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ABSTRACT NONLINEAR SENSITIVITY AND TURNPIKE

ANALYSIS AND AN APPLICATION TO SEMILINEAR PARABOLIC

PDES∗

Lars Grüne1, Manuel Schaller2,** and Anton Schiela1

Abstract. We analyze the sensitivity of the extremal equations that arise from the first order nec-
essary optimality conditions of nonlinear optimal control problems with respect to perturbations of
the dynamics and of the initial data. To this end, we present an abstract implicit function approach
with scaled spaces. We will apply this abstract approach to problems governed by semilinear PDEs.
In that context, we prove an exponential turnpike result and show that perturbations of the extremal
equation’s dynamics, e.g., discretization errors decay exponentially in time. The latter can be used for
very efficient discretization schemes in a Model Predictive Controller, where only a part of the solution
needs to be computed accurately. We showcase the theoretical results by means of two examples with
a nonlinear heat equation on a two-dimensional domain.
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1. Introduction

In this paper we provide an abstract framework for exponential sensitivity analysis of nonlinear optimal
control problems with respect to perturbations of the right-hand side of the first-order necessary optimality
conditions. We extend previous results regarding linear quadratic optimal control problems, where an exponential
damping property was proven for problems governed by non-autonomous parabolic equations in [26] and for
problems governed by autonomous general evolution equations in [27]. The main tool in these works is a bound
on the solution operator of the first order optimality conditions that is independent of the time horizon, which
can be deduced under stabilizability and detectability assumptions. In this work considering nonlinear problems,
we derive an implicit function theorem that allows for estimates in scaled spaces, where, if the solution operator
to the linearized system is bounded independently of the time horizon, all involved neighborhoods and constants
are independent of the time horizon. As a consequence, we obtain exponential sensitivity results for nonlinear
problems, stating that perturbations of the first order optimality conditions decay exponentially in time.
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This sensitivity analysis has several important applications. First, exponential decay of perturbations gives
rise to efficient numerical methods. In [20, 26, 47] efficient discretization methods for Model Predictive Control
(MPC) were presented. MPC is a feedback control technique, where an optimal control problem on a infinite
or indefinite horizon is approximated by a series of optimal control problems on finite horizons T > 0. In every
iteration of the MPC algorithm, an optimal control for a problem on the time interval [0, T ] is computed. Then,
an initial part of the control up to time τ > 0 is used as a feedback, where often τ � T . The resulting state
x(τ) is measured or estimated and the process is repeated on the horizon [τ, T + τ ] with initial datum x(τ). For
an in-depth introduction, its approximation properties and treatment of various aspects related to MPC the
interested reader is referred to [21, 24, 42]. As only an initial part of the computed solution is of relevance for
the feedback, an exponential decay of perturbation allows for efficient solution of the corresponding OCPs on
space and time grids that are finer on [0, τ ] than on the remainder [τ, T ]. This specialized discretization can be
done in a a priori fashion [26, 35] or with goal oriented a posteriori methods [20]. Further, in [35], a Schwarz
decomposition method was considered which also strongly leverages the exponential decay of perturbations.

A second application of the proposed sensitivity analysis is the derivation of turnpike properties. A particular
turnpike property is the steady state turnpike property, which is a feature of solutions to autonomous optimal
control problems. In a nutshell, it states that the solution of the optimal control problem on a long time horizon
resides near a steady-state of the dynamics, the so-called turnpike, for the majority of the time. We briefly
recall some of the existing literature on turnpike analysis. The linear quadratic case for control of evolution
equations was considered in [7, 11, 26–29]. A turnpike property for shape optimization was introduced in
[33, 49]. Nonlinear finite dimensional problems were considered in [51], including the case of nonlinear initial
and terminal conditions. This was extended to a Hilbert space setting in [40, 41, 50]. A turnpike result for the
two-dimensional Navier-Stokes equations was obtained in [57]. These works analyze the turnpike property via
the extremal equations and are of local nature, i.e., the initial resp. terminal value for state and adjoint need
to be close to the turnpike. Further, in [38], a semi-global turnpike result for a semilinear heat equation with
initial datum of arbitrary size is given, under the assumption that either the state reference trajectory is small
or that the control acts everywhere. A geometric approach to tackle nonlinear problems was presented in [45].
Another approach that leads to global turnpike properties is stability analysis based on a dissipativity concept.
Motivated by the seminal papers by Willems [55, 56], a notion of dissipativity for optimal control problems
can be defined, where the supply rate is defined via the cost functional. Assuming this dissipativity property, a
global turnpike result for states and controls was deduced in, e.g., [17, 23, 25] or ([24], Prop. 8.15). Under the
assumption of a global turnpike property of states and controls, a global turnpike property for the corresponding
adjoint states was derived in [16]. The connection of dissipativity and the turnpike property is also discussed in
[22, 48]. Recently, turnpike properties for non-observable systems [15, 39], for problems arising in deep learning
[13] and for fractional parabolic problems [53] were presented. Further, the connection of turnpike properties
and long-time behavior of the Hamilton-Jacobi equation was analyzed in [14].

In this work, we provide a framework to lift the approach of analyzing the extremal equations’ solution
operator that was considered in [26, 27, 53] to the nonlinear case. Thus, our approach and the turnpike results
results in this paper are similar to [50, 51] in the sense that we also consider stabilizability conditions to derive
local results via analysis of the extremal equations. A particular novelty of this work is the implicit function
theorem Theorem 3.1 that provides a flexible and rigorous tool to conclude a local nonlinear turnpike result
by means of analyzing the solution operator of the linearized equations. In that context, turnpike properties
in norms particularly tailored to the corresponding regularity properties of the underlying problem can be
deduced. The choices could range from, e.g., uniform norms in a general semigroup context, to integral norms
with values in Sobolev spaces for parabolic problems. Here, we provide a particular application to semilinear
parabolic problems.

Our approach is conceptually simple: the nonlinear problem is considered as a perturbation of a linearized
problem and an implicit function theorem is applied. Then exponential sensitivity and turnpike behavior are
inherited from the linearized problem to the nonlinear problem under a smallness condition. What makes the
analysis delicate is that substantial results of this form require independence of the involved quantities from
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the length of the time interval T under consideration. For example, the exponential rate of decay µ should not
degenerate as T →∞. It is thus necessary to check all estimates for uniformity in T .

This work is organized as follows. After introducing the problem of interest in Section 2, we present an
implicit function theorem in Section 3 that allows for scaled estimates for solutions of the nonlinear first-order
necessary optimality conditions if the linearization of the latter is T -uniformly continuous and T -uniformly
invertible, where T is the time horizon of the optimal control problem. The former assumption will be analyzed
in Section 3.2, whereas we will verify the latter for a class of problems involving a semilinear heat equation
under stabilizability conditions in Section 4. Consequently, we present in Section 5 the main results for semilinear
problems: We provide a turnpike result in Corollary 5.2 and a sensitivity result with respect to perturbations
of the dynamics in Corollary 5.3. Finally, we present numerical examples that illustrate the theoretical findings
for semilinear equations and further provide an example with a boundary controlled quasilinear equation that is
not covered by theoretical results yet, motivating directions of further research. We will illustrate the turnpike
property and propose and evaluate an a priori discretization method specialized for MPC.

2. Setting and preliminaries

We briefly define the nonlinear optimal control problem of interest and formally derive the optimality con-
ditions. Let Ω ⊂ Rn, n ≥ 2 be a bounded domain with smooth boundary. Further, suppose that (V, ‖ · ‖V ) is
a separable and reflexive Banach space such that V ↪→ L2(Ω) ∼= L2(Ω)∗ ↪→ V ∗ form a Gelfand triple. We will
abbreviate 〈·, ·〉 := 〈·, ·〉L2(Ω) and ‖ · ‖ := ‖ · ‖L2(Ω). Further we denote

W ([0, T ]) := {v : [0, T ]→ V | v ∈ L2(0, T ;V ), v′ ∈ L2(0, T ;V ∗)},

where the time derivative is meant in a weak sense. The control space U will be assumed to be a Hilbert space
with scalar product denoted by 〈·, ·〉U and induced norm ‖ · ‖U . We consider the following nonlinear optimal
control problem.

min
(x,u)

J(x, u) :=

∫ T

0

J̄(t, x(t)) + ‖R(u(t)− ud(t))‖2U dt

s.t. x′(t) = Ā(x(t)) + B̄u(t) + d(t)

x(0) = x0,

(2.1)

where x0 ∈ H, d ∈ L2(0;T ;V ∗), J(x, u) is a sufficiently smooth functional, B̄ : U → V ∗ is a continuous and
linear operator, and Ā : V → V ∗ is a sufficiently smooth operator. We define B : L2(0, T ;U)→ L2(0, T ;V ∗) via

〈Bu, λ〉L2(0,T ;V ∗)×L2(0,T ;V ) :=

∫ T

0

〈B̄u(t), λ(t)〉V ∗×V dt

and A : L2(0, T ;V )→ L2(0, T ;V ∗) by

〈A(x), λ〉L2(0,T ;V ∗)×L2(0,T ;V ) :=

∫ T

0

〈Ā(x(t)), λ(t)〉V ∗×V dt.

for λ ∈ L2(0, T ;V ). We will assume that the optimal control problem (2.1) has a solution (x, u) ∈ W ([0, T ])×
L2(0, T ;U). One important ingredient for establishing this property are the classical lower-semi-continuity and
coercivity properties of the objective functional. A second factor can be to establish the existence of a continuous
control to state map. In the linear case, i.e., if A(x) = Ax this follows if −A satisfies a G̊arding inequality, cf.
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([46], Thm. 3.4):

∃ω ∈ R, α > 0 : α‖x‖2L2(0,T ;V ) ≤ −〈Ax, x〉L2(0,T ;V ∗)×L2(0,T ;V ) + ω‖x‖2L2(0,T ;L2(Ω)).

For solvability of semilinear equations with globally Lipschitz semilinearities we refer to Chapter 6 of [37] and
Chapter 5 of [52]. Locally Lipschitz semilinearities were treated in [43], where global existence of solutions was
ensured by sufficiently regular data (Bu+ d, x0), such that the solution is bounded, i.e., x ∈ L∞(0, T ;L∞(Ω)).
For a in-depth analysis of optimal control problems governed by quasilinear parabolic equations, the interested
reader is referred to [6, 10, 32, 34, 36].

We introduce a Lagrange multiplier (λ, λ0) ∈ L2(0, T ;V )× L2(Ω) and define the Lagrange function via

L(x, u, (λ, λ0)) := J(x, u) + 〈x′ −Ax, λ〉(L2(0,T ;V )×L2(Ω))∗×(L2(0,T ;V )×L2(Ω))

− 〈Bu+ d, λ〉L2(0,T ;V ∗)×L2(0,T ;V ) + 〈x(0)− x0, λ0〉.

