0

〈ϕ, fk(t, ·)μk(t)〉dt−
∫ t̂

0

〈ϕ, fk(t, ·)μ(t)〉dt
∣∣∣∣∣

≤
(
‖ϕ‖∞ + ‖∇ϕ‖∞(1 +R)

)
lim sup

k

∫ T

0

�(t)W1(μk(t), μ(t))dt. (2.13)

From (2.11) we have the vanishing pointwise convergence almost everywhere of the latter integrand

�(t)W1(μk(t), μ(t)) → 0, k → ∞.

Moreover, by recalling the definition (2.9) and using the uniform first moment condition (2.10), we obtain

W1(μk(t), μ(t)) ≤
∫

Rn×Rn

|x− y|dμk(t, x)dμ(t, y) ≤M +
∫

Rn

|y|dμ(y), (2.14)

uniformly with respect to t ∈ [0, T ]. Hence, by dominated convergence theorem applied to (2.13) we finally have

lim
k→∞

∣∣∣∣∣
∫ t̂

0

〈ϕ, fk(t, ·)μk(t)〉dt−
∫ t̂

0

〈ϕ, fk(t, ·)μ(t)〉dt
∣∣∣∣∣ = 0.
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Therefore, it is sufficient now to show that

lim
k

∫ t̂

0

〈ϕ, fk(t, ·)μ(t)〉dt =
∫ t̂

0

〈ϕ, f(t, ·)μ(t)〉dt.

This follows immediately from Corollary 2.7, because t → ϕμ(t) is a map belonging to the space
L∞([0, t̂], H−1,p′(Rn,Rd)) with uniform compact support, since ϕ is such. �

As in the definition of a weak solution of the equation (1.6) the role of ϕ is played actually by ∇vϕ (where
ϕ ∈ C1

c (R
n)), see formula (4.11) in the proof of Theorem 4.4, we need to extend the validity of Theorem 2.10

as follows.

Corollary 2.11. The statement of Theorem 2.10 actually holds also for ϕ ∈ C0
c (R

n,Rd).

Proof. Let us notice that

|〈ϕ, fk(t, ·)μk(t)〉| ≤ ‖ϕ‖∞‖fk(t, ·)‖L∞(B(0,R)) ≤ ‖ϕ‖∞�(t)(1 +R), (2.15)

where R is such that supp(ϕ) � B(0, R). By uniform approximation by functions in C1
c (R

n,Rd), the esti-
mate (2.15) and Theorem 2.10 give the thesis. �

The following lower-semicontinuity result will prove to be useful in the proof of Theorem 3.3 and Corollary 4.6.
Here the integrability of �, depending on condition (2.16) below, plays a key role.

Theorem 2.12. Consider a nonnegative convex function ψ : R
d → [0,+∞) satisfying the following condition:

there exists a constant C ≥ 0 and 1 ≤ q < +∞ such that, for all R > 0,

Lip(ψ,B(0, R)) ≤ CRq−1 (2.16)

where B(0, R) is the ball of radius R in R
d centered at 0. For q as in (2.16), fix � ∈ Lq(0, T ) and consider a

sequence of functions (fk)k∈N in F� converging to f in the sense of (2.7). Let μk : [0, T ] → P1(Rn) be a sequence
of functions taking values in the probability measures with finite first moment such that

supp(μk(t)) � Ω, (2.17)

for a.e. t ∈ [0, T ] and k ∈ N, where Ω is a relatively compact open set in R
n. Let μ : [0, T ] → P1(Rn), and

assume that
lim
k

W1(μk(t), μ(t)) = 0, for a.e. t ∈ [0, T ]. (2.18)

Then, we have

lim inf
k→+∞

∫ T

0

〈ψ(fk(t, ·)), μk(t)〉dt ≥
∫ T

0

〈ψ(f(t, ·)), μ(t)〉dt. (2.19)

Remark 2.13. For ψ globally Lipschitz, as in the case of the cost functional (1.5), we can simply take q = 1.

Proof. We first observe that (2.17) and (2.18) clearly imply that supp(μ(t)) � Ω for a.e. t ∈ [0, T ]. Our first
goal is to show

lim inf
k→+∞

∫ T

0

〈ψ(fk(t, ·)), μ(t)〉dt ≥
∫ T

0

〈ψ(f(t, ·)), μ(t)〉dt. (2.20)

To prove this, we fix p > n and consider C�,Ω as in (2.1).
We define the function Sμ : Lq((0, T ),W 1,p(Ω,Rd)) → [0,+∞] as

Sμ(g) :=

⎧⎨
⎩

∫ T

0

〈ψ(g(t, ·)), μ(t)〉dt if g ∈ C�,Ω

+∞ otherwise.
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We want to prove that Sμ is lower semicontinuous with respect to the weak convergence of Lq((0, T ),
W 1,p(Ω,Rd)): with this, (2.20) easily follows. By convexity of ψ and C�,Ω, it is immediate to show that Sμ is
convex. It then suffices to prove that it is lower semicontinuous in the strong topology of Lq((0, T ),W 1,p(Ω,Rd))
to obtain weak lower semicontinuity. To this end, take a sequence gk ∈ Lq((0, T ),W 1,p(Ω,Rd)) strongly con-
verging to g. The only relevant case is when gk ∈ C�,Ω, so that also g ∈ C�,Ω. In such a case, we clearly have
by (2.1) and (2.16) that there exists a constant C′ only depending on C and the diameter of Ω such that

|ψ(gk(t, x, v)) − ψ(g(t, x, v))| ≤ (C′�(t))q−1|gk(t, x, v) − g(t, x, v)|

for a.e. t ∈ [0, T ] and all (x, v) ∈ Ω. Denoting with M the continuity constant of Morrey’s embedding, we then
get

|Sμ(gk) − Sμ(g)| =

∣∣∣∣∣
∫ T

0

〈ψ(gk(t, ·)) − ψ(g(t, ·)), μ(t)〉dt

∣∣∣∣∣
≤
∫ T

0

‖ψ(gk(t)) − ψ(g(t))‖L∞(Ω) dt ≤ C′q−1

∫ T

0

�(t)q−1‖gk(t) − g(t)‖L∞(Ω,Rd) dt

≤MC′q−1

∫ T

0

�(t)q−1‖gk(t) − g(t)‖W 1,p(Ω,Rd) dt.

Now, �(t)q−1 belongs to Lq
′
(0, T ) by q-integrability of �, while ‖gk(t)− g(t)‖W 1,p(Ω,Rd) is going to 0 as k → +∞

in Lq(0, T ). Therefore, Hölder inequality implies

|Sμ(gk) − Sμ(g)| → 0,

thus (2.20) is proved.
We claim now that

lim
k→+∞

∫ T

0

〈ψ(fk(t, ·)), μk(t) − μ(t)〉dt = 0. (2.21)

Indeed, since fk ∈ F� and using (2.16), we have that there exists a constant C′ only depending on C and on
the diameter of Ω such that

Lip(ψ ◦ fk(t), Ω) ≤ C′q−1�(t)q

for all k ∈ N and a.e. t ∈ (0, T ), where ψ ◦ fk(t) is the composition of the functions ψ and fk(t). Therefore∣∣∣∣∣
∫ T

0

〈ψ(fk(t, ·)), μk(t) − μ(t)〉dt

∣∣∣∣∣ =

∣∣∣∣∣
∫ T

0

〈ψ(fk(t, ·)) − ψ(fk(t, 0)), μk(t) − μ(t)〉dt

∣∣∣∣∣
≤ C′q−1

∫ T

0

�(t)qW1(μk(t), μ(t)) dt.

By (2.18), this latter integrand is pointwise vanishing. Since clearly condition (2.17) implies (2.10), by (2.14)
W1(μk(t), μ(t)) is bounded uniformly with respect to t and k; since � ∈ Lq(0, T ), we can then use the dominated
convergence theorem ∫ T

0

�(t)qW1(μk(t), μ(t)) dt → 0.

With this, (2.21) follows: combining it with (2.20), we get (2.19). �

As a concluding remark for this section, we point out that, although we consider here controls in the class F�
depending on both the variables x and v, our analysis apply without any change to controls that depend only
on some specific variables. This could be justified by some modeling reasons: for instance, it would be consistent
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with the previous work [11] to take controls which depend exclusively by the velocity state. Indeed, any subclass
of F consisting of controls only depending on some specific variables is closed with respect to the convergence
in (2.7), as we clarify in the following remark.

