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CONVERGENCE OF QUASI-NEWTON METHODS FOR SOLVING
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and Gilson N. Silva4,**

Abstract. In this paper, we focus on quasi-Newton methods to solve constrained generalized equa-
tions. As is well-known, this problem was firstly studied by Robinson and Josephy in the 70’s. Since
then, it has been extensively studied by many other researchers, specially Dontchev and Rockafellar.
Here, we propose two Broyden-type quasi-Newton approaches to dealing with constrained generalized
equations, one that requires the exact resolution of the subproblems, and other that allows inexactness,
which is closer to numerical reality. In both cases, projections onto the feasible set are also inexact.
The local convergence of general quasi-Newton approaches is established under a bounded deteriora-
tion of the update matrix and Lipschitz continuity hypotheses. In particular, we prove that a general
scheme converges linearly to the solution under suitable assumptions. Furthermore, when a Broyden-
type update rule is used, the convergence is superlinearly. Some numerical examples illustrate the
applicability of the proposed methods.
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1. Introduction

All of our study and contributions are focused on the problem known as the Constrained Generalized Equation.
Basically, it consists of finding x ∈ X such that

x ∈ C, 0 ∈ f(x) + F (x), (1.1)

where f : Ω → Y is a continuously differentiable function, X and Y are Banach spaces, Ω ⊆ X is an open set,
C ⊂ Ω is a nonempty closed convex set, and F : Ω ⇒ Y is a multifunction with a closed nonempty graph.
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Generalized equations were first proposed by Robinson [36]. In that work, the author deals with the
unconstrained problem, which aims to find x ∈ X such that

0 ∈ f(x) + F (x), (1.2)

where f and F are basically the same as in problem (1.1). This problem differs from (1.1) by the absence
of the constraint x ∈ C. Josephy [30] shows that several problems can be rewritten as in (1.2), namely, the
general nonlinear optimization, the variational inequality and the equilibrium problems. In the last ten years,
many researchers have devoted their efforts to studying the application of Newton’s method and its variants
to solve (1.2), see for instance [6, 7, 10, 19, 23–27, 30, 35, 37, 38]. In particular, we highlight the important
contributions of Dontchev [6, 7, 24], Adly [2, 4], Bonnans [10], Ferreira [14, 25, 27] and their collaborators.

The problem addressed in this paper appeared in a recent work by Oliveira et al. [14], where Newton’s
method for solving (1.1) was considered. The presence of the constrained set C allows us to write, in addition to
the problems already mentioned previously, others in the form (1.1). For instance, the Constrained Variational
Inequality Problem (CVIP)

find x ∈ U ∩ V such that 〈f(x), y − x〉 ≥ 0 for all y ∈ U, (1.3)

U, V ⊂ X closed convex sets, can be stated as

find x ∈ U ∩ V such that 0 ∈ f(x) +NU (x),

where NU is the normal cone associated to U . Problem (1.3) has been extensively studied over the past ten
years, see for instance [11, 29]. Another important equivalence to constrained generalized equations is the Split
Variational Inequality Problem (SVIP), stated as follows: let U, V ⊂ Y be nonempty, closed convex sets, and
A : X→ Y be a linear operator. Let f : X→ X and g : Y→ Y be functions. Then SVIP consists of

find x∗ ∈ U such that 〈f(x∗), x− x∗〉 ≥ 0, for all x ∈ U,

and such that y∗ = Ax∗ ∈ V satisfies

〈g(y∗), y − y∗〉 ≥ 0 for all y ∈ V.

Taking D := U × V and V := {w = (x, y) ∈ X× Y | Ax = y}, SVIP is equivalent to the following CVIP ([11],
Lem. 5.1):

find w∗ ∈ D ∩ V such that 〈h(w∗), w − w∗〉 ≥ 0 for all w ∈ D,

where w = (x, y) and h(x, y) := (f(x), g(y)). In turn, this CVIP is equivalent to the following constrained
generalized equation:

find w∗ ∈ D ∩ V such that 0 ∈ h(w∗) +ND(w∗).

It is known that SVIP includes several optimization problems, for instance, Split Minimization Problem and
Common Solutions to Variational Inequalities Problem. For more details about these problems, see [1, 11, 12,
29, 34].

Artacho et al. [6] studied a quasi-Newton method for the unconstrained problem (1.2). The authors considered
the following iterative scheme:

f(xk) +Bk(xk+1 − xk) + F (xk+1) 3 0, k = 0, 1, . . . , (1.4)
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where {Bk} is a sequence of bounded linear mappings between Banach spaces X and Y satisfying the classical
Broyden update rule. They proved that if the multifunction f + F is metrically regular at x∗ for 0 and the
derivative mapping f ′ is Lipschitz continuous, then the sequence {xk} generated by (1.4) is linearly convergent
to x∗, see Theorem 4.3 of [6]. More generally, Adly and Huynh [3] introduced quasi-Newton schemes like (1.4)
for solving (1.2), allowing f possibly not differentiable. In this case, the authors assume the regularity metric
condition with respect to a kind of semismooth regularization of f + F . They proved that if Bk satisfies a
suitable modified Broyden update, the sequence {xk} generated by (1.4) is linearly convergent to a solution x∗
of (1.2) ([3], Thm. 4.3). Similar approach was employed in [8, 33].