Proceeding formally we obtain the first-order necessary optimality conditions

L′(x, u, λ) =


Jx(x, u)− λ′ −A′(x)∗λ

λ(T )
R∗Ru−B∗λ

x′ −A(x)−Bu− d
x(0)− x0

 = 0. (2.2)

with λ ∈ W ([0, T ]) as Jx(x, u) ∈ L2(0, T ;V ∗), cf. Proposition 3.8 of [46]. Setting Q := R∗R and Lr(x, λ) :=
L(x,Q−1B∗λ+ ud, λ), the reduced extremal equations read

L′r(x, λ) =


Jx(x, u)− λ′ −A′(x)∗λ

λ(T )
x′ −A(x)−BQ−1B∗λ−Bud − d

x(0)− x0

 = 0. (2.3)

We present two perturbations of the extremal equations (2.3) that we aim to analyze in this work. In order
to obtain a sensitivity result with respect to perturbations of the dynamics, we introduce a perturbation ε =
(ε1, εT , ε2, ε0) ∈ (L2(0, T ;V ∗)×L2(Ω))2, which could result from, e.g., temporal or spatial discretization errors.
We denote by (x̃, ũ, λ̃) ∈W ([0, T ])× L2(0, T ;U)×W ([0, T ]) the solution of this perturbed system, i.e.,

L′r(x̃, λ̃) =


Jx(x̃, ũ)− λ̃′ −A′(x̃)∗λ̃

λ̃(T )

x̃′ −A(x̃)−BQ−1B∗λ̃−Bud − d
x̃(0)− x0

 =


ε1

εT
ε2

ε0

 (2.4)

and ũ = Q−1B∗λ̃+ud. Further, to derive a turnpike result, i.e., a sensitivity result with respect to perturbations
of the initial and terminal condition, we will consider the steady-state problem as a perturbation of the first
order conditions of the dynamic problem. In that context, we will always assume that the cost functional is given

by J(x, u) =
∫ T

0
J̄(x(t)) + 1

2‖R(u(t) − ud)‖2 dt, i.e., J̄ itself does not explicitly depend on time and ud ∈ U ,
R ∈ L(U,U), d ∈ V ∗ are independent of time. To indicate this time-independence denote R̄ := R, ūd := ud and
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d̄ := d. The corresponding steady-state problem then reads

min
(x̄,ū)

J̄(x̄) +
1

2
‖R̄(ū− ūd)‖2U

s.t. − Ā(x̄) = B̄ū+ d̄,

(2.5)

where we again assume that there is a minimizer (x̄, ū) ∈ V × U . For (x̄, ū, λ̄) ∈ V × U × V , we define the
Lagrange function of the steady-state system L̄(x̄, ū, λ̄) := J̄(x̄, ū) − 〈Ā(x̄) − B̄ū, λ〉V ∗×V , which leads to the
first order conditions

L̄′(x̄, ū, λ̄) =

 J̄x(x̄)− Ā′(x̄)∗λ̄
R̄∗R̄ū− B̄∗λ̄
−Ā(x̄)− B̄ū− d̄

 = 0. (2.6)

Eliminating the control via ū = Q̄−1B̄∗λ̄ + ud, where Q̄ = R̄∗R̄ and defining the reduced static Lagrangian
L̄r(x̄, λ̄) := L̄(x̄, Q̄−1B̄∗λ̄ + ūd, λ̄), this steady-state system can be written as a perturbation of the dynamic
extremal equations by interpreting λ̄ and x̄ as functions constant in time and by adding λ̄′ = x̄′ = 0 and initial
resp. terminal value to the equations, i.e.,

L′r(x̄, λ̄) =


Jx(x̄, ū)− λ̄′ −A′(x̄)∗λ̄

λ̄(T )
x̄′ −A(x̄)−BQ−1B∗λ̄−Bud − d̄

x̄(0)− x0

 =


0
λ̄
0

x̄− x0

 . (2.7)

To obtain localized estimates in time, we consider a smooth scaling function s : R≥0 → R with s(t) > 0 for
all t ∈ R≥0 and endow Lp(0, T ;V ) with the scaled norm

‖x‖Lsp(0,T ;V ) := ‖sx‖Lp(0,T ;V ) (2.8)

for any 1 ≤ p ≤ ∞. The equivalence of this norm to the standard Lp(0, T ;V )-norm follows from the positivity
of s as we get for 1 ≤ p <∞ that

min
t∈[0,T ]

s(t)

(∫ T

0

‖x(t)‖pV dt

) 1
p

≤

(∫ T

0

‖s(t)x(t)‖pV dt

) 1
p

≤ max
t∈[0,T ]

s(t)

(∫ T

0

‖x(t)‖pV dt

) 1
p

(2.9)

and

min
t∈[0,T ]

s(t) ess sup
t∈[0,T ]

‖x(t)‖V ≤ ess sup
t∈[0,T ]

‖s(t)x(t)‖V ≤ max
t∈[0,T ]

s(t) ess sup
t∈[0,T ]

‖x(t)‖V . (2.10)

As Lp(0, T ;V ) with the standard norm is a Banach space, by the equivalence of the norms above,(
Lp(0;T ;V ), ‖ · ‖Lsp(0,T ;V )

)
is also a Banach space. Note that the equivalence of norms can deteriorate for

T → ∞ depending on the scaling function. Later in Section 4, we will consider a closed operator A : D(A) ⊂
L2(Ω)→ L2(Ω) that is a generator of an analytic semigroup in L2(Ω), where D(A) is the domain of A endowed
by the graph norm ‖ · ‖+ ‖A · ‖. We will impose either homogeneous Neumann or homogeneous Dirichlet bound-
ary conditions and thus the domain will, in our case, be either D(A) = {v ∈ H2(Ω) | ∂

∂νA
v = 0}, where ∂

∂νA
is

the conormal derivative corresponding to A, or D(A) = H2(Ω)∩H1
0 (Ω), i.e., V = D((−A)

1
2 ). Correspondingly,



6 L. GRÜNE ET AL.

we will set V = H1(Ω) or V = H1
0 (Ω) depending on the choice of boundary conditions. We will denote

W 1,2(0, T,D(A), L2(Ω)) := {v ∈ L2(0, T ;D(A)) | v′ ∈ L2(0, T ;L2(Ω))},
‖v‖W 1,2(0,T ;D(A),L2(Ω)) := ‖v‖L2(0,T ;D(A)) + ‖v′‖L2(0,T ;L2(Ω)),

where the time derivative is meant in a weak sense. We have the T -independent embedding
W 1,2(0, T,D(A), L2(Ω)) ↪→ C(0, T ;V ), cf. Part II-1, Remark 4.1, Remark 4.2 of [5]. For this vector-valued
Sobolev space, we will also utilize a scaled norm, i.e.,

‖v‖W 1,2
s (0,T,D(A),L2(Ω)) := ‖sv‖W 1,2(0,T,D(A),L2(Ω)).

For the scaling terms we have in mind, i.e., exponential functions, one can straightforwardly show that
the norm ‖v‖W 1,2

s (0,T,D(A),L2(Ω)) = ‖sv‖L2(0,T ;D(A)) + ‖(sv)′‖L2(0,T ;L2(Ω)) is equivalent to ‖sv‖L2(0,T ;D(A)) +

‖sv′‖L2(0,T ;L2(Ω)) = ‖v‖Ls2(0,T ;D(A)) +‖v′‖Ls2(0,T ;L2(Ω)). Thus, by the equivalence of scaled and unscaled L2-norms
shown above, ‖ · ‖W 1,2

s (0,T,D(A),L2(Ω)) is equivalent to the standard norm ‖ · ‖W 1,2(0,T,D(A),L2(Ω)) with constants

strongly depending on T . Hence,
(
W 1,2(0, T,D(A), L2(Ω)), ‖ · ‖W 1,2

s (0,T,D(A),L2(Ω))

)
is a Banach space. Finally,

whenever we write V s(t) for either V = H1(Ω) or V = H1
0 (Ω) and t ∈ [0, T ], we mean V endowed with the

equivalent norm s(t)‖ · ‖V . If X is a Banach space we denote by L(X) := L(X,X) the space of bounded linear
operators from X to X.

3. An abstract framework for sensitivity analysis

Considering the nonlinear equation (2.3) and the perturbations (2.4) resp. (2.7), the question we aim to
answer is the following: How do z̃ = (x̃, ũ) and z̄ = (x̄, ū) differ from z = (x, u) depending on (ε1, εT , ε2, ε0)
and (0, λ̄, 0, x̄ − x0), respectively? In particular, we aim to obtain results localized in time by means of the
scaled norms introduced above. To this end, denoting by Z a solution space and by E a perturbation space, we
introduce a nonlinear operator

G : Z × E → E

defined by

G(z, ε) := L′r(z)− ε ∀(z, ε) ∈ Z × E. (3.1)

It is clear that

• G(z, 0) = 0 for any solution z = (x, λ) of the dynamic problem (2.3),
• G(z̄, (0, λ̄, 0, x̄− x0)) = 0 for any solution z̄ = (x̄, λ̄) of the static problem (2.6),
• G(z̃, (ε1, εT , ε2, ε0)) = 0 for any solution z̃ = (x̃, λ̃) of the perturbed dynamic problem (2.4).

In Section 4 we apply the abstract theory of this chapter to a class of semilinear parabolic problems. In that
context, we will utilize the smoothing effect of parabolic equations and we will obtain estimates in

Zs =
(
Lp(0, T ;Lp(Ω)) ∩W 1,2(0, T ;D(A), L2(Ω)), ‖ · ‖Lsp(0,T ;Lp(Ω))∩W 1,2

s (0,T ;D(A),L2(Ω))

)2

,

Es =
(
L2(0;T ;L2(Ω)), ‖ · ‖Ls2(0,T ;L2(Ω))

)
× V s(T )

×
(
L2(0;T ;L2(Ω)), ‖ · ‖Ls2(0,T ;L2(Ω))

)
× V s(0)

to derive sensitivity and turnpike results. The perturbations of the dynamics are assumed to belong to an L2-
space, whereas the perturbations of the initial values have to belong to V . This regularity of the data leads
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to solutions with values a.e. in D(A) that have a weak time derivative with values a.e. in L2(Ω) by maximal
parabolic regularity, cf. Part II-1, Section 3 of [5]. In order to obtain exponential sensitivity estimates, we equip
both the solution space and the space of right-hand sides by a scaled norm.

3.1. An implicit function theorem

We now present an implicit function theorem that allows for estimates in scaled norms in a very general
setting. A particular feature of the following implicit function theorem is the tracking of dependencies of the
neighborhoods of perturbations and solutions in scaled and unscaled norms. This allows us to formulate a
criterion that renders these neighborhoods independent of T , namely T -uniform continuity and T -uniform
invertibility of the operator corresponding to the linearized first-order necessary conditions. This uniformity in
T is crucial to derive meaningful turnpike and sensitivity results. The assumption of T -independence of the
solution operators norm is also a central assumption in the linear quadratic setting and in that case can be
achieved under stabilizability and detectability assumptions, cf. Corollary 3.16 of [26] and Theorem 10 of [27].
We will derive a similar property for the linearized system in Section 4. Finally we emphasize that even though
the scaled and unscaled norms are equivalent, the involved constants in case of exponential scalings strongly
depend on T . Thus, this equivalence of norms can not be directly used to derive estimates, motivating a refined
analysis as carried out in the following theorem.