Remark 2.14. For 1 ≤ d < n we write the generic point z of R
n as z = (u,w), u ∈ R

n−d, w ∈ R
d. Given F�

as in Definition 2.1, we also introduce the following subclass of F� of admissible controls given by

Fw
� := {f(t, z) ∈ F� : f(t, z) = f(t, w)} (2.22)

Trivially, f ∈ Fw
� if and only if |f(t, 0)| + ‖∇wf(t, ·)‖L∞(Rd) ≤ �(t) for almost every t ∈ [0, T ]. We can show

that Fw
� is closed with respect to the weak convergence in Corollary 2.7. Indeed, if (fj)j∈N ∈ Fw

� is a sequence,
then (fj)j∈N is also a sequence in F�. Assume now that fj is converging to f ∈ F� in the sense of (2.7). Let
{uk, k ∈ N} and {wk, k ∈ N} be two countable dense subsets of R

n−d and R
d, respectively. Pick two different

uk1 , uk2 in the first countable subset, and one fixed wk3 in the second one. Fix t1 and t2 in [0, T ] and set

ψ(t) := χ(t1,t2)

(
δuk1

− δuk2

)
⊗ δwk3

.

Since fj ∈ Fw
� we have for a.e. t ∈ (t1, t2) that

〈fj(t), ψ(t)〉 = fj(t, uk1 , wk3) − fj(t, uk2 , wk3) = fj(t, wk3) − fj(t, wk3) = 0,

so that (2.7) specifies easily to

0 =
∫ t2

t1

[f(t, uk1 , wk3) − f(t, uk2 , wk3)] dt

By the Lebesgue theorem, we can find a set N ⊂ [0, T ] of zero Lebesgue measure and independent of the
elements uk1 , uk2 , and wk3 such that

0 = f(t, uk1 , wk3) − f(t, uk2 , wk3),

for all t ∈ [0, T ] \N . Since f(t, ·, ·) is continuous for almost every t, by a density argument we infer

f(t, u1, w) − f(t, u2, w) = 0

for all t ∈ [0, T ] \N , u1 and u2 ∈ R
n−d, and w in R

d. This is exactly saying that f ∈ Fw
� .

3. The finite dimensional control problem

In the following we consider problems in the phase space R
n where n = 2d with state variables z = (x, v), x,

v ∈ R
d. We state the following assumptions:

(H) Let H : R
2d → R

d be a locally Lipschitz function such that

|H(z)| ≤ C(1 + |z|), for all z ∈ R
2d. (3.1)

(L) Let L : R
2d × P1(R2d) → R+ be a continuous function with respect to the product topology generated by

the Euclidean distance on R
2d and the distance W1 on P1(R2d).

(Ψ) Let ψ : R
d → [0,+∞) be a nonnegative convex function satisfying the following assumption: there exist

C ≥ 0 and 1 ≤ q < +∞ such that
Lip(ψ,B(0, R)) ≤ CRq−1 (3.2)

for all R > 0.

These assumptions are useful in this section, but we shall recall them also in Section 4, where they play again
a crucial role.
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Remark 3.1. We discuss a simple sufficient condition for assumption (L) to hold. Consider a continuous kernel
k(x, v, y, w) : R

4d → R
2d with the following property: there exist two continuous functions α(x, v) and β(x, v)

such that
|k(x, v, y, w)| ≤ α(x, v) + β(x, v)(|y| + |w|). (3.3)

Then for all μ ∈ P1(R2d), and all α > 0 the function

Lα(x, v, μ) :=
∣∣∣∣
∫

R2d

k(x, v, y, w) dμ(y, w)
∣∣∣∣
α

are well defined and satisfy (L).
To achieve this, it suffices to check the case α = 1. Assume indeed that (xj , vj , μj) converges to (x, v, μ) in

the product topology generated by the Euclidean distance on R
2d and the distance W1 on P1(R2d). By the

properties of the Wasserstein convergence, for fixed ε > 0 there exists a compact set Cε independent of j such
that ∫

R2d\Cε

(1 + |y| + |w|) dμj ≤ ε

for all j (see [3], Prop. 7.5.1). By (3.3) we get

lim sup
j→+∞

∫
R2d\Cε

|k(xj , vj , y, w) − k(x, v, y, w)| dμj(y, w) ≤ 2(α(x, v) + β(x, v))ε. (3.4)

On the other hand, at fixed (x, v) by the Wasserstein convergence of μj to μ and (3.3) we have

lim
j→+∞

∣∣∣∣
∫

R2d

k(x, v, y, w) dμj(y, w) −
∫

R2d

k(x, v, y, w) dμ(y, w)
∣∣∣∣ = 0, (3.5)

while by continuity of k, k(xj , vj , y, w) converges to k(x, v, y, w) uniformly with respect to (y, w) ∈ Cε, so that

lim
j→+∞

∫
Cε

|k(xj , vj , y, w) − k(x, v, y, w)| dμj(y, w) = 0. (3.6)

Combining (3.4) and (3.6) we obtain

lim sup
j→+∞

∣∣∣∣
∫

R2d

k(xj , vj , y, w) dμj(y, w) −
∫

R2d

k(x, v, y, w) dμ(y, w)
∣∣∣∣ ≤ 2(α(x, v) + β(x, v))ε,

which proves (L) by arbitrariness of ε.
For α = 2 and k(x, v, y, w) = (0, v −w), with 0 being the null vector of R

d, we get for instance that the cost
function associated to the Cucker−Smale system (1.4) and (1.5)

(x, v, μ) →
∣∣∣∣v −

∫
R2d

w dμ(y, w)
∣∣∣∣
2

actually satisfies (L).

We fix q so that (3.2) holds, and a function � ∈ Lq(0, T ). Given N ∈ N and an initial datum
(x1(0), . . . , xN (0), v1(0), . . . , vN (0)) ∈ (Rd)N × (Rd)N , we consider the following optimal control problem:

min
f∈F�

∫ T

0

∫
R2d

[L(x, v, μN (t)) + ψ(f(t, x, v)] dμN (t)(x, v)dt, (3.7)
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where

μN (t)(x, v) =
1
N

N∑
j=1

δ(xi(t),vi(t))(x, v), (3.8)

is the time dependent empirical atomic measure supported on the phase space trajectories (xi(t), vi(t)) ∈ R
2d,

for i = 1, . . .N , constrained by being the solution of the system{
ẋi = vi,
v̇i = (H � μN )(xi, vi) + f(t, xi, vi), i = 1, . . .N, t ∈ [0, T ], (3.9)

Let us stress that the existence of Carathéodory solutions of (3.9) for any given f ∈ F� is actually ensured
by Theorems A.1 and A.2 recalled in the Appendix. In equation (3.7), as well as in what follows, the symbol
dμ(t)(x, v) denotes the integration with respect to a time-dependent probability measure μ(t) in the variables
(x, v). We start with a trajectory confinement result.

Lemma 3.2. Let f ∈ F� and (x(t), v(t)) be the solution of (3.9) with initial datum (x(0), v(0)). Then

V(t) ≤
{
V(0) + [1 + X (0)]

(
2CT +

∫ t

0

�(s)ds
)}

e(1+T )
∫

t
0 [2C+�(s)]ds, (3.10)

for all t ∈ [0, T ], where V(t) = maxi=1,...,N |vi(t)| and X (t) = maxi=1,...,N |xi(t)|. Hence the trajectory (x(t), v(t))
is uniformly bounded with respect to t ∈ [0, T ], independently of the number N of particles.

Proof. By integration of (3.9) and the linear growths of both H and control function f ∈ F�, we obtain

V(t) ≤ V(0) +
∫ t

0

[2C(1 + X (s) + V(s)) + �(s)(1 + X (s) + V(s))]ds. (3.11)

Moreover, for any 0 ≤ s ≤ t

|xi(s)| ≤ |xi(0)| +
∫ s

0

|vi(r)|dr ≤ |xi(0)| +
∫ t

0

|vi(r)|dr,

which combined with (3.11) gives

V(t) ≤
{
V(0) + [1 + X (0)]

(
2CT +

∫ t

0

�(s)ds
)}

+ (1 + T )
∫ t

0

[2C + �(s)]V(s)ds.

Gronwall’s lemma eventually yields (3.10). �

From the uniform support bound on μN provided by Lemma 3.2 and from Theorems 2.10 and 2.12 we deduce
the following well-posedness result.

Theorem 3.3. The finite horizon optimal control problem (3.7) and (3.9) with initial datum (x(0), v(0)) has
solutions.

Proof. Let us consider a minimizing sequence (fj)j∈N in F� and its subsequence (fjk)k∈N and f ∈ F� as in
Corollary 2.7. For simplicity we rename fk = fjk . Let us also fix (xk(t), vk(t)) the trajectory solutions to (3.9)
corresponding to fk.