In this paper, we propose two quasi-Newton schemes to solve the constrained generalized equation (1.1). The
first one is based on the following idea: given x0 ∈ C and the initial B0, near to f ′(x∗), we compute, in each
iteration, an intermediate point yk such that

f(xk) +Bk(yk − xk) + F (yk) 3 0, k = 0, 1, . . . . (1.5)

Since yk can be infeasible, that is, yk 6∈ C, we project it onto C by an inexact projection procedure, obtaining
a new iterate xk+1 almost feasible. Thus we prove that under suitable assumptions the main sequence {xk}
converges linearly to a solution of (1.1). The second method follows an analogous idea. The difference is that (1.5)
is allowed to be solved inexactly. Specifically, yk only must be in an open ball centred at xk that intersects the
set {y | f(xk) + Bk(y − xk) + F (yk)}. This strategy is more suitable to be implemented, since solving (1.5)
exactly can be practically impossible even in simple problems. Naturally, allowing inexact solutions leads to a
more complicated convergence theory, which is addressed in Section 4.

This paper is divided into two parts. In the first one, we use the quasi-Newton approach (1.5) to find a solution
of problem (1.1) with Bk satisfying the classical Broyden update rule. By assuming the regularity metric of the
multifunction f + F at x∗ to 0, we show that the sequence {xk} generated by (1.5) is linearly convergent to x∗.
Firstly, we suppose that Bk satisfies a bounded deterioration condition to obtain a general convergence result. As
a particular case, we show that the Broyden update satisfies this bounded deterioration. It is worth mentioning
that the used bounded deterioration condition on Bk was previously considered in [3, 6]. Furthermore, we use
the fact that Lipschitz properties of the multifunction F−1 are inherited by the multifunction (f + F )−1, as
demonstrated by Dontchev and Hager in [21]. In the second part, we address the problem (1.1) using an inexact
approach and similar ideas proposed by Dontchev and Rockafellar in [24]. The proposed inexact quasi-Newton
method is described by

(f(xk) +Bk(yk − xk) + F (yk)) ∩Rk(xk, yk) 6= ∅, k = 0, 1, . . . , (1.6)

where Rk : X ⇒ Y is a sequence of multifunctions with closed graphs representing the inexactness. It is not
difficult to see that if F ≡ {0} and Rk(xk, yk) = Bηk‖f(x)‖(0), ηk > 0, (Bηk‖f(x)‖(0) is the open ball centered at
0 and radius ηk‖f(x)‖), then the iterative scheme (1.6) reduces to

‖f(xk) +Bk(yk − xk)‖ ≤ ηk‖f(xk)‖, k = 0, 1, . . . ,

which can be seen as an inexact quasi-Newton method for solving f(x) = 0, x ∈ C. Then, assuming the mul-
tifunction f + F metrically regular at x∗ for 0, Rk partially Aubin continuous, and d(0, Rk(u, x∗)) fulfilling a
suitable boundedness property, we show that the sequence {xk} generated by (1.6) is linearly convergent to x∗,
with Bk satisfying the Broyden update. It should be mentioned that inexact quasi-Newton methods for solving
the unconstrained problem (1.2) are considered in [13].

This work is organized as follows. In Section 2, we present the notations and basic necessary concepts. In
Section 3, we present the first quasi-Newton algorithm, where subproblems are solved exactly, and its local con-
vergence analysis. Section 4 is devoted to the inexact quasi-Newton algorithm and its convergence. In Section 5,
we discuss the important particular case of Broyden-type methods. Numerical experiments are presented in
Section 7, illustrating the theory. Finally, Section 8 brings our conclusions.
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2. Preliminaries

In this section, we briefly present the basic concepts that we will use throughout the work. A detailed
presentation can be found in [23].

Firstly we establish some notations. Unless otherwise stated, X and Y are Banach spaces. A generic norm
will be denoted by ‖.‖. The sets

Bδ(x) := {y ∈ X | ‖x− y‖ < δ}, Bδ[x] := {y ∈ X | ‖x− y‖ ≤ δ}

will denote the open and closed balls of radius δ > 0, centered at x, respectively. The set R+ is the set of all
non-negative real numbers. The vector space of all continuous linear mappings A : X → Y will be denoted by
L(X,Y), and the norm of A ∈ L(X,Y) is defined by ‖A‖ := sup {‖Ax‖ | ‖x‖ ≤ 1}. Let Ω ⊆ X be an open set and
f : Ω→ Y be Fréchet differentiable at all x ∈ Ω (the Fréchet derivative of f at x is the continuous linear mapping
f ′(x) : X → Y). Given a multifunction F : X ⇒ Y, its graph is the set gphF := {(x, u) ∈ X× Y | u ∈ F (x)}.
The multifunction F−1 : Y ⇒ X defined by F−1(u) := {x ∈ Y | u ∈ F (x)} denotes the inverse of F . Given
C,D ⊂ X,

d(x,D) := inf
y∈D
‖x− y‖, e(C,D) := sup

x∈C
d(x,D) (2.1)

are the distance from x to D and the excess of C beyond D, respectively. The outer distance from a point
x ∈ X to a subset C ⊂ X, denoted by d+(x,C), is defined as d+(x,C) := sup{‖x− y‖ | y ∈ C}. The following
conventions are adopted: d(x,∅) = +∞, e(∅, D) = 0 when D 6= ∅, and e(∅,∅) = +∞.