Theorem 3.1. Let (Z, ‖ · ‖Z) and (E, ‖ · ‖E) be Banach spaces, let ‖v‖Zs resp. ‖v‖Es be equivalent norms on Z
resp. E and set Zs := (Z, ‖ · ‖Zs) and Es := (E, ‖ · ‖Es). Consider the mapping G : Z ×E → E defined in (3.1)
with G(z0, ε0) = 0 for (z0, ε0) ∈ Z × E. Assume the following:

i) Gz(z
0, ε0) is continuously invertible in L(Z,E).

ii) It holds that

δε(z
1, z2) :=

‖G(z1, ε)−G(z2, ε)−Gz(z0, ε0)(z1 − z2)‖E
‖z1 − z2‖Z

→ 0,

if z1, z2 → z0 in Z and ε→ ε0 in E.
iii) It holds that

δsε(z
1, z0) :=

‖G(z1, ε)−G(z0, ε)−Gz(z0, ε0)(z1 − z0)‖Es
‖z1 − z0‖Zs

→ 0,

if z1 → z0 in Z and ε→ ε0 in E.

Then there is rE , rZ ≥ 0, such that for every ε satisfying ‖ε − ε0‖E ≤ rE there exists z∗(ε) ∈ Z such that
‖z∗(ε)− z0‖Z ≤ rZ and G(z∗, ε) = 0. Further, we have the estimate

‖z∗(ε)− z0‖Zs ≤ c‖ε− ε0‖Es . (3.2)

Moreover we have the following T -uniformity:

• If the convergence of ii) is uniform in T and ‖Gz(z0, ε0)−1‖L(E,Z) is bounded independently of T , then rZ
and rE can be chosen independently of T .

• If, additionally, the convergence of iii) is uniform in T and ‖Gz(z0, ε0)−1‖L(Es,Zs) is bounded independently
of T , then the constant in (3.2) is independent of T .

Proof. Throughout this proof, we denote BZrZ (z0) := {z ∈ Z | ‖z− z0‖Z ≤ rZ} and analogously BErE (ε0) := {ε ∈
E | ‖ε− ε0‖E ≤ rE}. For k ∈ N0 let δzk := −Gz(z0, ε0)−1G(zk, ε) and zk+1 = zk + δzk. As

δzk+1 = −Gz(z0, ε0)−1
(
G(zk+1, ε)−G(zk, ε)−Gz(z0, ε0)(zk+1 − zk)

)
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we have with ii) that

‖δzk+1‖Z = ‖Gz(z0, ε0)−1‖L(E,Z)δε(z
k+1, zk)‖δzk‖Z (3.3)

where δε(z
k+1, zk)→ 0, if zk+1, zk → z0 in Z and ε→ ε0 in E. We now choose a neighborhood BZrZ (z0)×BErE (ε0)

such that δε(z1, z2) ≤ 1
2‖Gz(z0,ε0)−1‖L(E,Z)

for all ε ∈ BErE (ε0) and z1, z2 ∈ BZrZ (z0). Further, by continuity of

G(z0, ε) in ε, continuous invertibility of G(z0, ε0) and as G(z0, ε0) = 0, we can further decrease rE such that

‖δz0‖Z = ‖Gz(z0, ε0)−1G(z0, ε)‖Z ≤
rZ
2

for ε ∈ BErE (ε0). Thus, we get

‖δzk+1‖Z ≤ ‖Gz(z0, ε0)−1‖L(E,Z)δε(z
k+1, zk)‖δzk‖Z ≤

(
1

2

)k
‖δz0‖Z . (3.4)

Hence,

‖zk+1 − z0‖Z ≤
k∑
i=0

‖δzk‖Z ≤
1

1− 1
2

‖δz0‖Z ≤ rZ (3.5)

and hence inductively, zk ∈ BZrZ (z0) for all k ∈ N. Thus, by completeness of Z, the iteration zk = z0 +
∑k
i=0 δz

k

converges to an element z∗ ∈ BZrZ (z0) and as δε(z
∗, zk) ≤ 1

2‖Gz(z0,ε0)−1‖L(E,Z)
we get

‖Gz(z0, ε0)−1
(
G(z∗, ε)−G(zk, ε)−Gz(z0, ε0)(z∗ − zk)

)
‖Z ≤

1

2
‖z∗ − zk‖Z .

Hence, by the reverse triangle inequality, we get

‖Gz(z0, ε0)−1G(z∗, ε)‖Z ≤ ‖δzk + z∗ − zk‖Z +
1

2
‖z∗ − zk‖Z → 0

for k →∞ and thus G(z∗, ε) = 0. To obtain an estimate in the scaled norms, we compute

‖z∗ − z0‖Zs ≤ ‖z∗ − z1‖Zs + ‖δz0‖Zs .

We further estimate with z1 = z0 + δz0, δz0 = −Gz(z0, ε0)−1G(z0, ε), by iii) and z∗ ∈ BZrZ (z0) after possibly
further decreasing rZ and rE such that δsε(z

∗, z0) ≤ 1
2‖Gz(z0,ε0)−1‖L(Es,Zs)

that

‖z∗ − z1‖Zs = ‖Gz(z0, ε0)−1(Gz(z
0, ε0)(z∗ − z1))‖Zs

= ‖Gz(z0, ε0)−1(Gz(z
0, ε0)(z∗ − z0)− (G(z∗, ε)−G(z0, ε)))‖Zs

≤ 1

2
‖z∗ − z0‖Zs .

Hence by the particular structure of G, i.e., G(z0, ε) = G(z0, ε0) + ε− ε0 = ε− ε0 we obtain

1

2
‖z∗ − z0‖Zs ≤ ‖δz0‖Zs = ‖Gz(z0, ε0)−1G(z0, ε)‖Zs ≤ ‖Gz(z0, ε0)−1‖L(Es,Zs)‖ε− ε

0‖Es
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which concludes the proof.

We have two particular applications of Theorem 3.1 in mind. First, to derive a turnpike result, we set
z0 = (x̄, λ̄) solving the static extremal equations (2.7), ε0 = (0, λ̄, 0, x̄− x0), and ε = 0 to derive an estimate on
the difference of (x, λ) and (x̄, λ̄) in scaled norms with scaling function s(t) = 1

e−µt+e−µ(T−t)
. Second, in order to

obtain a sensitivity result, we set z0 = (x, λ) solving the exact dynamic extremal equations (2.3), ε0 = (0, 0, 0, 0),
and ε = (ε1, εT , ε2, ε0) to derive an estimate on the difference of (x, λ) and (x̃, λ̃) solving the perturbed extremal
equations (2.4) in scaled norms with scaling function s(t) = e−µt.

Remark 3.2. Due to its generality, Theorem 3.1 can also be applied to general evolution equations, i.e.,
hyperbolic equations or alternatively to elliptic problems, where the scaling could act in space. For the latter
one can prove an exponential decay property of the influence of right-hand sides in space, a well-known property
for elliptic equations, without knowledge of the Greens function.

A crucial point in the proof of the implicit function theorem, i.e., Theorem 3.1, is to ensure that the series
generated by Gz(z

0, ε0)−1G(zk, ε) converges in Z. In the assumptions of the theorem, this is ensured by i) and
ii), i.e., differentiability of the nonlinear operator and continuous invertibility of the linearization. As we will
see in the following section, in general, the image of a nonlinear map, e.g., G(zk, ε) has lower integrability than
its argument zk. Thus, we need a smoothing effect of the solution operator to the linearized problem, e.g.,
Gz(z

0, ε0)−1 to make up for this loss of regularity. We rigorously prove this property for parabolic problems in
Section 4.

3.2. Superposition operators and T -uniform continuity

In order to rigorously verify assumptions ii)-iii) in Theorem 3.1, we employ the concept of superposition
operators. We will only consider continuity and differentiability of these operators in Lp-spaces and the reader
is referred to Section 4.3.3 of [52] for a short introduction and [4, 18] for an in-depth treatment of these topics
in Sobolev and Lebesgue spaces of abstract functions. Intuitively, a superposition operator is a nonlinear map
between function spaces defined via an, e.g., scalar nonlinear function by superposition. The following definition
of a superposition operator is adapted from Section 4.3.1 of [52] and Section 2 of [18].

Definition 3.3 (Superposition operator). Let W1 and W2 be real valued Banach spaces. Consider a mapping
f : W1 →W2. Then the mapping Φ defined by

Φ(x)(s) = f(x(s)) for s ∈ S

assigns to an (abstract) function x : S →W1 a new (abstract) function z : S →W2 via the relation z(s) = f(x(s))
for s ∈ S and is called an (abstract) Nemytskij operator or (abstract) superposition operator.

The image of a superposition operator in Lp-spaces can be characterized under growth and boundedness
conditions.

Proposition 3.4. Let W1 and W2 be real valued Banach spaces. Let f : W1 →W2 be continuous. For 1 ≤ p, q <
∞ let

‖f(w)‖W2 ≤ c1 + c2‖w‖
p
q

W1
∀w ∈W1 (3.6)

for constants c1 ∈ R and c2 ≥ 0. Then the corresponding superposition operator maps Lp(S;W1) into Lq(S;W2).

Proof. See Theorem 1 of [18].

The following proposition shows that if a superposition operator maps one Lp-space into another, continuity
can be derived immediately.
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Proposition 3.5 (Continuity of superposition operators). Let W1 and W2 be real valued Banach spaces. Let
f : W1 →W2 be continuous and 1 ≤ p ≤ ∞, 1 ≤ q <∞. If the induced superposition operator Φ maps Lp(S;W1)
into Lq(S,W2), then it is continuous. If f is locally Lipschitz, then it is continuous as a map from L∞(S;W1)
to L∞(S;W2).

Proof. For the first part, see Theorem 4 of [18]. For the case with p = q =∞, see Theorems 1 and 5 of [18] or
Lemma 4.11 of [52].

We note that in the case p = q = ∞, a growth bound of the form (3.5) is not needed. In particular, the
property that the superposition Φ operator maps L∞(S;W1) to L∞(S;W2) can be concluded by local Lipschitz
continuity of the underlying function f , cf. Theorems 1 and 5 of [18] or Lemma 4.11 of [52].

Differentiability of superposition operators plays a key role in applying the implicit function theorem. The
following result obtained in Theorem 7 of [18] gives sufficient conditions for Fréchet differentiability.

Proposition 3.6 (Differentiability of superposition operators). Let 1 ≤ q < p <∞. Assume that f : W1 →W2

is continuously Fréchet differentiable. Moreover, let the superposition operator defined by

Ψ(x)(s) = f ′(x(s)) for s ∈ S

be continuous from Lp(S;W1) to Lr(S;L(W1,W2)) with r = pq
p−q . Then the superposition operator Φ induced by

f is continuously Fréchet differentiable and the Fréchet derivative

Φ′ : Lp(S;W1)→ L(Lp(S;W1), Lq(S;W2))

is given by Ψ, i.e.,

(Φ′(x)δx)(s) = Ψ(x)(s)δx(s) for s ∈ S, δx ∈ Lp(S;W1).