As we have from (3.9) that

max
i=1,...,N

|v̇ki (t)| ≤ 2C
(

1 + max
i=1,...,N

|xki (t)| + max
i=1,...,N

|vki (t)|
)

+ �(t)
(
1 + max

i=1...N
|vki (t)|

)
,
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Lemma 3.2 implies the equi-integrability of v̇ki (t), the equi-boundedness and the equi-absolute continuity of
vki (t), hence the equi-Lispchitzianity of xki (t) as well, uniformly with respect to k, for all i = 1, . . . , N . By
Ascoli−Arzelà theorem there exist a subsequence, again renamed (xk(t), vk(t))k∈N and an absolutely continuous
trajectory (x(t), v(t)) in [0, T ] such that, for k → ∞

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

xki ⇒ xi, in [0, T ], for all i = 1, . . . , N,

vki ⇒ vi, in [0, T ], for all i = 1, . . . , N,

ẋki ⇒ ẋi, in [0, T ], for all i = 1, . . . , N,

v̇ki ⇀ v̇i, in Lq(0, T ), for all i = 1, . . . , N.

(3.12)

Let us remark that the v̇ki ⇀ v̇i in Lq(0, T ) can be seen again as a consequence of the more general Theorem 2.5.
In particular ẋi(t) = vi(t) in [0, T ], for all i = 1, . . . , N . Let us denote

μkN (t) =
1
N

N∑
i=1

δ(xk
i (t),vk

i (t)) and μN (t) =
1
N

N∑
i=1

δ(xi(t),vi(t)).

As a consequence of Lemma 3.2 and of the uniform convergence of the trajectories we have that for every
i = 1, . . . , N

W1(δ(xk
i (t),vk

i (t)), δ(xi(t),vi(t))) → 0 and W1(μkN (t), μN (t)) → 0 (3.13)

as k → +∞, uniformly in t ∈ [0, T ]. Furthermore there exists a relatively compact open subset Ω ⊂ R
2d such

that
supp(μkN (t)) ∪ supp(μN (t)) � Ω, (3.14)

for all t ∈ [0, T ] and k ∈ N. By the linear growth of H we deduce

H � μkN (xki , v
k
i ) ⇒ H � μN (xi, vi), in [0, T ], for k → ∞, (3.15)

see also Lemma A.7 in the Appendix.
To prove that (x(t), v(t)) is actually the Carathéodory solution of (3.9) associated to the forcing term f , we

therefore have only to show that for all i = 1, . . . , N one has

v̇i = (H � μN )(xi, vi) + f(t, xi, vi). (3.16)

This is clearly equivalent to the following: for every ξ ∈ R
d and every t̂ ∈ [0, T ] it holds:

ξ ·
∫ t̂

0

v̇i(t) dt = ξ ·
∫ t̂

0

[(H � μN (t))(xi(t), vi(t)) + f(t, xi(t), vi(t))] dt. (3.17)

In view of the weak Lq convergence of v̇ki to v̇i and of (3.15), (3.17) actually reduces to show

lim
k→+∞

ξ ·
∫ t̂

0

f(t, xki (t), v
k
i (t)) dt = ξ ·

∫ t̂

0

f(t, xi(t), vi(t)) dt.

Given ϕξ ∈ C1
c (R

2d,Rd) such that ϕξ ≡ ξ in Ω, the above equality reduces to

lim
k→+∞

∫ t̂

0

〈ϕξ, f(t, ·) δ(xk
i (t),vk

i (t))〉dt =
∫ t̂

0

〈ϕξ, f(t, ·) δ(xi(t),vi(t))〉dt

which follows from (2.12), (3.13), and (3.14).
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Using again (3.13) and (3.14), the inequality

lim inf
k→+∞

∫ T

0

∫
R2d

ψ(fk(t, x, v)) dμkN (t)(x, v)dt ≥
∫ T

0

∫
R2d

ψ(f(t, x, v)) dμN (t)(x, v)dt (3.18)

follows now directly from (2.19). Furthermore, condition (L) and the uniform convergences in (3.12) and (3.15)
yield that L(xki (t), v

k
i (t), μ

k
N (t)) ⇒ L(xi(t), vi(t), μN (t)) uniformly in [0, T ] as k → +∞ for all i = 1, . . . , N , so

that

lim
k

∫ T

0

∫
R2d

L(x, v, μkN (t))dμkN (t)(x, v)dt = lim
k

∫ T

0

1
N

N∑
i=1

L(xki (t), v
k
i (t), μ

k
N (t))dt

=
∫ T

0

1
N

N∑
i=1

L(xi(t), vi(t), μN (t))dt

=
∫ T

0

∫
R2d

L(x, v, μN (t))dμN (t)(x, v)dt. (3.19)

Combining (3.18) and (3.19) gives the optimality of f as a minimizer of (3.7) under the solution con-
straint (3.9). �

4. Mean-field solutions

In this section we are concerned with the limit for N → ∞ of the solutions of the ODE system (1.1) to
solutions of the PDE of the type (1.6). First we need to define a proper concept of solution for (1.6). To this
aim, assuming the L1 integrability of the function � defining the class F� is sufficient.

Definition 4.1. Let � ∈ L1(0, T ). Fix a function f belonging to the class F�. Given a locally Lipschitz function
H : R

2d → R
d satisfying (3.1), we say that a map μ : [0, T ] → P1(R2d) continuous with respect to W1 is a weak

equi-compactly supported solution of the equation

∂μ

∂t
+ v · ∇xμ = ∇v · [(H � μ+ f)μ] , (4.1)

with forcing term f on the interval [0, T ] if there exists R > 0 such that

suppμ(t) ⊂ B(0, R), (4.2)

for every t ∈ [0, T ], and, defining wH,μ,f (t, x, v) : [0, T ]× R
d × R

d → R
d × R

d as

wH,μ,f (t, x, v) := (v,H � μ(t)(x, v) + f(t, x, v))

one has
d
dt

∫
R2d

ζ(x, v) dμ(t)(x, v) =
∫

R2d

∇ζ(x, v) · wH,μ,f (t, x, v) dμ(t)(x, v) (4.3)

for every ζ ∈ C∞
c (Rd × R

d), in the sense of distributions.

Since the linear span of functions of the type η(t)ζ(x, v), with η ∈ C∞
c (0, T ) and ζ ∈ C∞

c (Rd × R
d) is dense

in C1
c ((0, T ) × R

d × R
d) arguing as in [3], Remark 8.1.1 one can see that (4.3) is equivalent to saying that

∫ T

0

∫
R2d

(
∂tϕ(t, x, v) + ∇x,vϕ(t, x, v) · wH,μ,f (t, x, v)

)
dμ(t)(x, v) dt = 0,
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for every ϕ ∈ C1
c ((0, T ) × R

d × R
d). Using also the explicit expression of wH,μ,f , integrating between 0 and

t̂ ∈ (0, T ] we can equivalently reformulate (4.3) by asking that the equality∫
R2d

ζ(x, v) dμ(t̂)(x, v) −
∫

R2d

ζ(x, v) dμ(0)(x, v)

=
∫ t̂

0

∫
R2d

(
∇xζ(x, v) · v + ∇vζ(x, v) ·H � μ(t)(x, v) + ∇vζ(x, v) · f(t, x, v)

)
dμ(t)(x, v)

(4.4)

holds for every t̂ ∈ [0, T ] and every ζ ∈ C∞
c (Rd × R

d). Finally, we can also consider test functions depending
also on t, and defining solutions as satisfying the equality

0 =
∫ T

0

∫
R2d

(
∂tϕ(t, x, v)+∇xϕ(t, x, v)·v+∇vϕ(t, x, v)·H�μ(t)(x, v)+∇vϕ(t, x, v)·f(t, x, v)

)
dμ(t)(x, v), (4.5)

for every ϕ ∈ C1
c ((0, T ) × R

d × R
d): again, this is equivalent to (4.3).

Remark 4.2. Observe that wH,μ,f (t, x, v) is a Carathéodory vector field, thus measurable with respect to any
product measure of the type L1 × μ with L1 the Lebesgue measure on [0, T ] and μ a Borel probability measure
on R

d × R
d. Furthermore, by (3.1) and (4.2), we can show that (A.7) in the Appendix holds for n = 2d and

p = d. Taking also into account (A.9) of Lemma A.4 for n = 2d and p = d and (A.11) in the Appendix, it follows
that the W 1,∞ norm of wH,μ,f (t, ·, ·) is bounded by an L1-function of t on any compact subset of R

d × R
d.

