ERRATUM TO THE ARTICLE

HAMILTON–JACOBI EQUATIONS FOR OPTIMAL CONTROL ON JUNCTIONS AND NETWORKS

YVES ACHDOU\(^1\), SALOMÉ OUDET\(^2\) AND NICOLETTA TCHOU\(^2\)

Abstract. We correct a mistake which affects an intermediate result, namely the second part of Lemma 4.5. The main results of the article are unchanged.

Mathematics Subject Classification. 34H05, 49J15.

Published online March 18, 2016.

The second part of Lemma 4.5, concerning subsolutions, is not correct in the published version of the paper. Recall that we are interested in proving a comparison principle for sub and super solutions of

\[\lambda u(x) + \sup_{(\zeta, \xi) \in FL(x)} \{-Du(x, \zeta) - \xi\} = 0 \quad \text{in} \ G. \]

(3.1)

Lemma 4.5 must be modified as follows:

Lemma 4.5. Let \(v : G \to \mathbb{R} \) be a viscosity supersolution of (3.1) in \(G \). Then if \(x \in J_i \setminus \{0\} \), we have for all \(t > 0 \),

\[v(x) \geq \inf_{\alpha_i(\cdot), \theta_i} \left(\int_0^{t \wedge \theta_i} \ell_i(y^i_s(s), \alpha_i(s))e^{-\lambda s} ds + v(y^i_s(t \wedge \theta_i))e^{-\lambda (t \wedge \theta_i)} \right), \]

(4.8)

where \(\alpha_i \in L^\infty(0, \infty; A_i) \), \(y^i_x \) is the solution of \(y^i_x(t) = x + \left(\int_0^t f_i(y^i_s(s), \alpha_i(s)) ds \right) e_i \) and \(\theta_i \) is such that \(y^i_x(\theta_i) = 0 \) and \(\theta_i \) lies in \([\tau_i, \bar{\tau}_i]\), where \(\tau_i \) is the exit time of \(y^i_x \) from \(J_i \setminus \{0\} \) and \(\bar{\tau}_i \) is the exit time of \(y^i_x \) from \(J_i \).

Remark. Concerning subsolutions, the comparison results of Barles–Perthame [2] imply the following sub-optimality principle for subsolutions that will not be needed in the sequel: let \(w \) be a continuous viscosity

1 Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Jacques-Louis Lions, UMR 7598, UPMC, CNRS, 75205 Paris, France. achdou@ljll.univ-paris-diderot.fr
2 IRMAR, Université de Rennes 1, Rennes, France. nicoletta.tchou@univ-rennes1.fr

© EDP Sciences, SMAI 2016
subsolution of (3.1) in G. If $x \in J_i \setminus \{0\}$, we have for all $t > 0$,

$$w(x) \leq \inf_{\alpha_i(\cdot)} \sup_{\theta_i} \left(\int_{0}^{t \land \theta_i} \ell_i(y_x(s), \alpha_i(s)) e^{-\lambda_s} ds + w(y_x(t \land \theta_i)) e^{-\lambda(t \land \theta_i)} \right),$$

(4.9)

where $\alpha_i \in L^{\infty}(0, \infty; A_i)$, y_x^i is the solution of $y_x^i(t) = x + \left(\int_{0}^{t} f_i(y_x(s), \alpha_i(s)) ds \right) e_i$ and θ_i is such that $y_x^i(\theta_i) = 0$ and θ_i lies in $[\tau_i, \bar{\tau}_i]$, where τ_i is the exit time of y_x^i from $J_i \setminus \{0\}$ and $\bar{\tau}_i$ is the exit time of y_x^i from J_i.