The conditions given in Proposition 3.6 are also necessary in the following sense: If a superposition operator
is differentiable from Lp(Ω) to Lq(Ω) with 1 ≤ p = q < ∞, then it is affine-linear. If it is differentiable from
Lp(Ω) to Lq(Ω) with 1 ≤ p < q ≤ ∞, then it has to be constant, cf. the discussion in Section 3.1 of [18] and
Theorem 3.12 of [4].

We briefly illustrate this concept by means of a particular example of a polynomial nonlinearity.

Example 3.7. Consider W1 = W2 = R and S = Ω ⊂ Rn bounded with n ∈ N. Then the nonlinear function
f : R→ R, f(w) = wd, d ∈ N, defines a superposition operator Φ via the relation

Φ(x)(ω) = f(x(ω)) = x(ω)d for ω ∈ Ω

for x : Ω → R. With Proposition 3.4 we have for all 1 ≤ p1 < ∞ that Φ: Ldp1(Ω) → Lp1(Ω) and by Propo-
sition 3.5, this mapping is continuous. Further, as f ′(w) = dwd−1, we can define a continuous superposition
operator Ψ: L(d−1)p2(Ω)→ Lp2(Ω) for all 1 ≤ p2 <∞ corresponding to the derivative f ′(w). Consequently we
can set (d− 1)r = p1 in Proposition 3.6, i.e., p2 = p1

d which yields Φ to be continuously Fréchet differentiable
as a mapping from Ldp1(Ω) to Lp1(Ω) and Φ′ = Ψ in the sense of Proposition 3.6. Consider now 1 ≤ p3 <∞,
T > 0, and the nonlinear function Φ: Ldp3(Ω) → Lp3(Ω) defined above. Setting W1 = Ldp3(Ω), W2 = Lp3(Ω),
and S = [0, T ] in Definition 3.3, we define a second superposition operator Φ for x : [0, T ] → Ldp(Ω) via the
relation

Φ(x)(t) = Φ(x(t)) for t ∈ [0, T ].
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Proceeding analogously as before, we obtain that Φ is continuous and differentiable as operator from
Ldp3(0, T ;Ldp1(Ω)) to Lp3(0, T ;Lp1(Ω)) for 1 ≤ p1, p3 < ∞. We thus obtained from a scalar nonlinear func-
tion a nonlinear mapping from one space of abstract functions into another one by applying Definition 3.3
twice.

In order to render the radii rZ and rE and the estimate (3.2) independent of T , we have to discuss the
T -dependence of continuity moduli of superposition operators in unscaled and scaled Lp-spaces as introduced
at the end of Section 2 with norms defined in (2.8).

Definition 3.8 (T -uniform continuity). Let W1,W2 be real-valued Banach spaces. We say that an operator
Ψ: Lp(0, T ;W1)→ Lq(0, T ;W2) is T -uniformly continuous if for all x0 ∈ Lp(0, T ;W1) and for all ε > 0 there is
δ > 0 independent of T such that if ‖δx‖Lp(0,T ;W1) < δ then

‖Ψ(x0 + δx)−Ψ(x0)‖Lq(0,T ;W2) < ε.

Lemma 3.9. If the constants c1 and c2 of the growth condition (3.6) are independent of T , then the continuity
of the induced superposition operator it T -uniform.

Proof. The proof follows directly by the fact that the references establishing continuity under growth conditions
do not assume the domain S to be bounded, cf. Chapter 3 of [4] and [18].

Example 3.10 (Example 3.7 revisited). We briefly illustrate the previous lemma at the example f(w) = wd.
In that case it is clear that the growth condition (3.6), i.e.,

|f(w)| ≤ c1 + c2|w|
p
q

holds with p = 3q, c1 = 0 and c2 = 1, i.e., f induces a T -uniformly continuous superposition operator from
Ldq(0, T ;Ldp(Ω)) to Lq(0, T ;Lp(Ω)). As [0, T ] and Ω are bounded, one can show that continuity also holds from

Ld̂q(0, T ;Ld̂p(Ω)) to Lq(0, T ;Lp(Ω)) for d̂ > d, however, with constants that depend on T and |Ω|. This means,
that the functional analytic framework has to be chosen particularly suited to the nonlinearity to render the
constants and hence the continuity uniform in T .

The following lemma shows that if a superposition operator has a T -uniformly continuous Fréchet derivative,
the convergence in ii) and iii) of Theorem 3.1 can be shown to be T -uniform.

Lemma 3.11. Let W1 and W2 be Banach spaces, 1 ≤ p ≤ ∞ and let Φ: Lp(0, T ;W1) → Lq(0, T ;W2) have a
T -uniformly continuous Fréchet derivative Φ′. Then,

‖Φ(x1)− Φ(x2)− Φ′(x0)(x1 − x2)‖Lq(0,T ;W2)

‖x1 − x2‖Lp(0,T ;W1)
→ 0

uniformly in T if x1, x2 → x0 in Lp(0, T ;W1). Moreover,

‖Φ(x0 + δx)− Φ(x0)− Φ′(x0)δx‖Lsq(0,T ;W2)

‖δx‖Lsp(0,T ;W1)
→ 0

uniformly in T if δx→ 0 in Lp(0, T ;W1).

Proof. We compute with the fundamental theorem of calculus, cf. [30], p. 51, that

‖Φ(x1)− Φ(x2)− Φ′(x0)(x1 − x2)‖Lq(0,T ;W2)
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= ‖
∫ 1

0

Φ′(x2 + θ(x1 − x2))− Φ′(x0) dθ(x1 − x2)‖Lq(0,T ;W2)

≤
(

sup
θ∈[0,1]

‖Φ′(x2 + θ(x1 − x2))− Φ′(x2)‖L(Lp(0,T ;W1),Lq(0,T ;W2))

+ ‖(Φ′(x0)− Φ′(x2))‖L(Lp(0,T ;W1),Lq(0,T ;W2))

)
‖x1 − x2‖Lp(0,T ;W1).

The first claim follows by T -uniform continuity of Φ′. For the second claim in scaled norms with scaling function
s, we compute analogously

‖Φ(x0 + δx)− Φ(x0)− Φ′(x0)δx‖Lsq(0,T ;W2)

= ‖s
(
Φ(x0 + δx)− Φ(x0)− Φ′(x0)δx

)
‖Lq(0,T ;W2)

= sup
θ∈[0,1]

‖Φ′(x0)− Φ′(x0 + θδx)‖L(Lp(0,T ;W1),Lq(0,T ;W2))‖sδx‖Lp(0,T ;W1)

≤ sup
θ∈[0,1]

‖Φ′(x0)− Φ′(x0 + θδx)‖L(Lp(0,T ;W1),Lq(0,T ;W2))‖δx‖Lsp(0,T ;W1),

which concludes the proof.

Hence, it turns out that whenever the superposition operators are differentiable with T -uniformly continuous
derivative, the uniform convergence needed in Theorem 3.1 ii) and iii) to obtain T -uniform neighborhoods holds
true. The last thing to prove to apply the implicit function theorem is the T -uniform estimate on the solution
operator to the linearized first-order optimality system, i.e., Gz(x

0, ε0)−1 in unscaled and scaled spaces. In the
following we will derive such a bound for a wide class of semilinear problems that provides flexibility in the
norms to match the functional analytic framework where one established T -uniform continuity.

4. A T -independent bound for the extremal equations’ solution
operator for semilinear parabolic problems

In this part we will rigorously verify the assumptions of the abstract implicit function theorem, i.e., Theo-
rem 3.1, for a class of semilinear heat equations. The analysis in this part is heavily motivated by the approach
taken in [43], where the authors derive a Maximum Principle for optimal control problems governed by semi-
linear parabolic PDEs. In that work it is shown that for sufficiently smooth data, the solution x of a semilinear
parabolic PDE with monotone nonlinearity indeed satisfies x ∈ L∞(0, T ;L∞(Ω)). This allows for existence
results globally in time without global Lipschitz conditions on the nonlinearity. For convenience of the reader,
we briefly introduce the setting considered in [43]. To this end, we assume that the PDE of interest is semilinear
parabolic, i.e., Ā(x) = Ax − f(x) with f ′(x) ≥ c0 for c0 ∈ R and that B ∈ L(L2(Ωc)), L2(Ω)) for a control
domain Ωc ⊂ Ω which includes, e.g., the case of distributed control. The operator −A is considered to be an
elliptic differential operator of second order, i.e.,

Ax :=

n∑
i,j=0

Di(aijDjx), (4.1)

where k ≥ 0, aij = aji ∈ C(Ω̄,R) and ai,j(ω)v · v > 0 for all ω ∈ Ω and v ∈ Rn. By ∂x
∂νA

(t, s) =∑n
i,j=0 aij(s)Djx(t, s)νi(s) we denote the conormal derivative of x, where ν = (ν1, . . . , νn) is the outward unit

normal to ∂Ω. We consider the domain

D(A) = {v ∈ C2(Ω) | v = 0 on ∂Ω} or D(A) = {v ∈ C2(Ω) | ∂v
∂νA

= 0 on ∂Ω} (4.2)
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for either homogeneous Dirichlet or homogeneous Neumann boundary conditions. We assume w.l.o.g. that there
is α > 0 such that

−
∫

Ω

Avv dω ≥ α

2
‖v‖2H1(Ω) (4.3)

for v ∈ D(A). In case of Dirichlet boundary conditions this immediately follows with integration by parts and
the Poincaré inequality. For Neumann boundary conditions, we can replace Ax by (A− kI) for any k > 0 by
Ā(x) = Ax− f(x) = (A− kI)x+ kx− f(x) and redefine f(x) := f(x)− kx.

It can be shown that for all 1 ≤ l < ∞ the closure Al of A in Ll(Ω) generates an analytic semigroup in
Ll(Ω) and we abbreviate A = A2. For 1 < l <∞, the domain is given by D(Al) = {v ∈W 2,l(Ω) | v = 0 on ∂Ω}
or D(Al) = {v ∈W 2,l(Ω) | ∂v∂νA = 0 on ∂Ω}, depending on the choice in (4.2). Additionally, the spectrum of Al
does not depend on 1 ≤ l <∞. For details we refer to [44] and Section 3 of [43].

Correspondingly, depending on the choice of boundary conditions above, we will set V = H1(Ω) in the case
of homogeneous Neumann boundary conditions or V = H1

0 (Ω) in the case of homogeneous Dirichlet boundary
conditions.

Assumption 4.1. Assume that (x, λ) ∈ L∞(0, T ;L∞(Ω)) for any solution (x, u, λ) of (2.2) and (x̄, λ̄) ∈ L∞(Ω)
for any solution (x̄, ū, λ̄) of (2.6).

As stated before, in order to render this assumption satisfied, one usually assumes that the data of (2.1) and
(2.5) are sufficiently smooth and that the nonlinearity is monotone. Under these assumptions, boundedness of
solutions in time and space for parabolic problems was proven in [43]. Similarly, for semilinear elliptic equations,
a proof for continuity of solutions can be found in [9]. The interested reader is also referred to the respective
parts in the monograph [52]. Under Assumption 4.1 we can conclude by smoothness of J(x, u), J̄(x), and f(x)
with Proposition 3.5 that the corresponding superposition operators are continuous from L∞(Ω) to L∞(Ω) and
from L∞(0, T ;L∞(Ω)) to L∞(0, T ;L∞(Ω)), respectively. We further introduce a square root property for the
second derivative of the reduced Lagrange function with respect to the state.