Jointly with the aforementioned measurability property, this allows us to repeat the arguments in ([3], Sect. 8.1)
proving that μ(t) is a weak equi-compactly supported solution of (4.1) with forcing term f on the interval [0, T ]
if and only if it satisfies (4.2) and the measure-theoretical fixed point equation

μ(t) = (T μ
t )�μ0, (4.6)

with μ0 := μ(0) and T μ
t is the flow function defined by (A.12) in the Appendix. Here (T μ

t )� denotes the
push-forward of μ0 through T μ

t .

4.1. Empirical equi-compactly supported solutions

Let us now again fix � ∈ L1(0, T ) and a locally Lipschitz function H : R
2d → R

d satisfying (3.1). Given
N ∈ N, an initial datum (x0

1, . . . , x
0
N , v

0
1 , . . . , v

0
N ) ∈ B(0, R0) ⊂ (Rd)N × (Rd)N , with R0 > 0 independent of

N , and a function fN ∈ F�, perhaps also depending on N , we consider the following time dependent empirical
atomic measure

μN (t)(x, v) =
1
N

N∑
j=1

δ(xi(t),vi(t))(x, v), (4.7)

supported on the phase space trajectories (xi(t), vi(t)) ∈ R
2d, for i = 1, . . .N , defining the solution of the system{

ẋi = vi,
v̇i = (H � μN )(xi, vi) + fN (t, xi, vi), i = 1, . . . , N, t ∈ [0, T ], (4.8)

with initial datum (x(0), v(0)) = (x0, v0). The symbol � indicates the convolution operator of a function with
respect to a measure. We remark again that under our assumptions on f and H , existence and uniqueness of
Carathéodory solutions of (4.8) are ensured (see Appendix for details) hence the well-posedness of (4.7).

Lemma 4.3. Under the assumptions considered since the beginning of this section, let us define μN as in (4.7).
The the following properties hold:

(a) supp(μN (t)) ⊂ B(0, RT ), where RT > 0 is independent of N ;
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(b) W1(μN (t1), μN (t2)) ≤ LT
∫ t2
t1

(1 + �(s)) ds, for all t1, t2 ∈ [0, T ], for a suitable constant LT > 0 dependent
on T and independent of N ;

(c) for all t̂ ∈ [0, T ] and for all ζ ∈ C1
c (R

2d)

〈ζ, μN (t̂) − μN (0)〉 =
∫ t̂

0

[∫
R2d

∇ζ(x, v) · wH,μN ,fN (t, x, v)dμN (t, x, v)
]

dt.

In particular the maps t → μN (t) are equi-compactly supported solutions of the equation (4.1) in the sense of
Definition 4.1 for all N ∈ N.

Proof. The property (a) is a direct consequence of the equi-boundedness of the datum (x1(0), . . . , xN (0),
v1(0), . . . , vN (0)) ∈ B(0, R0), and of Lemma 3.2. Let us prove (b). As the measures μN (t1) and μN (t2) are
actually atomic, in this case the 1-Wasserstein distance can be estimated in terms of the �1-norm of the Eu-
clidean distances of the respective supporting atoms:

W1(μN (t1), μN (t2)) ≤
1
N

N∑
i=1

(|xi(t1) − xi(t2)| + |vi(t1) − vi(t2)|).

As ẋi(t) = vi(t), from (a) we know already that |xi(t1) − xi(t2)| ≤ LT |t1 − t2| for all i = 1, . . .N , for a suitable
constant LT > 0. In the following LT may be a different constant at different places, but always dependent on
T , and independent of N . As we have

max
i=1,...,N

|v̇i(t)| ≤ 2C
(

1 + max
i=1,...,N

|xi(t)| + max
i=1,...,N

|vi(t)|
)

+ �(t)(1 + max
i=1,...,N

|xi(t)| + max
i=1...N

|vi(t)|),

Lemma 3.2 implies the equi-integrability of v̇i(t), and also |vi(t1)−vi(t2)| ≤ LT
∫ t2
t1

(1+�(s)) ds for all i = 1, . . .N ,
for a suitable LT independent of N . With this, (b) follows. The validity of (c) is a standard argument, which is
developed by considering the differentiation

d
dt

〈ζ, μN (t)〉 =
1
N

d
dt

N∑
i=1

ζ(xi(t), vi(t))

=
1
N

[
N∑
i=1

∇xζ(xi(t), vi(t)) · ẋi(t) +
N∑
i=1

∇vζ(xi(t), vi(t)) · v̇i(t)
]
,

and directly applying the substitutions as in (4.8). �

4.2. Convergence of empirical solutions

In this section we show how solutions to (4.8) converges to solutions of (4.1) in the sense of Definition 4.1.

Theorem 4.4. Let us consider a sequence of equi-compactly supported empirical probability measures (μ0
N )N∈N,

where μ0
N = 1

N

∑M
i=1 δ((x0

N )i,(v0N )i)(x, v) for suitable sets of points (x0
N , v

0
N ) in (Rd)N × (Rd)N with the properties

(i) μ0
N has support equi-bounded in R

2d, i.e., (x0
N , v

0
N ) ∈ B(0, R0), for R0 > 0 independent of N ;

(ii) there exists a compactly supported μ0 ∈ P1(R2d) such that limN→∞ W1(μ0
N , μ

0) = 0.

Given � ∈ L1(0, T ) and (fN )N∈N an arbitrary sequence in F�, we can accordingly define μN (t) as the empirical
equi-compactly supported solutions (4.7) of (4.8) with initial data (x0

N , v
0
N ) in (Rd)N × (Rd)N and forcing term

fN , respectively, for all N ∈ N.
Then there exist a subsequence (fNk

)k∈N converging in the sense of (2.7) to a function f ∈ F� such that
the corresponding subsequence (μNk

(t))k∈N converges in Wasserstein distance uniformly in t ∈ [0, T ] to a weak
equi-compactly supported solution μ(t) of equation (4.1) with forcing term f and initial condition μ(0) = μ0 in
the sense of Definition 4.1.
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Proof. Thanks to the equi-boundedness assumption (i) we can apply Lemma 4.3(a) and (b), and the sequence
of measures (μN (t))N∈N is actually equi-bounded and equi-continuous. By an application of the Ascoli−Arzelà
theorem for functions on [0, T ] with values in the complete metric space (P1(B(0, RT )),W1) (here P1(B(0, RT ))
actually denotes the space of probability measures compactly supported in B(0, RT ), endowed with the
1-Wasserstein distance), up to extracting a subsequence, we deduce the existence of a uniform limit μ(t) in
1-Wasserstein distance, which is actually equi-supported in B(0, RT ), uniformly with respect to t ∈ [0, T ], for
RT > 0 as in Lemma 4.3(a). Obviously it is also μ(0) = μ0, and by lower-semicontinuity of the Wasserstein
distance with respect to the narrow convergence we have

W1(μ(t2), μ(t1)) ≤ LT

∫ t2

t1

(1 + �(s)) ds, (4.9)

for all t1, t2 ∈ [0, T ], where LT > 0 is as in Lemma 4.3 (b). Moreover,

lim
k→∞

〈ζ, μNk
(t̂) − μNk

(0)〉 = 〈ζ, μ(t̂) − μ(0)〉, (4.10)

for all ζ ∈ C1
c (R2d) and t̂ ∈ [0, T ]. By possibly extracting an additional subsequence, which we do not relabel,

thanks to Corollary 2.7 we can assume that there exists f ∈ F� so that (fNk
)k∈N ⇀ f in the sense of (2.7), and

by applying Theorem 2.10 and Corollary 2.11 we immediately obtain for any t̂ ∈ [0, T ]

lim
k→∞

∫ t̂

0

∫
R2d

(∇vζ(x, v) · fNk
(t, x, v))dμNk

(t)(x, v)dt =
∫ t̂

0

∫
R2d

(∇vζ(x, v) · f(t, x, v))dμ(t)(x, v)dt, (4.11)

and by weak-∗ convergence and the dominated convergence theorem

lim
k→∞

∫ t̂

0

∫
R2d

(∇vζ(x, v) · v)dμNk
(t)(x, v)dt =

∫ t̂

0

∫
R2d

(∇vζ(x, v) · v)dμ(t)(x, v)dt, (4.12)

for all ζ ∈ C1
c (R

2d). By Lemma A.7 in Appendix we also obtain that for every ρ > 0

lim
k→∞

‖H � μNk
(t) −H � μ(t)‖L∞(B(0,ρ)) = 0,

uniformly in t ∈ [0, T ] and, as ζ ∈ C1
c (R2d) has compact support, it follows that

lim
k→∞

‖∇vζ · (H � μNk
(t) −H � μ(t))‖∞ = 0.