Then, Theorem 4.6 should be very slightly modified as follows (the very minor changes in the proof do not need to be written):

Theorem 4.6. Assume [H0], [H1], [H2] and [H3]. Let $r > 0$ be given by Lemma 4.2: any bounded subsolution of (3.1) is Lipschitz continuous in $B(O, r) \cap G$. Let $v : G \to \mathbb{R}$ be a viscosity supersolution of (3.1), bounded from below by $-c|x| - C$ for two positive numbers c and C. Either [A] or [B] below is true:

[A] There exists a sequence $(\eta_k)_{k \in \mathbb{N}}$ of positive real numbers such that $\lim_{k \to +\infty} \eta_k = \eta > 0$, an index $i \in \{1, \ldots, N\}$ and a sequence $x_k \in J_i$ such that $x_k \in J_i \setminus \{0\}$ and $\lim_{k \to +\infty} x_k = O$ satisfying the following: for any $k \in \mathbb{N}$, there exists a control law α_k^i such that the corresponding trajectory $y_{x_k}(s) \in J_i \cap B(O, r)$ in the time interval $[0, \eta_k]$, i.e. $y_{x_k}(s) \in J_i \cap B(O, r)$ for all $s \in [0, \eta_k]$, and is such that

$$v(x_k) \geq \int_{0}^{\eta_k} \ell_i(y_{x_k}(s), \alpha_k^i(s)) e^{-\lambda_s} ds + v(y_{x_k}(\eta)) e^{-\lambda \eta_k}$$

(4.10)

[B]

$$\lambda v(O) + H^{\alpha_i}_O \geq 0.$$

(4.11)

A new lemma is needed to replace the second part of Lemma 4.5:

Lemma 4.7. Assume [H0], [H1], [H2] and [H3]. Let $r > 0$ be given by Lemma 4.2: any bounded subsolution of (3.1) is Lipschitz continuous in $B(O, r) \cap G$. Consider $i \in \{1, \ldots, N\}$, $x \in (J_i \setminus \{0\}) \cap B(O, r)$, $\alpha_i \in L^{\infty}(0, \infty; A_i)$. Let $\eta > 0$ be such that $y_x(t) = x + \left(\int_{0}^{t} f_i(y_x(s), \alpha_i(s)) ds \right) e_i$ belongs to $J_i \cap B(O, r)$ for any $t \in [0, \eta]$. For any bounded viscosity subsolution v of (3.1),

$$v(x) \leq \int_{0}^{\eta} \ell_i(y_x(t), \alpha_i(t)) e^{-\lambda t} dt + v(y_x(\eta)) e^{-\lambda \eta}.$$

(a)

Proof. Since v is Lipschitz continuous in $B(O, r) \cap J_i$, the function $t \mapsto v(y_x(t)) e^{-\lambda t}$ is Lipschitz continuous in $[0, \eta]$. Let us define the sets $K_O = \{ t \in (0, \eta) : y_x(t) = O \}$ and $K_O^c = [0, \eta] \setminus K_O$. It is clear that K_O is closed and that K_O^c is an open subset of $[0, \eta]$. We first observe that, from Stampacchia’s theorem,

$$\int_{0}^{\eta} 1_{K_O}(t) \frac{d}{dt} \left(v(y_x(t)) e^{-\lambda t} \right) dt = -\lambda v(O) \int_{0}^{\eta} 1_{K_O}(t) e^{-\lambda t} dt.$$

Therefore, we deduce from Lemma 4.3 that

$$\int_{0}^{\eta} 1_{K_O}(t) \frac{d}{dt} \left(v(y_x(t)) e^{-\lambda t} \right) dt \geq H^T_O \int_{0}^{\eta} 1_{K_O}(t) dt \geq - \int_{0}^{\eta} \ell_i(O, \alpha_i(t)) 1_{K_O}(t) dt = - \int_{0}^{\eta} \ell_i(y_x(t), \alpha_i(t)) 1_{K_O}(t) dt.$$

(b)

On the other hand, since K_O^c is an open subset of $[0, \eta]$, there exists a countable family of disjoint intervals $(\omega_j)_{j \in J}$, $\omega_j \subset [0, \eta]$ such that $K_O^c = \bigcup_{j \in J} \omega_j$. Let $a_j < b_j$ be the lower and upper endpoints of ω_j. We can assume that $[a_j, b_j] \cap [a_k, b_k] = \emptyset$ if $j \neq k$.
From a classical suboptimality principle, see ([1], Thm. III.2.33), we see that for any $j \in J$,

$$v(y_x(b_j)) e^{-\lambda b_j} - v(y_x(a_j)) e^{-\lambda a_j} \geq - \int_{a_j}^{b_j} \ell_i(y_x(t), \alpha_i(t)) e^{-\lambda t} dt.$$