In the context of generalized equations, it is common to consider some regularity condition over F . Here, we
will use the following notions:

Definition 2.1. Let Ω ⊆ X be an open and nonempty set. We say that the multifunction G : Ω ⇒ Y is

� metrically regular at x̄ ∈ Ω for ū ∈ Y with modulus λ > 0 when ū ∈ G(x̄), and there exist a > 0 and b > 0
such that Ba[x̄] ⊂ Ω and

d(x,G−1(u)) ≤ λd(u,G(x)) for all x ∈ Ba[x̄], u ∈ Bb[ū]; (2.2)

� strongly metrically subregular at x̄ ∈ Ω for ū ∈ Y with modulus λ > 0 when ū ∈ G(x̄), and there exists
a > 0 such that

‖x− x̄‖ ≤ λd(ū, G(x)) for all x ∈ Ba[x̄].

It is easy to see that strong metric subregularity of G at x̄ for ū implies that x̄ is an isolated point in
G(ū). Another intermediate concept is the metric subregularity, which consists in relaxing metric regularity by
requiring (2.2) with u = ū fixed.

Remark 2.2. It is known that a multifunction Γ : X ⇒ Y is metrically regular at x̄ ∈ X for ȳ ∈ Y with modulus
λ > 0 if and only if Γ−1 : Y ⇒ X has the Aubin property at ȳ for x̄ with the same constant λ, i.e.,

e(Γ−1(y) ∩ X ,Γ−1(y′)) ≤ λ‖y − y′‖ for all y, y′ ∈ Y,

where X and Y are neighborhoods of x̄ and ȳ, respectively. See Theorem 5A.3, p. 255 of [23].

The next result establishes a connection between the metric regularity of f + F and the Aubin property of
an associated map, which proof is analogous to that presented in [24].
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Proposition 2.3. Let ζ > 0 and assume that the multifunction f + F is metrically regular at x̄ for 0 with
modulus λ > 0, where λζ < 1. Let u ∈ X, Bu some approximation to f ′(u) and consider the multifunction

Gu(x) = f(u) +Bu(x− u) + F (x), (2.3)

where the operator Bu is such that ‖Bu − f ′(x̄)‖ ≤ ζ. Then, for every κ > λ/(1 − λζ), there exist positive
numbers a and b such that

e
(
G−1
u (y) ∩ Ba[x̄], G−1

u (y′)
)
≤ κ‖y − y′‖ for all u ∈ Ba[x̄], y, y′ ∈ Bb[0]. (2.4)

Another important result is a generalization of the contraction mapping principle for set-valued mappings,
stated below. It will be useful to prove the convergence of the quasi-Newton method in the next section. Its
proof can be found in Theorem 5E.2, p. 313 of [23].

Theorem 2.4. Let Φ : X ⇒ X be a multifunction and x̄ ∈ X. Suppose that there exist scalars ρ > 0 and µ ∈ (0, 1)
such that the following conditions hold:

(i) the set gph Φ ∩ (Bρ[x̄]× Bρ[x̄]) is closed;
(ii) d(x̄,Φ(x̄)) ≤ ρ(1− µ);

(iii) e (Φ(p) ∩ Bρ[x̄],Φ(q)) ≤ µ‖p− q‖ for all p, q ∈ Bρ[x̄].

Then, there exists y ∈ Bρ[x̄] such that y ∈ Φ(y).

In the sequel, we present the feasible inexact projection used in our proposed algorithms, as well as some of
their properties of interest. This type of projection was used in [14] within a Newton method for constrained
generalized equations over Euclidean spaces. See also [28].

Definition 2.5. Let θ ≥ 0, C ⊂ X be a closed convex set and x ∈ C. The feasible inexact projection mapping
relative to x with error tolerance θ, denoted by PC(·, x, θ) : X ⇒ C, is the multifunction

PC(y, x, θ) :=
{
z ∈ C | 〈y − z, u− z〉 ≤ θ‖y − x‖2, ∀ u ∈ C

}
. (2.5)

We say that w ∈ PC(y, x, θ) is a feasible inexact projection of y onto C with respect to x and with error tolerance
θ.

Remark 2.6. It follows from Proposition 2.1.3, p. 201 of [9] that, for each y ∈ X, the exact projection PC(y)
is a vector in PC(y, x, θ). Hence, PC(y, x, θ) is nonempty for all y ∈ X and x ∈ C.

Remark 2.7. PC(y, x, 0) := {PC(y)} for all y ∈ X and x ∈ C. From now on, we write PC(y, x, 0) = PC(y).

Remark 2.8. ([14], Lem. 1) If y, ȳ ∈ X, x, x̄ ∈ C, and θ ≥ 0, then we have

‖w − PC(ȳ, x̄, 0)‖ ≤ ‖y − ȳ‖+
√

2θ‖y − x‖

for any w ∈ PC(y, x, θ).

Finally, we enunciate an useful version of the Aubin property suitable for multifunctions with two blocks of
variables. We say that a multifunction T : V ×W ⇒ S is partially Aubin continuous at (v̄, w̄) ∈ V ×W with
respect to w uniformly in v for s̄ ∈ S with modulus λ > 0 [23] (or simply, partially Aubin continuous at (v̄, w̄)
w.r.t. w for s̄ with modulus λ > 0) if s̄ ∈ T (v̄, w̄) and there are neighborhoods V of v̄, W of w̄ and S of s̄ such
that

e(T (v, w) ∩ S, T (v, w′)) ≤ λ‖w − w′‖ for all v ∈ V, w, w′ ∈ W.
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3. The quasi-Newton method and its local convergence analysis

In this section, we propose the first quasi-Newton method for solving (1.1). Here, it is required that the
auxiliary iterate yk be an exact solution of the correspondent unconstrained subproblem 0 ∈ f(xk) + Bk(y −
xk) + F (y). As we already mentioned, yk may be infeasible. So, an inexact projection onto C is employed to
achieve feasibility at the limit, in the spirit of Definition 2.5. Algorithm 1 below formalizes this idea.