Since the product measures L1�[0,t̂]× 1
t̂
μNk

(t) converge in P1([0, t̂] × R
2d) to L1�[0,t̂]× 1

t̂
μ(t), we obtain also

lim
k→∞

∫ t̂

0

∫
R2d

(∇vζ(x, v) ·H � μNk
(t))dμNk

(t)(x, v)dt =
∫ t̂

0

∫
R2d

(∇vζ(x, v) ·H � μ(t))dμ(t)(x, v)dt, (4.13)

The statement now follows by combining (4.9) and (4.13). �

Remark 4.5. The rigorous derivation of the mean-field limit of equi-compactly supported solutions (4.7)
of (4.8) to weak-solutions of (4.1) in the sense of Definition 4.1 in situations where no control is addressed, i.e.,
when fN ≡ 0 for all N ∈ N, has been already considered, for instance, in [10] and we refer also to the very
recent survey paper [12]. Nevertheless, although it may be seen as a minor extension, the situation where a
sequence of nontrivial discontinuous-in-time controls (fN )N∈N is present in the equations requires to generalize
the results in [10] to solutions of Carathéodory for (4.8) [32]. As already metioned we sketched these generaliza-
tions in the Appendix for the sake of completeness. In particular, as a consequence of Theorem 4.4, existence,
uniqueness, and stability of weak measure-valued solutions to (4.1) with compactly supported data will be
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given in details below in Theorems 4.7 and A.8. The difficulty to be considered is that, due to the potential
discontinuous nature in time of the functions, the sequence (fN )N∈N possesses limits exclusively in the very
weak topology defined by (2.7). In particular any subsequence fNk

(t) does not in general weakly converge to a
function f(t) ∈ W 1,∞

loc (R2d,Rd) pointwise in time, as we already stated in Remark 2.9. From this subtle difficulty
it comes the necessity of developing Theorem 2.10 and Corollary 2.11 as tools for the proof of Theorem 4.4.

We now prove the lower semicontinuity of the cost functionals with respect to the convergences in the previous
theorem, what can be seen as a Γ − lim inf condition.

Corollary 4.6. Let us now assume as in (L) that L : R
2d × P1(R2d) → R+ is a continuous function with

respect to the product topology generated by the Euclidean distance on R
2d and the distance W1 on P1(R2d).

Consider a nonnegative convex function ψ : R
d → [0,+∞) satisfying condition (Ψ). Besides the assumptions

of Theorem 4.4, suppose that � ∈ Lq(0, T ), with 1 ≤ q < +∞ being as in (3.2). We then have the following
lower-semicontinuity property

lim inf
k→∞

∫ T

0

∫
R2d

(L(x, v, μNk
(t)) + ψ(fNk

(t, x, v)))dμNk
(t)(x, v)

≥
∫ T

0

∫
R2d

(L(x, v, μ(t)) + ψ(f(t, x, v)))dμ(t)(x, v)dt, (4.14)

where μNk
and fNk

are the elements of the subsequences of the statement of Theorem 4.4.

Proof. Consider a ball B(0, RT ) ⊂ R
2d, for RT > 0, so that μNk

(t) and μ(t) are compactly supported within
B(0, RT ) for all t ∈ [0, T ]. Then, since W1(μNk

(t), μ(t)) → 0 uniformly in t ∈ [0, T ] for k → ∞, by assumption
(L) we get that L(x, v, μNk

(t)) ⇒ L(x, v, μ(t)) uniformly in (x, v) ∈ B(0, RT ) and t ∈ [0, T ]. It follows that

lim
k→∞

∣∣∣∣∣
∫ T

0

∫
R2d

[L(x, v, μNk
(t)) − L(x, v, μ(t))]dμNk

(t)(x, v)dt

∣∣∣∣∣ =

lim
k→∞

∣∣∣∣∣
∫ T

0

∫
B(0,RT )

[L(x, v, μNk
(t)) − L(x, v, μ(t)])dμNk

(t)(x, v)dt

∣∣∣∣∣ = 0.
(4.15)

By Wasserstein convergence and condition (L) we also get for all t ∈ [0, T ]∫
B(0,RT )

L(x, v, μ(t))dμNk
(t)(x, v) →

∫
B(0,RT )

L(x, v, μ(t))dμ(t)(x, v).

Since μ : [0, T ] → P1(R2d) is continuous, therefore its image is a compact subset of P1(R2d), again by (L) we
get that L(x, v, μ(t)) is uniformly bounded in B(0, RT ) × [0, T ]. By dominated convergence this implies

lim
k→∞

∫ T

0

∫
B(0,RT )

L(x, v, μ(t))dμNk
(t)(x, v) =

∫ T

0

∫
B(0,RT )

L(x, v, μ(t))dμ(t)(x, v)dt.

Being μNk
(t) and μ(t) compactly supported within B(0, RT ) for all t ∈ [0, T ], this is equivalent to

lim
k→∞

∫ T

0

∫
R2d

L(x, v, μ(t))dμNk
(t)(x, v) =

∫ T

0

∫
R2d

L(x, v, μ(t))dμ(t)(x, v)dt,

which eventually, together with (4.15), gives

lim
k→∞

∫ T

0

∫
R2d

L(x, v, μNk
(t))dμNk

(t)(x, v)dt =
∫ T

0

∫
R2d

L(x, v, μ)dμ(t)(x, v)dt. (4.16)



MEAN-FIELD OPTIMAL CONTROL 1143

Since μNk
(t) are equi-compactly supported, by this uniform convergence and Theorem 2.12 we get the lower-

semicontinuity of the second term:

lim inf
k→∞

∫ T

0

∫
R2d

ψ(fNk
(t, x, v))dμNk

(t)(x, v)dt ≥
∫ T

0

∫
R2d

ψ(f(t, x, v))dμ(t)(x, v)dt. (4.17)

By combining (4.16) and (4.17), we eventually show (4.14). �

4.3. Existence of solutions

With very similar arguments as the ones we used to prove Theorem 4.4 and Corollary 4.6 we obtain the
following existence result, with additional limit property of the cost functional. This can be seen as a Γ -limsup
condition.

Theorem 4.7. Assume that we are given maps H, L, and ψ as in assumptions (H), (L), and (Ψ) of Section 3.
For 1 ≤ q < +∞ so that (3.2) holds, let �(t) be a fixed function in Lq(0, T ). Let μ0 ∈ P1(R2d) be a given
probability measure with compact support and f ∈ F� a forcing term. We assume that the sequence (μ0

N )N∈N of
atomic empirical measures μ0

N = 1
N

∑N
i=1 δ((x0

N)i, (v0N )i)(x, v) is such that limN→∞ W1(μ0
N , μ

0) = 0. Let

μN (t)(x, v) =
1
N

N∑
j=1

δ(xi(t),vi(t))(x, v), (4.18)

be supported on the phase space trajectories (xi(t), vi(t)) ∈ R
2d, for i = 1, . . .N , defining the solution of the

system {
ẋi = vi,
v̇i = (H � μN )(xi, vi) + f(t, xi, vi), i = 1, . . .N, t ∈ [0, T ], (4.19)

with initial datum (x(0), v(0)) = (x0
N , v

0
N ). Then there exists a map μ : [0, T ] → P1(R2d) such that

(i) limN→∞ W1(μN (t), μ(t)) = 0 uniformly with respect to t ∈ [0, T ];
(ii) μ is a weak equi-compactly supported solution of (4.1) with forcing term f in the sense of Definition 4.1;
(iii) the following limit holds:

lim
N→∞

∫ T

0

∫
R2d

(L(x, v, μN (t)) + ψ(f(t, x, v)))dμN (t)(x, v)

=
∫ T

0

∫
R2d

(L(x, v, μ) + ψ(f(t, x, v)))dμ(t)(x, v)dt. (4.20)

Proof. The results (i) and (ii) can be shown precisely as done in the proof of Theorem 4.4. The only additional
note is that, due to Theorem A.8 in Appendix, μ is actually the unique weak solution of (4.1), hence the
whole sequence (μN )N∈N converges to μ and not only a subsequence. By uniform convergence of μN to μ in
1-Wasserstein distance, and by (2.21) with fk constantly equal to f we have

lim
N→∞

∫ T

0

∫
R2d

ψ(f(t, x, v))dμN (t)(x, v) =
∫ T

0

∫
R2d

ψ(f(t, x, v))dμ(t)(x, v)dt

while, arguing as in the proof of (4.16), we have

lim
N→∞

∫ T

0

∫
R2d

L(x, v, μN (t))dμN (t)(x, v)dt =
∫ T

0

∫
R2d

L(x, v, μ(t))dμ(t)(x, v)dt.