Noting that

$$v(y_x(b_j)) e^{-\lambda b_j} - v(y_x(a_j)) e^{-\lambda a_j} = \int_0^\eta \frac{d}{dt} \left(v(y_x(t)) e^{-\lambda t}\right) 1_{(a_j, b_j)}(t) dt,$$

and summing over $j \in J$, we obtain that

$$\int_0^\eta 1_{K_0}^o(t) \frac{d}{dt} \left(v(y_x(t)) e^{-\lambda t}\right) dt \geq - \int_0^\eta \ell_i(y_x(t), \alpha_i(t)) 1_{K_0}^o(t) dt. \quad (c)$$

We get (a) by summing (b) and (c). \hfill \Box

The main comparison result holds but its proof is modified.

Theorem 5.1. Assume [H0], [H1], [H2] and [H3]. Let $u : G \to \mathbb{R}$ be a bounded viscosity subsolution of (3.1), and $v : G \to \mathbb{R}$ be a bounded viscosity supersolution of (3.1). Then $u \leq v$ in G.

Proof. It is a simple matter to check that there exists a positive real number M such that the function $\psi(x) = -|x|^2 - M$ is a viscosity subsolution of (3.1). For $0 < \mu < 1$, μ close to 1, the function $u_\mu = \mu u + (1 - \mu) \psi$ is a viscosity subsolution of (3.1), which tends to $-\infty$ as $|x|$ tends to $+\infty$. Let M_μ be the maximal value of $u_\mu - v$ which is reached at some point \bar{x}_μ.

We want to prove that $M_\mu \leq 0$.

1. If $\bar{x}_\mu \neq O$, then we introduce the function $u_\mu(x) - v(x) - d^2(x, \bar{x}_\mu)$, which has a strict maximum at \bar{x}_μ, and we double the variables, i.e. for $0 < \varepsilon \ll 1$, we consider

$$u_\mu(x) - v(y) - d^2(x, \bar{x}_\mu) - \frac{d^2(x, y)}{\varepsilon^2}.$$

Classical arguments then lead to the conclusion that $u_\mu(\bar{x}_\mu) - v(\bar{x}_\mu) \leq 0$, thus $M_\mu \leq 0$.

2. If $\bar{x}_\mu = O$. We use Theorem 4.6; we have two possible cases:

 [B] $\lambda v(O) \geq -H^T_O$. From Lemma 4.3, $\lambda u(O) + H^T_O \leq 0$. Therefore, we obtain that $u_\mu(O) \leq v(O)$, thus $M_\mu \leq 0$.

 [A] With the notations of Theorem 4.6,

$$v(x_k) \geq \int_0^{\eta_k} \ell_i(y_{x_k}(s), \alpha_i^k(s)) e^{-\lambda s} ds + v(y_{x_k}(\eta_k)) e^{-\lambda \eta_k}.$$

Moreover, since $y_{x_k}(s) \in J_i \cap B(O, r)$ for all $s \in [0, \eta_k]$, Lemma 4.7 can be applied and yields that

$$u_\mu(x_k) \leq \int_0^{\eta_k} \ell_i(y_{x_k}(s), \alpha_i^k(s)) e^{-\lambda s} ds + u_\mu(y_{x_k}(\eta_k)) e^{-\lambda \eta_k}.$$

Therefore

$$u_\mu(x_k) - v(x_k) \leq (u_\mu(y_{x_k}(\eta_k)) - v(y_{x_k}(\eta_k))) e^{-\lambda \eta_k}.$$

Letting k tend to $+\infty$, we find that $M_\mu \leq M_\mu e^{-\lambda \eta_k}$, which implies that $M_\mu \leq 0$.

We conclude by letting μ tend to 1. \hfill \Box
REFERENCES