Algorithm 1: Quasi-Newton with Inexact Projections (QN-InexP)

Step 0. Let x0 ∈ C, B0 and {θk} ⊂ [0,+∞). Set k ← 0.

Step 1. If 0 ∈ f(xk) + F (xk) then stop returning xk as solution. Otherwise, compute yk ∈ X such that

0 ∈ f(xk) +Bk(yk − xk) + F (yk).

Step 2. If yk ∈ C, set xk+1 = yk. Otherwise, take any xk+1 ∈ C satisfying

xk+1 ∈ PC(yk, xk, θk).

Step 3. Compute Bk+1, set k ← k + 1 and go to Step 1.

Remark 3.1. The projection in Step 3 can be computed as an approximate feasible solution of the problem
minz∈C{‖z − yk‖2/2} satisfying 〈yk − xk+1, z − xk+1〉 ≤ θk‖yk − xk‖2 for all z ∈ C. In [5], a Frank-Wolfe
algorithm is design to compute such a projection. The choice of θk will be detailed in Section 7.

Next, we state the local convergence of the QN-InexP method. This is the main result of this section. The
point x∗ will always refer to a solution of (1.1).

Theorem 3.2. As in (1.1), let Ω ⊂ X be an open set, f : Ω→ Y be a Fréchet differentiable function, F : Ω ⇒ Y
be a multifunction with closed graph and C ⊂ Ω be a nonempty closed convex set. Furthermore, let x∗ such that
0 ∈ f(x∗) + F (x∗), x∗ ∈ C. Suppose the following conditions hold:

(i) f + F is metrically regular at x∗ for 0 with modulus λ > 0;
(ii) there exist ε > 0 and a neighborhood X of x∗ such that

‖f(u)− f(v)− f ′(x∗)(u− v)‖ ≤ ε‖u− v‖ for all u, v ∈ X ; (3.1)

(iii) B0 is chosen so that

‖B0 − f ′(x∗)‖ <
1

2λ
; (3.2)

(iv) θk ≥ 0 for all k ≥ 0 and θ̂ := sup θk <
1
2 ;

(v) there exists a constant c > 0 such that, for each k ≥ 0, Bk+1 satisfies the bounded deterioration condition

‖Bk+1 − f ′(x∗)‖ ≤ ‖Bk − f ′(x∗)‖+ c(‖xk − x∗‖+ ‖yk − x∗‖). (3.3)

Then there exists a neighborhood U of x∗ such that, starting from any x0 ∈ C ∩ U\{x∗}, there is a sequence
{xk} ⊂ C ∩ U generated by the QN-InexP method that converges linearly to x∗.
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Proof. Let us consider the radii a > 0 and b > 0 associated with the metric regularity of f + F (see Def. 2.1).
Taking λ′ > λ, we can assume without loss of generality that a is small enough to Ba(x∗) ⊂ X ,

λ

(
δ +

2ca

1− γ̄

)
< 1 and

λ′
(
ε+ δ + 2ca

1−γ̄

)
1− λ

(
δ + 2ca

1−γ̄

) <
1−

√
2θ̂

1 +
√

2θ̂
, (3.4)

where δ := ‖B0 − f ′(x∗)‖ < 1/(2λ) and

γ̄ =

[
(1 +

√
2θ0)

λ′ (ε+ δ)

1− λδ
+
√

2θ0

]
.

We define the constant

γ := max

γ̄, (1 +
√

2θ̂)
λ′
(
ε+ δ + 2ca

1−γ̄

)
1− λ

(
δ + 2ca

1−γ̄

) +
√

2θ̂

 . (3.5)

It is immediate from (3.4) that 0 < γ < 1. In the sequel, we use induction to prove that, starting from any x0

close enough to x∗, is possible to generate a sequence {xk} linearly convergent to x∗.
Take x0 ∈ C ∩ Br∗(x∗)\{x∗}, where

r∗ := min

{
a ,

b

ε+ 2δ
,

b(1− γ̄)

2[(1− γ̄)(ε+ δ) + 2ca]

}
.

To construct the next iterate x1, let us verify the conditions in Theorem 2.4. Defining the auxiliary multifunction

Φx0
(z) := G−1

x∗
(f(x∗)− f(x0)−B0(z − x0) + f ′(x∗)(z − x∗)) ,

it follows that

d(x∗,Φx0(x∗)) = d
(
x∗, G

−1
x∗

(f(x∗)− f(x0)−B0(x∗ − x0))
)
.

By using (3.1) and the definition of r∗, we get that

‖f(x∗)− f(x0)−B0(x∗ − x0)‖
≤ ‖f(x∗)− f(x0)− f ′(x∗)(x∗ − x0)‖+ ‖(f ′(x∗)−B0)(x∗ − x0)‖
≤ (ε+ δ)‖x∗ − x0‖ ≤ b. (3.6)

Then, since 0 ∈ Gx∗(x∗) (see (2.3)), we obtain from (3.6) and Definition 2.1

d(x∗,Φx0
(x∗)) ≤ λ′d(f(x∗)− f(x0)−B0(x∗ − x0), Gx∗(x∗))

≤ λ′‖f(x∗)− f(x0)−B0(x∗ − x0)‖ ≤ λ′(ε+ δ)‖x∗ − x0‖.