Lemma 4.2. Let (x0, λ0) ∈ L∞(0, T ;L∞(Ω))2 and (Lr)xx(x, λ) = Jxx(x0) + f ′′(x0)∗λ0 ∈ L∞(0, T ;L∞(Ω))
induce a nonnegative multiplication operator, i.e., for v : [0, T ]× Ω→ R

((Lr)xx(x0, λ0)v)(t, ω) := (Lr)xx(x0, λ0)(t, ω) · v(t, ω)

and (Lr)xx(x0, λ0)(t, ω) ≥ 0 for a.e. t ∈ [0, T ] and ω ∈ Ω. Then, there is a multiplication operator C ∈
L(Lp1(0, T ;Lp2(Ω))) for all 1 ≤ p1, p2 ≤ ∞ defined by

(Cv)(t, ω) :=
√

(Lr)xx(x0, λ0)(t, ω) · v(t, ω) (4.4)

such that

(Lr)xx(x0, λ0) = C2.

Remark 4.3. The assumption of (Lr)xx(x0, λ0) inducing a multiplication operator is satisfied if the cost
functional is of the form

J(x, u) =
1

2

∫ T

0

‖x(t)− xd(t)‖2L2(Ωo) +
α

2
‖u(t)‖2U dt

for Ωo ⊂ Ω and if the nonlinearity is given by f(x) = x3. In that case,

Lxx(x0, λ0) = χΩo + 6x0λ0,
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where χΩo is the characteristic function of the observation region Ωo. The positivity assumption is fulfilled if,
e.g., Ωo = Ω and if λ0 and x0 are small in L∞(0, T ;L∞(Ω)), which, for (x0, λ0) = (x̄, λ̄) or (x0, λ0) = (x̃, λ̃)
can be verified by imposing smallness conditions on the data of the underlying steady-state or dynamic OCP,
cf. Example 5.5. The assumption that Lxx is positive semidefinite, was also mad in Theorem 1 of [51] and
Theorem 1 of [50]. As seen in this example and as stated in Remark 6 of [51] this assumption is not standard. In
particular, it is not clear how to verify it by, e.g., second order sufficient conditions. However, this assumption is
crucial to define a square root in the sense of Equation (4.4), which itself is necessary to obtain stability results
for the linearized system, cf. the proof of Theorem 4.8.

Under Assumption 4.1, we have that Lxx(x, λ) ∈ L(Lp1(0, T ;Lp2(Ω))) for x, λ ∈ L∞(0, T, L∞(Ω)) such that
C ∈ L(Lp1(0, T ;Lp2(Ω))) as defined in (4.4) for all 1 ≤ p1, p2 ≤ ∞.

In order to apply Theorem 3.1, we will show a bound on the inverse of

L′′r (x0, λ0) : (Lp1(0, T ;Lp2(Ω)) ∩W 1,2(0, T,D(A), L2(Ω))2 → (L2(0, T ;L2(Ω))× V )2,

where 2 ≤ p1, p2 ≤ ∞, n
2 ( 1

2 −
1
p2

) < 1
p1

+ 1
2 and (x0, λ0) either solves the static system (2.7) or the dynamic

system (2.3). We aim to choose p1, p2 as large as possible to render a wide range of nonlinearities continuous
and differentiable with T -uniformly continuous derivative in these spaces.

To derive an operator norm we consider the linear system
Jxx(x0) + f ′′(x0)λ0 − d

dt −A
∗ + f ′(x0)

0 ET
d
dt −A+ f ′(x0) −BQ−1B∗

E0 0


︸ ︷︷ ︸

L′′r (x0,λ0)

(
δx
δλ

)
=


l1
δλT
l2
δx0

 (4.5)

for (l1, δλT , l2, δx0) ∈ (L2(0, T ;L2(Ω)× V ). Note that due to x0 ∈ L∞(0, T ;L∞(Ω)) and due to the smoothness
of f , the terms Jx(x0), f ′(x0), and f ′′(x0) are in L∞(0, T ;L∞(Ω)) because of Proposition 3.5 and hence can
be interpreted as pointwise multiplications. With slight abuse of notation, we denote by the same symbol the
corresponding superposition operator. We now aim to estimate (δx, δλ) by means of the right-hand side in
appropriate norms. To this end, we make the following stabilizability assumptions.

Assumption 4.4. Let c0 ∈ R be such that c0 ≤ f ′(w) for all w ∈ R and let C̄ ∈ L(Lp(Ω), Lp(Ω)) for all
2 ≤ p ≤ ∞ be such that ‖C̄v‖L2(0,T ;L2(Ω)) ≤ ‖Cv‖L2(0,T ;L2(Ω)) for all v ∈ L2(0, T ;L2(Ω)), where C is defined in
(4.4). Additionally assume:

i) (A− c0I, B̄) is exponentially stabilizable in the sense that for all 1 ≤ p ≤ ∞ there is K̄B̄ ∈ L(Lp(Ω), Lp(Ωc))
satisfying B̄K̄B̄ ∈ L(Lp(Ω)) such that A− c0I + B̄K̄B̄ satisfies (4.3).

ii) (A − c0I, C̄) is exponentially stabilizable in in the sense that for all 1 ≤ p ≤ ∞ there is K̄C̄ ∈ L(Lp(Ω))
such that A− c0I + C̄∗K̄C̄ satisfies (4.3).

iii) (A − f ′(x0), C) and (A − f ′(x0), B) are exponentially stabilizable for x0 = x with (x, λ) solv-
ing (2.3) and x0 = x̄ for (x̄, λ̄) solving (2.7) in the following sense: There are operators KB ∈
L(L2(0, T ;L2(Ω)), L2(0, T ;L2(Ωc))) and KC ∈ L(L2(0, T ;L2(Ω))) such that

−
∫ T

0

∫
Ω

(
A− f ′(x0) +BKB

)
vv dω dt ≥ α‖v‖2L2(0,T ;V )

−
∫ T

0

∫
Ω

(
A− f ′(x0) + C∗KC

)
vv dω dt ≥ α‖v‖2L2(0,T ;V )

for all v ∈ L2(0, T ;D(A)).
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iv) ‖x0‖L∞(0,T ;L∞(Ω)) and ‖C‖L(Lp(0,T ;Lp(Ω)),Lp(0,T ;Lp(Ω))) are bounded independently of T for all 1 ≤ p ≤ ∞.

We briefly comment on these assumptions.

Remark 4.5. The first two assumptions ensure that the linearized system is stabilizable and detectable and
that the closed-loop operators generate a strongly continuous exponentially stable analytic semigroup in Lp(Ω)
for all 1 ≤ p <∞. The third assumption allows us to deduce the W ([0, T ])-bound analogously to Corollary 3.16
of [26]. This stabilizability assumption was introduced for non-autonomous parabolic problems in Definition 3.6
of [26]. The last assumption ensures that the coefficients in the linearized systems are bounded independently of
T . This is trivially fulfilled for a steady state linearization point (x0, λ0). In case that the linearization point is
the time-dependent optimal solution, this estimate is satisfied if, e.g., a turnpike property in this uniform norm
holds. The latter was proven in cf. Theorem 0.2 of [38] under a smallness assumption on the reference state in
case of a tracking type cost functional.

In the following we denote by Acl an operator of the form (4.1) satisfying (4.3) endowed with a domain
defined in (4.2). By (T lcl(t))t≥0 we will denote the analytic semigroup on Ll(Ω) that is generated by the closure
of Acl in Ll(Ω) for 1 ≤ l <∞.

Proposition 4.6. There is µ0 > 0 and a constant c > 0 independent of t, such that

‖T lcl(t)ψ0‖Lq(Ω) ≤ c
e−µ0t

t
n
2 ( 1

l−
1
q )
‖ψ0‖Ll(Ω) ∀t > 0

for all ψ0 ∈ Ll(Ω) and 1 ≤ l ≤ q ≤ ∞ with l <∞.

Proof. See Lemma 1 of [44] or Proposition 12.5 of [2].

This stability result for analytic semigroups turns out to be crucial to derive estimates in Lp-spaces for large
p for, e.g., right-hand sides in L2(0, T ;L2(Ω)) as performed in the following theorem. As a consequence, we can
allow for a wide range of different functional analytic settings, i.e., different choices of integrability parameters.
This flexibility can then be leveraged when verifying T -uniformity in the context of the superposition operator,
i.e., rendering the constants in Proposition 3.4 independent of T , cf. Example 3.10. We will again pick up this
issue in Remark 5.6.

A central tool in the following will be a convolution estimate, similar to the proof of Lemma 8 of [27]. The
proof is motivated by the approach of Proposition 3.1 of [43].

Theorem 4.7. Let Assumption 4.4 hold and let (δx, δλ) ∈ W ([0, T ])2 solve (4.5). Then, for all p1, p2 ≥ 2
satisfying n

2 ( 1
2 −

1
p2

) < 1
p1

+ 1
2 with p2 <

2n
n−2 , there is a constant c > 0 independent of T , such that

‖(δx, δλ)‖W 1,2(0,T,D(A),L2(Ω))2 + ‖(δx, δλ)‖Lp1 (0,T ;Lp2 (Ω))2

≤ c
(
‖Cδx‖L2(0,T ;L2(Ω)) + ‖B∗δλ‖L2(0,T ;L2(Ωc)) + ‖r‖(L2(0,T ;L2(Ω))×V )2

)
,

where r := (l1, δλT , l2, δx0).

Proof. We will first show the W 1,2(0, T,D(A), L2(Ω))-estimate. To this end, we consider the state equation of
Equation (4.5), i.e.,

δx′ + (−A+ f ′(x0))δx−BQ−1B∗δλ = l2

with initial condition δx(0) = δx0. Adding the stabilizing feedback C∗KC from Assumption 4.4 iii), we obtain

δx′ + (−A+ f ′(x0)− C∗KC)δx = BQ−1B∗δλ+ l2 − C∗KCδx.
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and testing the equation with δx, using the coercivity of Assumption 4.4 iii) we get

‖δx‖L2(0,T ;V ) ≤ c
(
‖δx0‖V + ‖B∗δλ‖L2(0,T ;L2(Ω)) + ‖l2‖L2(0,T ;L2(Ω)) + ‖Cδx‖L2(0,T ;L2(Ω))

)
. (4.6)

As A generates an exponentially stable analytic semigroup in L2(Ω) by applying the maximal regularity result
of Part II-1, Theorem 3.1 in [5] to

δx′ −Aδx = −f ′(x0)δx+BQ−1B∗δλ+ l2

we obtain

‖δx′‖L2(0,T ;L2(Ω)) + ‖Aδx‖L2(0,T ;L2(Ω))

≤ c
(
‖δx‖L2(0,T ;L2(Ω)) + ‖B∗δλ‖L2(0,T ;L2(Ω)) + ‖l2‖L2(0,T ;L2(Ω))

)
.