The limit (4.20) follows. �
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5. Mean-Field optimal control

We are now able to state the main result of this paper, which is summarizing all the findings we obtained so
far, in particular combining the concepts of mean-field and Γ -limits.

Theorem 5.1. Assume that we are given maps H, L, and ψ as in assumptions (H), (L), and (Ψ) of Section 3.
For 1 ≤ q < +∞ so that (3.2) holds, let �(t) be a fixed function in Lq(0, T ). For N ∈ N and an initial datum
((x0

N )1, . . . , (x0
N )N , (v0

N )1, . . . , (v0
N )N ) ∈ B(0, R0) ⊂ (Rd)N × (Rd)N , for R0 > 0 independent of N , we consider

the following finite dimensional optimal control problem

min
f∈F�

∫ T

0

∫
R2d

[L(x, v, μN (t)) + ψ(f(t, x, v))] dμN (t)(x, v)dt, (5.1)

where

μN (t)(x, v) =
1
N

N∑
j=1

δ(xi(t),vi(t))(x, v),

is the time dependent empirical atomic measure supported on the phase space trajectories (xi(t), vi(t)) ∈ R
2d,

for i = 1, . . .N , constrained by being the solution of the system{
ẋi = vi,
v̇i = (H � μN )(xi, vi) + f(t, xi, vi), i = 1, . . . , N, t ∈ [0, T ], (5.2)

with initial datum (x(0), v(0)) = (x0
N , v

0
N ) and, for consistency, we set

μ0
N =

1
N

M∑
i=1

δ((x0
N )i,(v0N )i)(x, v).

For all N ∈ N let us denote the function fN ∈ F� as a solution of the finite dimensional optimal control
problem (5.1) and (5.2).

If there exists a compactly supported μ0 ∈ P1(R2d) such that limN→∞ W1(μ0
N , μ

0) = 0, then there exists a
subsequence (fNk

)k∈N and a function f∞ ∈ F� such that fNk
converges to f∞ in the sense of (2.7) and f∞ is

a solution of the infinite dimensional optimal control problem

min
f∈F�

∫ T

0

∫
R2d

[L(x, v, μ(t)) + ψ(f(t, x, v))] dμ(t)(x, v)dt, (5.3)

where μ : [0, T ] → P1(R2d) is the unique weak solution of

∂μ

∂t
+ v · ∇xμ = ∇v · [(H � μ+ f)μ] , (5.4)

with initial datum μ(0) := μ0 and forcing term f , in the sense of Definition 4.1.

Proof. Let us first of all notice that the existence of an optimal control fN for the finite dimensional optimal
control problem (5.1) and (5.2) is ensured by Theorem 3.3. Let g an arbitrary function in F� and μg be
the corresponding solution to (5.4) with datum μg(0) := μ0, which exists thanks to Theorem 4.7 and whose
uniqueness follows from Theorem A.8 in Appendix. We also fix the sequence (μg)N of atomic measures uniformly
converging to μg as in Theorem 4.7. We consider now the converging subsequence (fNk

)k∈N considered in
Theorem 4.4 and we denote f∞ its limit in the sense of (2.7). We further denote with μ∞ the corresponding
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solution to (5.4), when the forcing term is f∞. Then, by lower-semicontinuity as in Corollary 4.6 and minimality
of fNk ∫ T

0

∫
R2d

(L(x, v, μ∞(t)) + ψ(f∞(t, x, v)))dμ∞(t)(x, v)dt

≤ lim inf
k→∞

∫ T

0

∫
R2d

(L(x, v, μNk
(t)) + ψ(fNk

(t, x, v)))dμNk
(t)(x, v)dt

≤ lim inf
k→∞

∫ T

0

∫
R2d

(L(x, v, (μg)Nk
(t)) + ψ(g(t, x, v)))d(μg)Nk

(t)(x, v)dt

=
∫ T

0

∫
R2d

(L(x, v, μg(t)) + ψ(g(t, x, v)))dμg(t)(x, v)dt,

where the last equality follows from (4.20) in Theorem 4.7. By arbitrariness of g, we conclude that f∞ in an
optimal control for the problem (5.3) and (5.4). �

It is worth mentioning that the main result of Theorem 5.1 can be rephrased as a Γ -convergence result for
the control functionals. Indeed, if we set for any f ∈ F�([0, T ])

ENψ,μ0
N

(f) :=
∫ T

0

∫
R2d

(L(x, v, μN (t)) + ψ(f(t, x, v)) dμN (t)(x, v)dt, (5.5)

with μN given by (3.8) in correspondence to f and an equi-compactly supported sequence of initial data μ0
N ,

and
Eψ,μ0(f) :=

∫ T

0

∫
R2d

(L(x, v, μ(t)) + ψ(f(t, x, v)) dμ(t)(x, v)dt, (5.6)

with μ the unique weak equi-compactly supported solution of (4.1) with initial datum μ0, then (4.14) and (4.20)
can be seen respectively as the Γ -liminf and the Γ -limsup inequality proving the Γ -convergence of EN

ψ,μ0
N

to

Eψ,μ0 with respect to the weak topology of Lq((0, T ),W 1,∞
loc (R2d,Rd)). In particular, Theorem 5.1 can be seen as

a consequence of this convergence and of the compactness of the class F�([0, T ]). Here, it is understood that the
functionals are extended to +∞ outside of the class of admissible controls F�([0, T ]). Notice that actually (4.20)
implies that EN

ψ,μ0
N

(f) is also pointwise converging to Eψ,μ0(f) for any f ∈ F�([0, T ]), hence the recovery sequence
is in this case simply given by the constant one.

Theorem 5.2. Assume that we are given maps H, L, and ψ as in assumptions (H), (L), and (Ψ) of Section 3.
For 1 ≤ q < +∞ so that (3.2) holds, let �(t) be a fixed function in Lq(0, T ), and accordingly define the
class F�([0, T ]) as in Definition 2.1. Consider the functionals EN

ψ,μ0
N

and Eψ,μ0 on Lq((0, T ),W 1,∞
loc (R2d,Rd))

with values in (−∞,+∞] defined as in (5.5), and (5.6), respectively, when f ∈ F�([0, T ]), and equal to +∞
otherwise in Lq((0, T ),W 1,∞

loc (R2d,Rd)). Assume also that W1(μ0
N , μ

0) → 0 as N → +∞.
Then EN

ψ,μ0
N
Γ -converges to Eψ,μ0 with respect to the weak topology of Lq((0, T ),W 1,∞

loc (R2d,Rd).

Proof. If Eψ,μ0(f) < +∞, that is when f ∈ F�([0, T ]), the Γ -limsup inequality simply follows from the pointwise
convergence EN

ψ,μ0
N

(f) → Eψ,μ0(f) proved in (4.20).

Now, assume that fN ⇀ f weakly in Lq((0, T ),W 1,∞
loc (R2d,Rd)). If lim infN→+∞ EN

ψ,μ0
N

(fN) < +∞, then
fN ∈ F�([0, T ]) for N large enough. By the compactness property of Corollary 2.7 and since the limit is
uniquely determined, so that we do not need to take subsequences, we deduce f ∈ F�([0, T ]) and fN ⇀ f
in the sense of (2.7). By Theorem 4.4, again with no need of taking subsequences since the limit is uniquely
determined, we also deduce W1(μN (t), μ(t)) → 0 as N → +∞ uniformly in t ∈ [0, T ] so that the Γ -liminf
inequality

lim inf
N→+∞

ENψ,μ0
N

(fN ) ≥ Eψ,μ0(f)

follows by (4.14). �
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Appendix A.

For the reader’s convenience we start by briefly recalling some well-known results about solutions to
Carathéodory differential equations. We fix an interval [0, T ] on the real line, and let n ≥ 1. Given a do-
main Ω ⊂ R

n, a Carathéodory function g : [0, T ]×Ω → R
n, and 0 < τ ≤ T , a function y : [0, τ ] → Ω is called a

solution of the Carathéodory differential equation

ẏ(t) = g(t, y(t)) (A.1)

on [0, τ ] if and only if y is absolutely continuous and (A.1) is satisfied a.e. in [0, τ ]. The following existence and
uniqueness result holds.