Thus, we have d(x∗,Φx0
(x∗)) ≤ ρ(1− λδ) for

ρ :=
λ′(ε+ δ)‖x∗ − x0‖

1− λδ
.
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Now, let p, q ∈ Bρ[x∗]. Taking into account (3.4) and x0 ∈ Br∗(x∗)\{x∗}, we can verify that ρ < r∗. Therefore,
for s = p or s = q we obtain that

‖f(x∗)− f(x0)−B0(s− x0) + f ′(x∗)(s− x∗)‖
≤ ‖f(x∗)− f(x0)− f ′(x∗)(x∗ − x0)‖+ ‖f ′(x∗)(x∗ − x0)− f ′(x∗)(x∗ − s)−B0(s− x0)‖
≤ (ε+ 2δ)‖x∗ − x0‖ ≤ b,

where the second inequality holds since p, q ∈ Bρ[x∗] and, by (3.4), ρ < ‖x0 − x∗‖. As e(∅,Φx0(q)) = 0, we can
assume that Φx0

(p) ∩ Ba[x∗] 6= ∅ for all p ∈ Bρ[x∗]. Let z ∈ Φx0
(p) ∩ Ba[x∗]. From Definition 2.1 with x̄ = x∗,

ū = 0, x = z, u = f(x∗)− f(x0)−B0(q − x0) + f ′(x∗)(q − x∗) and G = Φx0
(q), we have

d(z,Φx0
(q)) ≤ λd (f(x∗)− f(x0)−B0(q − x0) + f ′(x∗)(q − x∗), Gx∗(z)) .

Since z ∈ Φx0
(p) implies f(x∗)− f(x0)−B0(p−x0) + f ′(x∗)(p−x∗) ∈ Gx∗(z), the definition of distance in (2.1)

ensures that

d(f(x∗)− f(x0)−B0(q − x0) + f ′(x∗)(q − x∗), Gx∗(z)) ≤ ‖B0 − f ′(x∗)‖‖p− q‖.

So, d(z,Φx0(q)) ≤ λ‖B0 − f ′(x∗)‖‖p − q‖, which implies e (Φx0(p) ∩ Ba[x∗],Φx0(q)) ≤ λ‖B0 − f ′(x∗)‖‖p −
q‖. Futhermore, since ρ < r∗ ≤ a, we have e(Φx0

(p) ∩ Bρ[x∗],Φx0
(q)) ≤ e(Φx0

(p) ∩ Ba[x∗],Φx0
(q)). Hence,

using (3.2), we obtain

e (Φx0
(p) ∩ Bρ[x∗],Φx0

(q)) ≤ λ ‖B0 − f ′(x∗)‖ ‖p− q‖ ≤ λδ‖p− q‖.

As λδ < 1 (see (3.2)), we can apply Theorem 2.4 with Φ = Φx0
, x̄ = x∗ and µ = λδ to conclude that there exists

y0 ∈ Φx0(y0) such that

‖y0 − x∗‖ ≤
λ′(ε+ δ)

1− λδ
‖x0 − x∗‖.

At this point, we have constructed y0. The next iterate x1 is obtained according to Step 2, that is, x1 :=
y0 ∈ C ∩ Br∗ [x∗] if y0 ∈ C and x1 ∈ PC(y0, x0, θ0) otherwise. Also, it follows from Remark 2.8 with w = x1,
y = y0, x = x0, ȳ = x∗, x̄ = x∗ and θ = θ0 that

‖x1−PC(x∗, x∗, 0)‖ ≤ (1 +
√

2θ0)‖x∗ − y0‖+
√

2θ0‖x∗ − x0‖

≤
[
(1 +

√
2θ0)

λ′(ε+ δ)

1− λδ
+
√

2θ0

]
‖x∗ − x0‖ < γ̄‖x0 − x∗‖.

Hence, remembering that PC(x∗, x∗, 0) = x∗ we conclude that ‖x1 − x∗‖ ≤ γ̄‖x0 − x∗‖. Since γ̄ < 1, this yields
x1 ∈ C ∩ Br∗ [x∗].

Now, suppose that for k > 0 there are y0, . . . , yk−1, x1, · · · , xk such that yj ∈ Br∗ [x∗] for all 0 ≤ j ≤ k − 1,
xj ∈ C ∩ Br∗ [x∗] for all 1 ≤ j ≤ k,

‖yj−1 − x∗‖ ≤ γ̄‖xj−1 − x∗‖ and ‖xj − x∗‖ ≤ γ̄‖xj−1 − x∗‖, for j = 1, · · · , k. (3.7)

To complete the induction process we proceed analogously to the first step. As in (3.6), we need to show that
‖f(x∗)− f(xk)−Bk(x∗ − xk)‖ ≤ b. Indeed, since xk ∈ C ∩ Br∗ [x∗] we have

‖f(x∗)− f(xk)−Bk(x∗ − xk)‖ ≤ ‖f(x∗)− f(xk)− f ′(x∗)(x∗ − xk)‖
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+ ‖(f ′(x∗)−Bk)(x∗ − xk)‖ ≤ (ε+ ‖f ′(x∗)−Bk‖) ‖x∗ − xk‖. (3.8)

On the other hand, from (3.3) we obtain that

‖f ′(x∗)−Bk‖ ≤ ‖f ′(x∗)−Bk−1‖+ c(‖xk−1 − x∗‖+ ‖yk−1 − x∗‖)
≤ ‖f ′(x∗)−Bk−2‖+ c(‖xk−2 − x∗‖+ ‖yk−2 − x∗‖) + c(‖xk−1 − x∗‖+ ‖yk−1 − x∗‖)

≤ · · · ≤ ‖f ′(x∗)−B0‖+ c

k−1∑
j=0

‖xj − x∗‖+

k∑
j=1

‖yj−1 − x∗‖

 .