Together with (4.6) we conclude

||δx‖W 1,2(0,T,D(A),L2(Ω))

≤ c
(
‖l2‖L2(0,T ;L2(Ω)) + ‖B∗δλ‖L2(0,T ;L2(Ω)) + ‖Cδx‖L2(0,T ;L2(Ω)) + ‖δx0‖V

)
.

Proceeding analogously for the adjoint yields the first part of the estimate. To obtain the estimate in
Lp1(0, T ;Lp2(Ω)), we proceed similarly to Proof of Proposition 3.1 in [43]. Let ψ0 ∈ Ll(Ω), 1 ≤ l < ∞ and
ψ solve the auxiliary problem

ψ′ = (A− c0I + C̄∗K̄C̄)ψ, ψ(0) = ψ0,

where K̄C̄ is a stabilizing feedback for (A− c0I, C̄) in the sense of Assumption 4.4 ii). Thus, by Proposition 4.6
for all 1 ≤ l ≤ q ≤ ∞ with l <∞ and t > τ ≥ 0 we have the estimate

‖ψ(t− τ)‖Lq(Ω) ≤ c
e−µ0(t−τ)

(t− τ)
n
2 ( 1

l−
1
q )
‖ψ0‖Ll(Ω). (4.7)

We compute ∫
Ω

ψ0(ω)δx(t, ω) dω =

∫ t

0

(
d

dτ

∫
Ω

ψ(t− τ, ω)δx(τ, ω) dω

)
dτ︸ ︷︷ ︸

I

+

∫
Ω

ψ(t, ω)δx0(ω) dω︸ ︷︷ ︸
II

. (4.8)

For the first part of (4.8) we obtain with c0 − f ′(x0) ≤ 0 and as A is self-adjoint that

I =

∫ t

0

(∫
Ω

−ψ′(t− τ, ω)δx(τ, ω) + ψ(t− τ, ω)δx′(τ, ω) dω

)
dτ

=

∫ t

0

(∫
Ω

−Aψ(t− τ, ω)δx(τ, ω)− C̄∗Kψ(t− τ, ω)δx(τ, ω) + c0ψ(t− τ, ω)δx(τ, ω)

+ ψ(t− τ, ω)Aδx(τ, ω)− f ′(x0)ψ(t− τ, ω)δx(τ, ω) + l2(t, ω)ψ(t− τ, ω)

+ B̄Q−1B̄∗δλ(τ, ω)ψ(t− τ, ω) dω

)
dτ
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≤
∫ t

0

(∫
Ω

−C̄∗Kψ(t− τ, ω)δx(τ, ω)+ψ(t− τ, ω)l2(t, ω)+ψ(t− τ, ω)B̄Q−1B̄∗δλ(τ, ω) dω

)
dτ.

In the following we denote by p′2 the dual exponent to p2, i.e., 1
p2

+ 1
p′2

= 1. Using the exponential stability

estimate of (4.7) and setting l = p′2 and q = 2, we obtain for the first summand of (4.8) that

I ≤ c‖ψ0‖Lp′2 (Ω)

∫ t

0

e−µ0(t−τ)

(t− τ)
n
2 ( 1

p′2
− 1

2 +δ)

(
‖C̄δx(τ)‖L2(Ω) + ‖B̄∗δλ(τ)‖L2(Ωc) + ‖l2(τ)‖L2(Ω)

)
dτ.

For the second part of (4.8) we use Hölder’s inequality and (4.7) with q = l = p′2 and obtain that

II ≤ ‖ψ(t)‖Lp′2 (Ω)‖δx0‖Lp2 (Ω) ≤ ce−µ0t|ψ0‖Lp′2 (Ω)‖δx0‖Lp2 (Ω). (4.9)

Taking the supremum over all ψ0 ∈ Lp′2(Ω) yields for any t ∈ [0, T ] that

‖δx(t)‖Lp2 (Ω) ≤ c
∫ t

0

e−µ0(t−τ)

(t− τ)
n
2 ( 1

p′2
− 1

2 )

(
‖C̄δx(τ)‖L2(Ω) + ‖B̄∗δλ(τ)‖L2(Ωc) + ‖l2(τ)‖L2(Ω)

)
dτ

+ ce−µ0t‖x0‖Lp2 (Ω).

We now integrate this inequality over time. To this end, we recall Young’s convolution inequality, cf.
Theorem II.4.4 of [54], which states for 1

p1
+ 1 = 1

2 + 1
h that

‖w ∗ g‖Lp1 (R) ≤ ‖w‖Lh(R)‖g‖L2(R).

We apply this convolution inequality to

g(τ) := ‖C̄δx(τ)‖L2(Ω) + ‖B̄∗δλ(τ)‖L2(Ωc) + ‖l2(τ)‖L2(Ω),

w(τ) :=
e−µ0τ

τ
n
2 ( 1

p′2
− 1

2 )

for any τ ∈ [0, T ] and extended by zero otherwise. Additionally, we require that n
2 ( 1

p2
− 1

2 ) < 1
h and p1 <∞ to

ensure ‖w‖Lh(R) <∞. Then we conclude that

‖δx‖Lp1 (0,T ;Lp2 (Ω))

≤ c
(
‖C̄δx‖L2(0,T ;L2(Ω)) + ‖B∗δλ‖L2(0,T ;L2(Ωc)) + ‖l2‖L2(0;T ;L2(Ω)) + ‖e−µt‖Lp1 (R)‖δx0‖Lp2 (Ω)

)
≤ c

(
‖Cδx‖L2(0,T ;L2(Ω)) + ‖B∗δλ‖L2(0,T ;L2(Ωc)) + ‖l2‖L2(0;T ;L2(Ω)) + ‖δx0‖V

)
where the last estimate follows from Assumption 4.4, i.e., ‖C̄v‖L2(0,T ;L2(Ω)) ≤ ‖Cv‖L2(0,T ;L2(Ω)) for all v ∈
L2(0, T ;L2(Ω)) and by the classical Sobolev embedding theorem H1(Ω) ↪→ Lp2(Ω) for p2 <

2n
n−2 , cf. Theorem

5.4 of [1].

This stability estimate can be used to derive a T -uniform estimate for the solution operators norm. The latter
can then be used to also bound the solution operator in exponentially scaled spaces. Both these bounds play a
central role in the assumptions of the implicit function theorem Theorem 3.1. The following theorem states the
main result of this section.



18 L. GRÜNE ET AL.

Theorem 4.8. Let z0 = (x0, λ0) be such that Assumption 4.1 and Assumption 4.4 hold. Then, for all 2 ≤ p1, p2

satisfying n
2 ( 1

2 −
1
p2

) < 1
p1

+ 1
2 and p2 <

2n
n−2 there is a constant c ≥ 0 independent of T such that

‖L′′r (z0)−1‖L((L2(0,T ;L2(Ω))×V )2,(Lp1 (0,T ;Lp2 (Ω))∩W 1,2(0,T,D(A),L2(Ω))2) ≤ c (4.10)

Moreover for all µ > 0 satisfying

µ <
1

‖L′′r (z0)−1‖L((L2(0,T ;L2(Ω))×V )2,(Lp1 (0,T ;Lp2 (Ω))∩W 1,2(0,T,D(A),L2(Ω))2)
(4.11)

there is a constant c ≥ 0 independent of T such that

‖L′′r (z0)−1‖L((Ls2(0,T ;L2(Ω))×V s(T )×Ls2(0,T ;L2(Ω))×V s(0)),(Lsp1 (0,T ;Lp2 (Ω))∩W 1,2
s (0,T,D(A),L2(Ω)))2) ≤ c (4.12)

for the scaling functions s(t) = e−µt or s(t) = 1
e−µt+e−µ(T−t)

.

Proof. Using the bound derived in Theorem 4.7, it only remains to estimate ‖Cδx‖2L2(0,T ;L2(Ω)) +

‖B∗δλ‖2L2(0,T ;L2(Ωc))
. This follows by a classical estimate in optimal control, i.e., by testing in (4.5) the adjoint

equation with the state, the state equation with the adjoint, integrating by parts and subtracting, which yields

‖Cδx‖2L2(0,T ;L2(Ω)) + ‖B∗δλ‖2L2(0,T ;L2(Ωc))

≤ |〈l1, δx〉L2(0,T ;L2(Ω))|+ |〈l2, δλ〉L2(0,T ;L2(Ω))|+ |〈δx0, δλ(0)〉L2(Ω)|+ |〈δλT , δx(T )〉L2(Ω)|.

The bound Equation (4.10) then follows. To prove the bound in the scaled spaces we proceed analogously to the
proof of Theorem 3.1 and Theorem 5.2 of [26]. Hence we define M := L′′r (z0) and set Z := (Lp1(0, T ;Lp2(Ω)) ∩
W 1,2(0, T ;D(A), L2(Ω)))2 and E := (L2(0, T ;L2(Ω))×V )2. First, setting s(t) = 1

e−µt+e−µ(T−t)
a straightforward

computation shows that for ε ∈ E

Mδz = ε

(M − µP )(sδz) = sε

(I − µM−1P )(sδz) = M−1sε

where P :=

(
0 F
0 0
−F 0
0 0

)
and F := (e−µ(T−t)−e−µt)

(e−µt+e−µ(T−t))
< 1. Thus, choosing µ < 1

‖M−1‖L(E,Z)
and setting β =

µ‖M−1‖L(E,Z) < 1, a standard Neumann argument, cf. Theorem 2.14 in [31] yields,

‖sδz‖Z ≤
‖M−1‖L(E,Z)

1− β
‖sε‖E .

Thus, by definition of the scaled norms, the bound Equation (4.12) for s(t) = 1
e−µt+e−µ(T−t)

follows. Completely

analogously we conclude Equation (4.12) for s(t) = e−µt with the same argumentation and P :=

(
0 −I
0 0
I 0
0 0

)
.

We briefly comment on the estimates of Theorem 4.7 and Theorem 4.8.

Remark 4.9. In the case of n = 2, the restriction for p1, p2 includes all 2 ≤ p1, p2 ≤ ∞ except p1 = p2 =∞. If
n = 3, e.g., the choice 2 ≤ p1 = p2 < 6 is allowed. The pointwise in time estimates, i.e., choosing p1 =∞ and
thus requiring p2 <∞ for n = 2 and p2 < 6 for n = 3 are consistent with maximal parabolic regularity theory. In
that case, for initial values in H1

0 (Ω) and right-hand sides in L2(0, T ;L2(Ω)) the maximal parabolic regularity
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theory leads to solutions continuous in time with values in H1
0 (Ω), even for non-autonomous equations, cf.

[3]. By classical embedding theorems we get C(0, T ;H1
0 (Ω)) ↪→ C(0, T ;Lp(Ω)) with 1 ≤ p < ∞ for n = 2 and

1 ≤ p < 6 for n = 3 which coincides with the choice of p2 specified above.

Remark 4.10. In our setting, the differential operator A gives rise to an analytic semigroup on Ll(Ω) for
1 ≤ l < ∞. If one only has analyticity for 1 < l < ∞, Theorem 4.7 still holds under the additional restriction
that p2 <∞. This restriction stems from the fact that we can not choose test functions ψ that are subject to
an analytic semigroup on L1(Ω) which would be needed to obtain an L∞(Ω)-estimate.