Theorem A.1. Consider an interval [0, T ] on the real line, a domain Ω ⊂ R
n, n ≥ 1, and a Carathéodory

function g : [0, T ]×Ω → R
n. Assume that there exists a function m ∈ L1((0, T )) such that

|g(t, y)| ≤ m(t)

for a.e. t ∈ [0, T ] and every y ∈ Ω. Then, given y0 ∈ Ω, there exists 0 < τ ≤ T and a solution y(t) of (A.1) on
[0, τ ] satisfying y(0) = y0.

If in addition there exists a function l ∈ L1((0, T )) such that

|g(t, y1) − g(t, y2)| ≤ l(t)|y1 − y2| (A.2)

for a.e. t ∈ [0, T ] and every y1, y2 ∈ Ω, the solution is uniquely determined on [0, τ ] by the initial condition y0.

Proof. See, for instance, ([32], Chapter 1, Thms. 1 and 2). �

Also the global existence theorem and a Gronwall estimate on the solutions can be easily generalized to this
setting.

Theorem A.2. Consider an interval [0, T ] on the real line and a Carathéodory function g : [0, T ]× R
n → R

n.
Assume that there exists a function m ∈ L1((0, T )) such that

|g(t, y)| ≤ m(t)(1 + |y|) (A.3)

for a.e. t ∈ [0, T ] and every y ∈ R
n. Then, given y0 ∈ R

n, there exists a solution y(t) of (A.1) defined on the
whole interval [0, T ] which satisfies y(0) = y0. Any solution satisfies

|y(t)| ≤
(
|y0| +

∫ t

0

m(s) ds
)

e
∫ t
0 m(s) ds (A.4)

for every t ∈ [0, T ].
If in addition, for every relatively compact open subset of R

n, (A.2) holds, the solution is uniquely determined
on [0, T ] by the initial condition y0.

Proof. Let C0 := (|y0| +
∫ T
0
m(s) ds) e

∫ T
0 m(s) ds. Take a ball Ω ⊂ R

p centered at 0 with radius strictly greater
than C0. Existence of a local solution defined on an interval [0, τ ] and taking values in Ω follows now easily
from (A.3) and Theorem A.1. Using (A.3), any solution of (A.1) with initial datum y0 satisfies

|y(t)| ≤ |y0| +
∫ t

0

m(s) ds+
∫ t

0

m(s)|y(s)| ds

for every t ∈ [0, τ ], therefore (A.4) follows from Gronwall’s Lemma. In particular the graph of a solution y(t)
cannot reach the boundary of [0, T ]×Ω unless τ = T , therefore existence of a global solution follows for instance
from ([32], Chapter 1, Thm. 4). If (A.2) holds, uniqueness of the global solution follows from Theorem A.1. �
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The usual results on continuous dependence on the data hold also in this setting: in particular, we will use
this Lemma, following from (A.4) and the Gronwall inequality.

Lemma A.3. Let g1 and g2 : [0, T ] × R
n → R

n be Carathéodory functions both satisfying (A.3) for a function
m ∈ L1(0, T ). Let r > 0 and define

ρr,m,T :=
(
r +

∫ T

0

m(s) ds
)

e
∫

T
0 m(s) ds.

Assume in addition that there exists a function l ∈ L1(0, T )

|g1(t, y1) − g1(t, y2)| ≤ l(t)|y1 − y2|

for every t ∈ [0, T ] and every y1, y2 such that |yi| ≤ ρr,m,T , i = 1, 2. Set

q(t) := ‖g1(t, ·) − g2(t, ·)‖L∞(B(0,ρr,m,T )).

Then, if ẏ1(t) = g(t, y1(t)), ẏ2(t) = g2(t, y2(t)), |y1(0)| ≤ r and |y2(0)| ≤ r, one has

|y1(t) − y2(t)| ≤ e
∫

t
0 l(s) ds|y1(0) − y2(0)| +

∫ t

0

e
∫

t
s
l(σ) dσq(s) ds (A.5)

for every t ∈ [0, T ].

We will need the following Lemma. In its statement, we recall that P1(Rn) denotes the space of probability
measures on R

n with finite first moment. This is a metric space when endowed with the Wasserstein distance W1.

Lemma A.4. Let H : R
n → R

p, n ≥ p ≥ 1 be a locally Lipschitz function such that

|H(y)| ≤ C(1 + |y|), for all y ∈ R
n, (A.6)

and μ : [0, T ] → P1(Rn) be a continuous map with respect to W1. Then there exists a constant C′ such that

|H � μ(t)(y)| ≤ C′(1 + |y|), (A.7)

for every t ∈ [0, T ] and every y ∈ R
n. Furthermore, if

suppμ(t) ⊂ B(0, R), (A.8)

for every t ∈ [0, T ], then for every compact subset K of R
n there exists a constant LR,K such that

|H � μ(t)(y1) −H � μ(t)(y2)| ≤ LR,K |y1 − y2|, (A.9)

for every t ∈ [0, T ] and every y1, y2 ∈ K.

Proof. One has from (A.6)

|H � μ(t)(y)| =
∣∣∣∣
∫

Rn

H(y − ξ) dμ(t)(ξ)
∣∣∣∣ ≤ C(1 + |y|) + C

∫
Rn

|ξ| dμ(t)(ξ) ;

since
∫

Rn |ξ| dμ(t)(ξ) is uniformly bounded on [0, T ] by our continuity assumption, (A.7) follows.
If (A.8) holds, then for every y1, y2 ∈ K one has

|H � μ(t)(y1) −H � μ(t)(y2)| ≤
∫
B(0,R)

|H(y1 − ξ) −H(y2 − ξ)| dμ(t)(ξ) ≤ LR,K |y1 − y2|. �



1148 M. FORNASIER AND F. SOLOMBRINO

We now fix a dimension d ≥ 1 and consider the system of ODE’s on R
2d

{
Ẋ(t) = V (t)
V̇ (t) = H � μ(t)(X(t), V (t)) + f(t,X(t), V (t))

(A.10)

on an interval [0, T ]. Here X,V are both mappings from [0, T ] to R
d, H : R

2d → R
d is a locally Lipschitz function

satisfying (3.1), μ : [0, T ] → P1(Rn) is a continuous map with respect to W1 satisfying (A.8) and f belongs to
the class F� defined in (2.22) for a fixed function � ∈ L1(0, T ). In particular, we have

|f(t,X, V )| ≤ �(t)(1 + |(X,V )|) (A.11)

for every V ∈ R
d. It follows then from these assumptions and Lemma A.4 that all the hypothesis of Theorem A.2

are satisfied. Therefore, however given P0 := (X0, V0) in R
2d there exists a unique solution P (t) := (X(t), V (t))

to (A.10) with initial datum P0 defined on the whole interval [0, T ]. We can therefore consider the family of
flow maps T μ

t : R
2d → R

2d indexed by t ∈ [0, T ] and defined by

T μ
t (P0) := P (t) (A.12)

where P (t) is the value of the unique solution to (A.10) starting from P0 at time t = 0. The notation aims also
at stressing the dependence of these flow maps on the given mapping μ(t). We can easily recover, as consequence
of (A.5), similar estimates as in [10], Lemmas 3.7 and 3.8: we report the statement and a sketch of the proof of
this result to allow the reader to keep track of the dependence of these constants on the data of the problem.

Lemma A.5. Let H : R
2d → R

d be a locally Lipschitz function satisfying (3.1), let μ : [0, T ] → P1(R2d) and
ν : [0, T ] → P1(R2d) be continuous maps with respect to W1 both satisfying

suppμ(t) ⊂ B(0, R) and supp ν(t) ⊂ B(0, R) (A.13)

for every t ∈ [0, T ]. Consider f belonging to the class F� introduced in Definition , for a fixed function � ∈
L1(0, T ), and the flow maps T μ

t and T ν
t associated to the system (A.10) and to the system{

Ẋ(t) = V (t)
V̇ (t) = H � ν(t)(X(t), V (t)) + f(t,X(t), V (t)),

(A.14)

respectively, on [0, T ]. Let C be the constant in (3.1). Fix r > 0: then there exist a constant ρ and a function
l ∈ L1(0, T ), both depending only on r, C, R, �, and T such that

|T μ
t (P1) − T ν

t (P2)| ≤ e
∫

t
0 l(s) ds|P1 − P2| +

∫ t

0

e
∫

t
s
l(σ) dσ‖H � μ(s) −H � ν(s)‖L∞(B(0,ρ)) ds (A.15)

whenever |P1| ≤ r and |P2| ≤ r, for every t ∈ [0, T ].