By (3.7), the last inequality becomes

‖f ′(x∗)−Bk‖ ≤ ‖f ′(x∗)−B0‖+ c

‖x0 − x∗‖+

k−1∑
j=1

‖xj − x∗‖+

k∑
j=1

‖yj−1 − x∗‖


≤ δ + c‖x0 − x∗‖+ 2c

k∑
j=1

γ̄j‖x0 − x∗‖

≤ δ + 2c

k∑
j=0

γ̄j‖x0 − x∗‖ ≤ δ +
2ca

1− γ̄
. (3.9)

Hence, from (3.8), (3.9) and the condition on r∗, we have

‖f(x∗)− f(xk)−Bk(x∗ − xk)‖ ≤
(
ε+ δ +

2ca

1− γ̄

)
r∗ ≤ b.

By Definition 2.1 and taking into account that 0 ∈ Gx∗(x∗), we obtain

d(x∗,Φxk
(x∗)) ≤ λ′‖f(x∗)− f(xk)− f ′(x∗)(x∗ − xk)‖+ λ′‖f ′(x∗)−Bk‖‖x∗ − xk‖

≤ λ′
(
ε+ δ +

2ca

1− γ̄

)
‖x∗ − xk‖ = ρ̄

[
1− λ

(
δ +

2ca

1− γ̄

)]
,

where

ρ̄ =
λ′
(
ε+ δ + 2ca

1−γ̄

)
1− λ

(
δ + 2ca

1−γ̄

) ‖x∗ − xk‖.
Now, let p, q ∈ Bρ̄[x∗]. From (3.5) we have ρ̄ < r∗. Thus, it is not difficult to see that ‖f(x∗)− f(xk)−Bk(v −
xk) + f ′(x∗)(v − x∗)‖ < b for v = p or v = q. Let y ∈ Φxk

(p) ∩ Ba[x∗]. From Definition 2.1 with x̄ = x∗, ū = 0,
xk = y, u = f(x∗)− f(xk)−Bk(q − xk) + f ′(x∗)(q − x∗) and G = Φxk

(q), we obtain

d(y,Φxk
(q)) ≤ λd (f(x∗)− f(xk)−Bk(q − xk) + f ′(x∗)(q − x∗), Gx∗(y)) .

Since y ∈ Φxk
(p) implies f(x∗)−f(xk)−Bk(p−xk) +f ′(x∗)(p−x∗) ∈ Gx∗(y), the definition of distance in (2.1)

gives

d(f(x∗)− f(xk)−Bk(q − xn) + f ′(x∗)(q − x∗), Gx∗(y)) ≤ ‖Bk − f ′(x∗)‖‖p− q‖.
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Combining the two last inequalities we conclude that

d(y,Φxk
(q)) ≤ λ‖Bk − f ′(x∗)‖‖p− q‖.

Taking the supremum with respect to z ∈ Φxk
(p) ∩ Ba[x∗] in the last inequality and using the definition of

excess given in (2.1), we have

e (Φxk
(p) ∩ Ba[x∗],Φxk

(q)) ≤ λ‖Bk − f ′(x∗)‖‖p− q‖.

As ρ̄ < r∗ ≤ a, we have e(Φxk
(p)∩Bρ̄[x∗],Φxk

(q)) ≤ e(Φxk
(p)∩Ba[x∗],Φxk

(q)). Hence, from the last inequality
and the properties of the norm, we obtain

e (Φxk
(p) ∩ Bρ[x∗],Φxk

(q)) ≤ λ ‖Bk − f ′(x∗)‖ ‖p− q‖ ≤ λ
(
δ +

2ca

1− γ̄

)
‖p− q‖.

By (3.4) we have λ
(
δ + 2ca

1−γ̄

)
< 1, so we can apply Theorem 2.4 with Φ = Φxk

, x̄ = x∗ and µ = λ′
(
δ + 2ca

1−γ̄

)
to conclude that there exists yk ∈ Φxk

(yk) such that

‖yk − x∗‖ ≤
λ′
(
ε+ δ + 2ca

1−γ̄

)
1− λ

(
δ + 2ca

1−γ̄

) ‖x∗ − xk‖.
As before, we take xk+1 := yk ∈ C ∩ Br∗ [x∗] if yk ∈ C, and xk+1 ∈ PC(yk, xk, θk) otherwise. From Remarks 2.7
and 2.8 with w = xk+1, y = yk, x = xk, ȳ = x∗, x̄ = x∗, θ = θk, we get

‖x∗ − xk+1‖ ≤

(1 +
√

2θ̂)
λ′
(
ε+ δ + 2cra

1−γ̄

)
1− λ

(
δ + 2ca

1−γ̄

) +
√

2θ̂

 ‖x∗ − xk‖ < γ‖x∗ − xk‖.