5. Exponential turnpike and sensitivity results for semilinear
parabolic problems

We can now combine the results of Section 3.2 regarding superposition operators and the bound on the
solution operator to the linearized problem of Section 4 to apply the implicit function theorem (Theorem 3.1)
to semilinear parabolic problems. In that case, we will choose p1 = p2 as the image space of the superposition
operators is L2(0, T ;L2(Ω)), i.e., spatial and temporal integrability coincide. In that case, the assumptions
of Theorem 4.8 on p1 = p2 = p simplify to p < 2n

n−2 . This choice of p represents the highest exponent of all

Lp(Ω)-spaces in which H1(Ω) is embedded into.

Theorem 5.1. Let f(x) and Jx(x) induce twice continuously Fréchet differentiable superposition operators
from Lp(0, T ;Lp(Ω)) to L2(0;T ;L2(Ω)) with T -uniformly continuous derivatives. Suppose the assumptions of
Theorem 4.8 hold with p1 = p2 = p, i.e., 2 ≤ p < 2n

n−2 . Then G(z, ε) := L′r(z)− ε with L′r given in (2.3) satisfies
the assumptions of Theorem 3.1 uniformly in T for any µ > 0 satisfying (4.11) and setting either

i) z0 = (x̄, λ̄) solving the steady-state problem (2.7) and ε0 = (0, λ̄, 0, x̄ − x0) and the scaling s(t) =
1

e−µt+e−µ(T−t)
, or

ii) z0 = (x, λ) solving the dynamic problem (2.3) and ε0 = 0 and the scaling s(t) = e−µt

in the spaces Z=
(
Lp(0, T ;Lp(Ω)) ∩W 1,2(0, T,D(A), L2(Ω))

)2
and E = (L2(0, T ;L2(Ω))× V )

2
endowed with the

scaled norms‖·‖Zs=‖·‖(Lsp(0,T ;Lp(Ω))∩W 1,2
s (0,T,D(A),L2(Ω)))

2 and ‖·‖Es=‖·‖Ls2(0,T ;L2(Ω))×V s(T )×Ls2(0,T ;L2(Ω))×V s(0).

Proof. Assumption ii) and iii) of Theorem 3.1 follow by T -uniform continuity of the derivative of the superpo-
sition operator via Lemma 3.11. T -uniform continuous invertibility of L′′r (x̄, λ̄)−1 resp. L′′r (x̄, λ̄)−1 in scaled and
unscaled spaces follows from Theorem 4.8.

This result can now be used to deduce a local turnpike result, stating that solutions of the dynamic problem
Equation (2.2) are close to solutions of the static problem Equation (2.7) for the majority of the time under the
assumption that initial resp. terminal values are close enough at the turnpike.

Corollary 5.2. Let the assumptions of Theorem 5.1 hold with 2 ≤ p < 2n
n−2 . Consider (x, u, λ) solving the

nonlinear dynamic problem (2.1) and (x̄, ū, λ̄) solving the nonlinear static problem (2.5). Define (δx, δu, δλ) :=
(x − x̄, u − ū, λ − λ̄). Then there are rE > 0, µ > 0 (satisfying Equation (4.11)) and c ≥ 0 independent of T
such that if

‖x0 − x̄‖V + ‖λ̄‖V ≤ rE

it holds that∥∥∥∥ 1

e−µt + e−µ(T−t) δx(t)

∥∥∥∥
Lp(0,T ;Lp(Ω))∩W 1,2(0,T,D(A),L2(Ω))

+

∥∥∥∥ 1

e−µt + e−µ(T−t) δu(t)

∥∥∥∥
L∞(0,T ;L2(Ωc))

+

∥∥∥∥ 1

e−µt + e−µ(T−t) δλ(t)

∥∥∥∥
Lp(0,T ;Lp(Ω))∩W 1,2(0,T,D(A),L2(Ω))

≤ crE .
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Proof. The proof follows by Theorem 5.1 with the choice i) for the scaling function and applying Theorem 3.1.

Second, we can conclude a sensitivity result, which states that perturbations of the extremal equations’
dynamics that are small at an initial part lead to disturbances in the variables that are small at an initial
part. More specifically we obtain that solutions to the perturbed dynamic problem Equation (2.4) are close
to the solutions of the unperturbed dynamic problem Equation (2.2) on an initial part, even if the perturba-
tions increase exponentially. In that context, we have to assume that the perturbations in unscaled norms are
sufficiently small.

Corollary 5.3. Let the assumptions of Theorem 5.1 hold with 2 ≤ p < 2n
n−2 . Let (x, λ) solve the nonlinear

extremal equations (2.3) and (x̃, λ̃) the perturbed extremal equations (2.4). Define (δx, δλ) := (x̃− x, λ̃− λ) and
δu = Q−1B∗δλ. Then there are rE > 0, µ > 0 satisfying (4.11) and c ≥ 0 independent of T such that if

‖ε1‖Lp(0,T ;Lp(Ω)) + ‖εT ‖V + ‖ε2‖L2(0,T ;L2(Ω)) + ‖ε0‖V ≤ rE

and setting

ρ := ‖e−µtε1‖L2(0,T ;L2(Ω)) + ‖e−µT εT ‖V + ‖e−µtε2‖L2(0,T ;L2(Ω)) + ‖ε0‖V

it holds that ∥∥e−µtδx(t)
∥∥
Lp(0,T ;Lp(Ω))∩W 1,2(0,T,D(A),L2(Ω))

+
∥∥e−µtδu(t)

∥∥
L∞(0,T ;L2(Ωc))

+
∥∥e−µtδλ(t)

∥∥
Lp(0,T ;Lp(Ω))∩W 1,2(0,T,D(A),L2(Ω))

≤ cρ.

Proof. The proof follows by Theorem 5.1 with the choice ii) for the scaling function and applying Theorem 3.1.

Remark 5.4. We assumed in this part that the control operator is bounded as linear operator to L2(Ω), ruling
out the case of boundary control. The case of boundary control could be included if one can ensure that the
closed-loop semigroup is analytic and satisfies the stability estimate Proposition 4.6. Perturbations of analytic
semigroups can be analyzed with the notion of A-boundedness or A-compactness, cf. Chapter III in [12].

Example 5.5. We present an example with distributed control of a heat equation with Dirichlet boundary
conditions. To this end we set V = H1

0 , B̄ = χΩc , where Ωc ⊂ Ω non-empty, A = ∆ and a static reference

xd = x̄d ∈ L2(Ω). Let the cost functional be given by J(x, u) = 1
2

∫ T
0
‖x − xd‖2L2(Ω) + ‖u‖2L2(Ωc)

, d = 0 and

consider the nonlinearity f(x) = x3 − c0x for c0 ∈ R. If c0 is larger than the smallest eigenvalue of −∆ in
H1

0 (Ω), the uncontrolled PDE is unstable. Moreover, using maximal elliptic regularity, cf. [9] we get for the
solution of the static system

‖x̄‖L∞(Ω) + ‖λ̄‖L∞(Ω) ≤ c(Ω)‖xd‖L2(Ω),

i.e., (x̄, λ̄) satisfy Assumption 4.1. Thus, choosing xd sufficiently small such that ‖λ̄x̄‖L∞(0,T ;L∞(Ω)) =
‖λ̄x̄‖L∞(Ω) = m < 1, the operator

(Lr)xx(x̄, λ̄) = I − λ̄x̄.
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is nonnegative and satisfies the assumptions of Lemma 4.2. The square root C̄ of this operator in the sense of
(4.4) can thus be defined pointwise for v : Ω→ R and a.e. ω ∈ Ω by

(Cv)(ω) =
√

(1− λ̄(ω)x̄(ω))v(ω).

As the linearization point is the turnpike, i.e., a steady-state, C as defined in Equation (4.4) is time-independent
and we can set C̄ = C in Assumption 4.4. The remaining parts of Assumption 4.4 can be verified with the
generalized Poincaré inequality, cf. Lemma 2.5 in [52], analogously to Example 3.7 in [26]. Hence, Assumption 4.4
is satisfied and we can apply the turnpike result of Corollary 5.2.

In order to apply the sensitivity result of Corollary 5.3 we need to analyze

(Lr)xx(x, λ) = I − xλ

where (x, λ) solves (2.3). In [43], the authors deduce a T -dependent bound

‖x‖L∞(0,T ;L∞(Ω))+‖λ‖L∞(0,T ;L∞(Ω))

≤c(T )
(
‖xd‖L2+δ(0,T ;L2+δ(Ω)) + ‖ud‖L2+δ(0,T ;L2+δ(Ωc)) + ‖x0‖L∞(Ω)

)
.

for any δ > 0. If the nonlinear and linearized uncontrolled equation is stable, e.g., if c0 ≥ 0, it is possible to
show the above bound for the state independently of T , cf. Lemma 1.1 in [38] where such an estimate was
shown under the assumption that xd ∈ L∞(0, T ;L∞(Ω)). Having bounded the state the corresponding bound
on the adjoint can be obtained, cf. Lemma A.1 in [38] by parabolic regularity. Hence, choosing the data xd, ud
and x0 small enough, similar to the elliptic case, we have ‖λx‖L∞(0,T ;L∞(Ω)) = m < 1 and thus the operator
(Lr)xx(x, λ) satisfies the assumptions of Lemma 4.2 and and we can define the square root C via (4.4) with
‖C‖L(Lp(0,T ;Lq(Ω)) = ‖

√
(1− λx)‖L∞(0,T ;L∞(Ω)) for all 1 ≤ p, q ≤ ∞. Choosing C̄ = cI in Assumption 4.4, where

c ≤
√

1−m2 yields for v : (0, T )× Ω→ R and a.e. (t, ω) ∈ (0, T )× Ω the estimate

c2|v(t, ω)| ≤ |1−m||v(t, ω)| =
(
1− ‖λx‖L∞(0,T ;L∞(Ω))

)
|v(t, ω)| ≤ ‖1− λx‖L∞(0,T ;L∞(Ω))|v(t, ω)|.

Taking the square root yields ‖C̄v‖L2(0,T ;L2(Ω)) < ‖Cv‖L2(0,T ;L2(Ω)) for all v ∈ L2(Ω). Thus, Assumption 4.4 is
satisfied and we can apply the sensitivity result of Corollary 5.3.

We will briefly discuss the smallness assumptions made in Example 5.5 for the application of the turnpike
theorem Corollary 5.2. First, in order to obtain a square root of (Lr)xx(x̄, λ̄), we hinge on smallness of x̄ and
λ̄ in L∞(Ω). Second, for the application of Corollary 5.2, we have to assume smallness of ‖x0 − x̄‖V and ‖λ̄‖V
where V is not necessarily embedded in L∞(Ω). The combination of smallness in these norms allows to conclude
a turnpike result.