Proof. Let g1 and g2 : [0, T ]×R
2d → R

2d be the right-hand sides of (A.10), and (A.14), respectively. As in (A.7)
we can find a constant C′ which depends only on C and R such that

|H � μ(t)(P )| ≤ C′(1 + |P |) and |H � ν(t)(P )| ≤ C′(1 + |P |) (A.16)

for every t ∈ [0, T ] and every P ∈ R
2d. Setting now m̂(t) = 1+C′ + �(t) and also using (A.11), it follows that g1

and g2 both satisfy (A.3) with m(t) replaced by m̂(t). Therefore, for every P1 and P2 ∈ R
2d such that |Pi| ≤ r,

i = 1, 2 and every t ∈ [0, T ], (A.4) gives

|T μ
t (P1)| ≤

(
r +

∫ T

0

m̂(s) ds

)
e
∫

T
0 m̂(s) ds and |T ν

t (P2)| ≤
(
r +

∫ T

0

m̂(s) ds

)
e
∫

T
0 m̂(s) ds.
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Set ρ :=
(
r +

∫ T
0
m̂(s) ds

)
e
∫ T
0 m̂(s) ds. Now, obviously

‖g1(t, ·) − g2(t, ·)‖L∞(B(0,ρ)) = ‖H � μ(t) −H � ν(t)‖L∞(B(0,ρ))

for every t ∈ [0, T ]. Furthermore, by (A.9), the definition of ρ, and since f belongs to F�, the Lipschitz constant
of g1(t, ·) on B(0, ρ) can be estimated for a.e. t ∈ [0, T ] with a function l(t) ∈ L1(0, T ) only depending on �(t),
R, C, r and T . With this, the conclusion follows at once from (A.5). �

We will use (4.6) to prove uniqueness and stability of equi-compactly supported solutions of (4.3). We recall
the following two Lemmata, both proved in [10].

Lemma A.6. Let E1 and E2 : R
n → R

n be two bounded Borel measurable functions. Then, for every μ ∈
P1(Rn) one has

W1((E1)�μ, (E2)�μ) ≤ ‖E1 − E2‖L∞(suppμ).

If in addition E1 is locally Lipschitz continuous, and μ, ν ∈ P1(Rn) are both compactly supported on a ball Br
of R

n, then
W1((E1)�μ, (E1)�ν) ≤ LrW1(μ, ν), (A.17)

where Lr is the Lipschitz constant of E1 on Br.

Proof. For the sake of the reader, we sketch only the proof of (A.17) as it does not appear exactly equally
reported in ([10], Lem. 3.11 and 3.15). Let π̃ be the optimal transfer plan for (E1)�μ and (E1)�ν and π the one
of μ and ν. Then

W1((E1)�μ, (E1)�ν) =
∫

Rn×Rn

|x− y|dπ̃(x, y) ≤
∫

Rn×Rn

|x− y|d((E1 × E1)�π)(x, y)

=
∫

Rn×Rn

|E1(x) − E1(y)|dπ(x, y) = Lr

∫
Rn×Rn

|x− y|dπ(x, y) = LrW1(μ, ν). �

Lemma A.7. Let H : R
2d → R

d be a locally Lipschitz function satisfying (3.1), let μ : [0, T ] → P1(R2d) and
ν : [0, T ] → P1(R2d) be continuous maps with respect to W1 both satisfying

suppμ(t) ⊂ B(0, R) and supp ν(t) ⊂ B(0, R)

for every t ∈ [0, T ]. Then for every ρ > 0 there exists a constant L�,R such that

‖H � μ(t) −H � ν(t)‖L∞(B(0,ρ)) ≤ L�,RW1(μ(t), ν(t))

for every t ∈ [0, T ].

Proof. See Lemma 4.7 from [10]. �

With the previous Lemmata and (A.15), we can easily prove the following result.

Theorem A.8. Fix a function f belonging to the class F� for a given � ∈ L1(0, T ). Consider a locally Lipschitz
function H : R

2d → R
d satisfying (3.1) with a constant C. Fix T > 0 and let μ(t) and ν(t) be two equi-compactly

supported solutions of (4.1) with forcing term f on the interval [0, T ]. Let μ0 := μ(0) and ν0 := ν(0). Consider
r > 0 such that

suppμ0 ⊂ B(0, r) and supp ν0 ⊂ B(0, r)

and R > 0 such that
suppμ(t) ⊂ B(0, R) and supp ν(t) ⊂ B(0, R) (A.18)
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for every t ∈ [0, T ]. Then, there exist a function δ ∈ L1(0, T ) depending only on r, C, R, �, and T such that

W1(μ(t), ν(t)) ≤ e
∫ t
0 δ(s) dsW1(μ0, ν0) (A.19)

for every t ∈ [0, T ]. In particular, equi-compactly supported solutions of (4.3) are uniquely determined by the
initial datum.

Proof. Let T μ
t and T ν

t be the flow maps associated to the system (A.10) and to the system (A.14), respectively.
By (4.6), the triangle inequality, and Lemma A.6 we have for every t

W1(μ(t), ν(t)) = W1((T μ
t )�μ0, (T ν

t )�ν0)

≤ W1((T μ
t )�μ0, (T μ

t )�ν0) + W1((T μ
t )�ν0, (T ν

t )�ν0) ≤ LrW1(μ0, ν0) + ‖T μ
t − T ν

t ‖L∞(B(0,r))

(A.20)

where Lr is the Lipschitz constant of T μ
t on the ball B(0, r).

Using (A.15) with μ = ν we get that there exists a function l ∈ L1(0, T ) only depending on r, C, R, �, and
T such that

Lr ≤ e
∫ t
0 l(s) ds. (A.21)

Again by (A.15) with P1 = P2 there exist a constant ρ and an L1 function, still denoted by l, both depending
only on r, C, R, �, and T such that

‖T μ
t − T ν

t ‖L∞(B(0,r)) ≤
∫ t

0

e
∫ t

s
l(σ) dσ‖H � μ(s) −H � ν(s)‖L∞(B(0,ρ)) ds. (A.22)

Combining (A.20), (A.21), and (A.22) with Lemma A.7, we get the existence of an L1 function, still denoted
by l(t), and of a constant L, both depending only on r, C, R, �, and T such that

W1(μ(t), ν(t)) ≤ e
∫

t
0 l(s) dsW1(μ0, ν0) + L

∫ t

0

e
∫

t
s
l(σ) dσW1(μ(s), ν(s)) ds

for every t ∈ [0, T ], or equivalently

e−
∫

t
0 l(s) dsW1(μ(t), ν(t)) ≤ W1(μ0, ν0) + L

∫ t

0

e−
∫

s
0 l(σ) dσW1(μ(s), ν(s)) ds.

The Gronwall inequality gives now

e−
∫

t
0 l(s) dsW1(μ(t), ν(t)) ≤ W1(μ0, ν0)eLt

which is exactly (A.19) with δ(t) = L+ l(t). �

Remark A.9. The existence result of Theorem 4.7 gives an explicit estimate of an R satisfying (A.18), once
the constants r, C, and T , and the function � appearing in the statement of Theorem A.8 are given. As a
byproduct of uniqueness, the function δ in (A.19) is therefore only depending on r, C, �, and T .
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[3] L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures. Lect. Math.
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[36] M. Huang, P. Caines and R. Malhamé, Individual and mass behaviour in large population stochastic wireless power control
problems: centralized and Nash equilibrium solutions. Proc. of the 42nd IEEE Conference on Decision and Control Maui,
Hawaii USA (2003) 98–103.

[37] A. Jadbabaie, J. Lin and A.S. Morse, Correction to: “Coordination of groups of mobile autonomous agents using nearest
neighbor rules” [48 (2003) 988–1001; MR 1986266]. IEEE Trans. Automat. Control 48 (2003) 1675.

[38] J. Ke, J. Minett, C.-P. Au and W.-Y. Wang, Self-organization and selection in the emergence of vocabulary. Complexity 7
(2002) 41–54.

[39] E. F. Keller and L.A. Segel, Initiation of slime mold aggregation viewed as an instability. J. Theoret. Biol. 26 (1970) 399–415.

[40] A. Koch and D. White, The social lifestyle of myxobacteria. Bioessays 20 (1998) 1030–1038.

[41] J.-M. Lasry and P.-L. Lions, Mean field games. Japan J. Math. 2 (2007) 229–260.

[42] N. Leonard and E. Fiorelli, Virtual leaders, artificial potentials and coordinated control of groups. Proc. of 40th IEEE Conf.
Decision Contr. (2001) 2968–2973.

[43] H. Niwa, Self-organizing dynamic model of fish schooling. J. Theoret. Biol. 171 (1994) 123–136.
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