Therefore, we conclude the induction process.

Remark 3.3. In [3], Adly and Van Ngai considered a quasi-Newton method similar to (1.5). The main difference
between their method and (1.5) is that Bk is a multifunction from X to Y. Also, in [3], the authors introduced a
generalization of the semismooth to functions, see Definition 2.3 of [3]. Another difference between these results
consist in the assumption of regularity. But, applying Proposition 2.3 combined with Theorem 3E.7 of [23] and
Remark 3.3 of [3], we conclude that these assumptions are equivalent. Hence, after some adjustments, assuming
that f is Fréchet differentiable and C ⊂ X, we have that Theorem 3.2 extends ([3], Thm. 3.2). Evidently, the
power of our work relies on the case C 6= X. Nevertheless, Theorem 3.2 encompasses ([6], Thm. 3.1) in the
unconstrained case C = X.

Remark 3.4. Although we do not known the solution x∗ a priori, the bounded deterioration condition (3.3)
involving the derivative at x∗ acts as a theoretical expectation for the convergence. In the same way is the
requirement (3.2) on the initial B0. Specifically, the bounded deterioration as we stated is used in other related
works, e.g., Theorem 3.1 of [6]. It is worth mentioning that here we deal with general quasi-Newton schemes,
in which case (3.3) plays an important role even for quasi-Newton methods for standard nonlinear program-
ming [17]. On the other hand, the particular Broyden update rule considered in Section 5 satisfies the bounded
deterioration (see Prop. 5.1), in accordance with standard nonlinear programming.
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4. The inexact quasi-Newton approach

In this section, we propose a version of QN-InexP where subproblems need not to be solved exactly.
Specifically, they become

(f(xk) +Bk(yk − xk) + F (yk)) ∩Rk(xk, yk) 6= ∅, k = 0, 1, . . . , (4.1)

where {Bk} is a sequence of matrices and Rk : X ⇒ Y is a sequence of multifunctions with closed graphs
representing the inexactness. To illustrate the flexibility of condition (4.1), we observe that when F ≡ {0}
and Rk(xk, xk+1) := Bηk‖f(xk)‖(0), ηk > 0, then we recover the inexact quasi-Newton method developed in [15]
for nonlinear systems of equations. Also, if Rk(xk, xk+1) = {−rk(xk)} where {rk} is a sequence of functions
representing the inexactness, our method reduces to an instance of the inexact quasi-Newton method considered
in [13]. Similarly to the previous section, we formally state our inexact quasi-Newton scheme with inexact
projections in Algorithm 2.

Algorithm 2: Inexact Quasi-Newton with Inexact Projections (IQN-InexP)

Step 0. Let x0 ∈ C, B0 and {θk} ⊂ [0,+∞). Set k ← 0.

Step 1. If 0 ∈ f(xk) + F (xk) then stop returning xk as solution. Otherwise, compute yk ∈ X such that

(f(xk) +Bk(yk − xk) + F (yk)) ∩Rk(xk, yk) 6= ∅.

Step 2. If yk ∈ C, set xk+1 = yk. Otherwise, take any xk+1 ∈ C satisfying

xk+1 ∈ PC (yk, xk, θk) .

Step 3. Compute Bk+1, set k ← k + 1 and go to Step 1.

As we made for QN-InexP, we will establish the local convergence of IQN-InexP. One may think this can
be done simply by adapting the proof of Theorem 3.2 by introducing inexactness, but this is not totally true.
Here, differently from the previous theorem that uses the principle of contractions, the Coincidence Theorem
will serve as support ([24], Thm. 1).

Theorem 4.1 (Coincidence Theorem). Let X and Y be two metric spaces, ρ : X ×X → R+ be a metric in
X and consider the multifunctions Φ : X ⇒ Y and Γ : Y ⇒ X. Let x̄ ∈ X and ȳ ∈ Y . Also, let η, κ and µ be
positive scalars such that µκ < 1. Suppose that one of the sets

gph Φ ∩ (Bη[x̄]× Bη/µ[ȳ]) or gph Γ ∩ (Bη/µ[ȳ]× Bη[x̄])

is closed while the other is complete, or that both sets

gph (Φ ◦ Γ) ∩ (Bη[x̄]× Bη[x̄]) and gph (Γ ◦ Φ) ∩ (Bη/µ[ȳ]× Bη/µ[ȳ])

are complete. Also, suppose the following conditions hold:

(i) d(ȳ,Φ(x̄)) < η(1− κµ)/(2µ);
(ii) d(x̄,Γ(ȳ)) < η(1− κµ)/2;

(iii) e
(
Φ(p) ∩ Bη/µ[ȳ],Φ(q)

)
≤ µρ(p, q) for all p, q ∈ Bη[x̄] such that ρ(p, q) ≤ η(1− κµ)/µ;

(iv) e (Γ(p) ∩ Bη[x̄],Γ(q)) ≤ κρ(p, q) for all p, q ∈ Bη/µ[ȳ] such that µ(p, q) ≤ η(1− κµ).
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Then there exist x̂ ∈ Bη[x̄] and ŷ ∈ Bη/µ[ȳ] such that ŷ ∈ Φ(x̂) and x̂ ∈ Γ(ŷ). If the mappings Bη[x̄] 3 x 7→
Φ(x) ∩ Bη/µ[ȳ] and Bη/µ[ȳ] 3 y 7→ Γ(y) ∩ Bη[x̄] are single-valued, then the points x̂ and ŷ are unique in Bη[x̄]
and Bη/µ[ȳ], respectively.