We briefly discuss the relation of the established turnpike result and Example 5.5 to the turnpike results of [41]
and [50]. Under smallness assumptions on ‖y0 − ȳ‖L∞(Ω) and ‖λ̄‖L∞(Ω), a turnpike result in C(0, T ;L∞(Ω)) for
semilinear heat equations was given in Theorem 1 of [41] for space dimension n ≤ 3. Further in Theorem 1 of [50],
for a Hilbert space V , C(0, T ;V )-estimates are concluded via smallness assumptions of the initial and terminal
distance to the turnpike in V . In this case, positive semi-definiteness of (Lr)xx is assumed in order to obtain
a square root. This was then verified a posteriori for an example by assuming smallness of the optimal steady
state, similar to our approach in Example 5.5. Here, we assume in Corollary 5.2 smallness in H1(Ω) (which does
not necessarily imply smallness in L∞(Ω) if n ≥ 2). However, as seen in the previous example, we additionally
need smallness in L∞(Ω) in order to obtain a square root of (Lr)xx. Under these assumptions, by invoking
Corollary 5.2 we obtain Lp(0, T ;Lp(Ω))-estimates for 2 ≤ p < 2n

n−2 which are weaker than the L∞(Ω) estimates

of [41]. However, we also obtain estimates in the Sobolev norm W 1,2(0, T ;D(A), L2(Ω)) which yields turnpike
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of time and space derivatives. This is a novelty in this work regarding turnpike properties. Compared to [50],
we obtain the same estimates, i.e., smallness in V implies turnpike in W 1,2(0, T ;D(A), L2(Ω)) ↪→ C(0, T ;V ).

Remark 5.6. We briefly discuss the case of nonlinearities that are sums of monotone polynomials, e.g.,
f(x) = x3 + x5. In standard applications of superposition operators where the estimates do not need to
be uniform in the size of the domain, only the behavior of the nonlinearity towards infinity is important.
Thus, in case of f(x) = x3 + x5 one would estimate the cubic term on the set where x > 1 by the higher
order term x5 and bound the remainder by the measure of the domain, as there x ≤ 1. This is not pos-
sible if one is particularly interested in estimates independent of the size of the domain, i.e., in our case,
independent of T , cf. also Example 3.10. As a remedy, one has to invoke Theorem 3.1 with the space

Z =
(
L10(0, T ;L10(Ω)) ∩ L6(0, T ;L6(Ω)) ∩W 1,2(0, T ;D(A), L2(Ω))

)2
, where the bound on the solution oper-

ator follows by Theorem 4.8 if n = 2. This means that the turnpike estimate in the Sobolev spaces remains
unchanged. However, one obtains additionally estimates in other Lp(0, T ;Lp(Ω))-spaces. Note that these esti-
mates are not equivalent independently of T , i.e., we can not conclude a turnpike in L6(0, T ;L6(Ω)) from a
turnpike in L10(0, T ;L10(Ω)) as the constant would depend on T .

6. Numerical examples

In this part, we will showcase the theoretical results from Section 4 by means of an example of a semilinear
heat equation. We further present numerical results for the boundary control of a quasilinear heat equation.
All numerical examples are performed with the C++-library for vector space algorithms Spacy1 using the finite
element library Kaskade7 [19].

We consider T = 10, Ω = [0, 3]× [0, 1], and the cost functional

J(x, u) :=
1

2
‖(x− xd)‖2L2(0,T ;L2(Ω)) +

α

2
‖u‖2L2(0,T ;L2(Ω)),

where xd is either of the following: To illustrate the turnpike property, we will use the static reference defined
by

xstat
d (ω) := g

(
10

3

∥∥∥∥ω − (1.5
0.5

)∥∥∥∥) , (6.1)

where g(s) :=

{
10e

1− 1
1−s2 s < 1

0 else.
(6.2)

We proved in Corollary 5.3 that perturbations that occur far in the future have a negligible effect on the initial
part of the optimal triple. Motivated by this, we will suggest two a priori discretization schemes tailored to an
MPC context. To evaluate the performance of these schemes, we will also consider non-autonomous problems.
To this end, we define, with g(s) as above,

xdyn
d (t, ω) := g

(
10

3

∥∥∥∥ω − (ω1,peak(t)
ω2,peak(t)

)∥∥∥∥) (6.3)

and

ω1,peak(t) := 1.5− cos

(
π

(
t

10

))
, w2,peak(t) :=

∣∣∣∣cos

(
π

(
t

10

))∣∣∣∣ ,
1https://spacy-dev.github.io/Spacy/

https://spacy-dev.github.io/Spacy/
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We will consider the MPC Algorithm 6.1 and evaluate the performance of different a priori time grids used
in every solution of the OCP.

Algorithm 6.1 (Standard MPC Algorithm).

1: Given: Prediction horizon 0 < T , implementation horizon 0 < τ ≤ T , initial state x0

2: k = 0
3: while controller active do
4: Solve OCP on [kτ, T + kτ ] with initial datum xk, save optimal control in u
5: Implement u∣∣[kτ,(k+1)τ ]

as feedback, measure/estimate resulting state and save in xk+1

6: k = k + 1
7: end while

We now present two specialized a priori discretization techniques motivated by the exponential decay of
perturbations deduced in Corollary 5.3. First, we will evaluate an exponential distribution of grid points. To
this end, we compute vertices ti, i ∈ {0, . . . , N − 1} such that

ti+1∫
ti

e−ct dt =
I

N − 1
∀i ∈ {0, . . . , N − 2}, (6.4)

where I :=
∫ T

0
e−ct dt = 1

c

(
1− e−cT

)
. For all computations considered in this work, we chose c = 1.

As a second specialized refinement procedure we propose to use the same number of grid points on [0, τ ] as
on [τ, T ]. If τ � T , this naturally leads to a finer mesh on the initial part. As a reference, we use a standard
uniform grid. All three gridding schemes are depicted in the following for eleven grid points.

i) Uniform:

ii) Exponential:

iii) Piecewise uniform:

6.1. Distributed control of a semilinear heat equation

We consider dynamics governed by the semilinear heat equation

x′ − 0.1∆x+ ex3 = u in Ω× (0, T ),

x = 0 in ∂Ω× (0, T ),

x(0) = 0 in Ω,

where e ≥ 0 is a nonlinearity parameter. We first illustrate the turnpike property and hence choose a static
reference trajectory, i.e., xstat

d . In Figure 1 the norm of the optimal state and control for different nonlinearity
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Figure 1. Spatial norm of open loop state and control over time with the static reference xstat
d

and α = 10−1 for different nonlinearity parameters.

parameters e are depicted. The turnpike property emerges in all four cases, even for very high choices of
the nonlinearity parameter. Additionally, we observe that the norm of the turnpike decreases for increasing
nonlinearity. This is due to the fact that the nonlinearity forces the solution of the state equation to zero, which
can be seen by testing the state equation with the state, integrating by parts in time and space and using the
Poincaré inequality which leads to

‖x(t)‖2 ≤ −c(Ω)

∫ t

0

‖x(s)‖2 + e‖x(s)‖4 ds+

∫ t

0

u(s)x(s) ds.

We note that the depicted plots only show the turnpike property for a space-time discretized problem. For
further numerical experiments that indicate that the turnpike also holds in function space, the interested reader
is referred to [20].

Second, we apply 4 steps of the MPC algorithm Algorithm 6.1 to the optimal control problem above. We set
the implementation horizon τ = 1 and choose the dynamic reference xdyn

d defined in (6.3). The simulation of
the closed-loop trajectory emerging from the MPC feedback is again computed on three uniform refinements of
the initial grid. Figure 2 shows the closed-loop cost for different a priori time discretization regimes. It can be
seen that the exponential and piecewise uniform time grids achieve lower closed-loop cost than a conventional
uniform grid. As all grids are constructed a priori, we note again that the numerical effort is the same for all
three techniques, as the grids are generated a priori.
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Figure 2. Comparison of MPC closed-loop cost for a different priori time discretization regimes

with dynamic reference xdyn
d and parameters e = 1 and α = 10−2.

Figure 3. Spatial norm of open loop state and control over time with the static reference xstat
d

for different nonlinearity parameters and α = 10−1.

6.2. Boundary control of a quasilinear equation

As a second numerical example, we consider a heat equation with heat conductivity depending on the
temperature. Again, we refer the reader to [20] for various numerical examples with space-time grid adaptivity
that would go beyond the scope of this work. To this end, we introduce the heat conduction tensor

κ(x)(t, ω) :=
(
c|x(t, ω)|2 + 0.1

)
,

where c ≥ 0 is a nonlinearity parameter and consider the quasilinear dynamics
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Figure 4. Comparison of MPC closed-loop cost for a different priori time discretization regimes

with dynamic reference xdyn
d for different priori time discretization regimes with parameters

c = 0.1 and α = 10−2.

x′ −∇ · (κ(x)∇x) = 0 in Ω× (0, T ),

κ(x)
∂x

∂ν
= u in ∂Ω× (0, T ),

x(0) = 0 in Ω.

Our theoretical results of Section 4 do not cover the case of a quasilinear equation. However, the turnpike
property can be observed in Figure 3 even for very large choices of the nonlinearity parameter c. Moreover, we
observe the same behavior of the norm of the turnpike as in the semilinear example: for increased nonlinearity,
the norm of the turnpike decreases. This again reflects the effect of the nonlinearity forcing the state to zero.
We depict the turnpike property in a norm that is motivated by the second derivative of the Lagrangian, i.e.,
a scaled H1(Ω)-norm ‖v‖αd,H1(Ω) := ‖v‖L2(Ω) +

√
dα‖∇v‖L2(Ω) with d = 0.1.

In Figure 4 we compare the closed-loop cost of different a priori time discretization regimes. Similar to the
semilinear example investigated before, we observe that exponential and piecewise uniform a priori time grids
outperform the conventional uniform grid.

7. Conclusion and outlook

We have proposed an abstract approach to analyze the sensitivity of necessary optimality conditions arising
in optimal control. To this end we presented an implicit function theorem that, under T -independent continuity
and invertibility assumptions on the linearization, allows to deduce estimates in scaled norms. We further applied
the abstract theory to the case of optimal control of a class of semilinear heat equations to derive a turnpike
property and a sensitivity result stating that perturbations of the dynamics decay exponentially in time. Finally
we presented numerical examples that illustrate these theoretical results. We conclude this paper by presenting
some possible directions of further research.

First, a nonlinear dependence on the control could be introduced. In our case, the quadratic dependence of
the cost functional on the control allowed for a direct elimination of the control. Additionally, we did not have
deal with superposition operators for the control, where improved regularity of the optimal control might be
needed. In particular cases this improved regularity can be established by classical bootstrapping. If the system
depends nonlinearly on the control, a standard assumption is the existence of α > 0 such that Juu(x, u)(δu, δu) ≥
α‖δu‖2L2(0,T ;U) for all δu ∈ L2(0, T ;U) in order to represent the optimal control by the adjoint state arising in the
first order necessary conditions. This property is sometimes referred to as the strengthened Legendre-Clebsch
condition, cf. Chapter 6 of [8].

Second, as discussed in Remark 5.4, another natural extension would be the case of boundary control.
Finally, the abstract approach of Section 3 could be used to derive turnpike or sensitivity estimates for

nonlinear hyperbolic or elliptic systems.
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[49] E. Trélat, C. Zhang and E. Zuazua, Optimal shape design for 2d heat equations in large time. J. Appl. Funct. Anal. 3 (2018)
255–269.
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