Now, we apply Theorem 4.1 to obtain the desired convergence result for Algorithm 2.

Theorem 4.2. Let Ω ⊂ X be an open set, f : Ω → Y be a Fréchet differentiable function, F : Ω ⇒ Y be a
multifunction with closed graph and C ⊂ Ω be a nonempty closed convex set. Furthermore, let x∗ such that
0 ∈ f(x∗) + F (x∗), x∗ ∈ C.

Suppose valid conditions (i) to (v) of Theorem 3.2. Also, suppose that the following additional conditions
hold:

(vi) for each k ≥ 0, the mapping (u, x) 7→ Rk(u, x) is partially Aubin continuous at (x∗, x∗) w.r.t. x for 0 with
modulus µ > 0;

(vii) there are scalars t ∈
(

0, 1−
√

2θ̂

1+
√

2θ̂

)
, 0 < γ < t(1− λµ)/2µ and β > 0 such that

d(0, Rk(u, x∗)) ≤ γ‖u− x∗‖ for all u ∈ Bβ(x∗), k ≥ 0. (4.2)

Then there exists a neighborhood U of x∗ such that, starting from any x0 ∈ C ∩ U\{x∗}, there is a sequence
{xk} ⊂ C ∩ U generated by the IQN-InexP method that converges linearly to x∗.

Proof. From item (vi), there exist positive constants a and b satisfying

e (Rk(u, x) ∩ Bb[0], Rk(u, x′)) ≤ µ‖x− x′‖ for all u, x, x′ ∈ Ba[x∗]. (4.3)

By (3.1), we can assume a small enough so that

‖f(x)− f(x∗)− f ′(x∗)(x− x∗)‖ ≤ ε‖x− x∗‖ for all x ∈ Ba[x∗], (4.4)

and (
δ +

2ca

1− t̃0

)
λ < 1, (4.5)

where c is the constant in (3.3) and t̃k :=
[
(1 +

√
2θk)t+

√
2θk
]
, for all k ≥ 0. Note that t̃k < 1 from item (vii)

and the fact that θk ≤ θ̂. Also, we choose a constant κ such that κ > λ, κµ < 1, γ < t(1− κµ)/(2µ),

κ > $ :=
λ

1− λ
(
δ + 2ca

1−t̃0

)
and

ε+ δ +
2ca

1− t̃0
<
t(1− κµ)

2κ
. (4.6)

In order to apply Proposition 2.3, we define the following positive constant:

r∗ := min

 a,
b(

ε+ δ + 2ca
1−t̃0

) , β , bµ
 . (4.7)
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Choose any x0 ∈ Br∗ [x∗]\{x∗}. Since r∗ ≤ a and (ε+ δ)r∗ ≤ b we obtain

‖f(x∗)−f(x0)−B0(x∗ − x0)‖
≤ ‖f(x∗)− f(x0)− f ′(x∗)(x∗ − x0)‖+ ‖(f ′(x∗)−B0)(x∗ − x0)‖
≤ (ε+ δ)r∗ ≤ b.

Combining the above inequality with the fact that 0 ∈ f(x∗) + F (x∗) we have

− f(x∗) + f(x0) +B0(x∗ − x0) ∈ Gx0
(x∗) ∩ Bb[0]. (4.8)

Then, since κ > $ and λδ < 1, we can apply Proposition 2.3 with u = x0, x̄ = x∗, ζ = δ, y = −f(x∗) + f(x0) +
B0(x∗ − x0), y′ = 0 and a = r∗ to conclude that

e
(
G−1
x0

(−f(x∗) + f(x0) +B0(x∗ − x0)) ∩ Br∗ [x∗], G
−1
x0

(0)
)

≤ κ‖ − f(x∗) + f(x0) +B0(x∗ − x0)‖.

Now, we use the definition of excess in (2.1) and (4.8) to obtain

d(x∗, G
−1
x0

(0)) ≤ κ‖ − f(x∗) + f(x0) +B0(x∗ − x0)‖.

After simple manipulations and using (4.6), item (vii) and (4.4), the above inequality implies that

d(x∗, G
−1
x0

(0)) ≤ κ(ε+ δ)‖x∗ − x0‖ <
t(1− κµ)

2
‖x∗ − x0‖ <

η(1− κµ)

2
,

where the second inequality follows by (4.6) with η := t‖x0 − x∗‖. On the other hand, as ‖x0 − x∗‖ ≤ r∗ ≤ β,
κµ < 1 and γ < t(1− κµ)/(2µ), we obtain from (4.2) that

d(0, R0(x0, x∗)) ≤ γ‖x0 − x∗‖ <
t(1− κµ)

2µ
‖x0 − x∗‖ =

η(1− κµ)

2µ
. (4.9)

Hence, the conditions (i) and (ii) in Theorem 4.1 are satisfied with Φ(x) = R0(x0, x∗), Γ = G−1
x0

, κ, µ, x̄ = x∗,
ȳ = 0 and η = t‖x0 − x∗‖.

Now, since x0 ∈ Br∗ [x̄] and t < 1, we obtain that η ≤ r∗ ≤ a and η/µ ≤ b. Thus, Bη/µ[0] ⊂ Bb[0] and
Bη[x∗] ⊂ Ba[x∗]. Hence, for any x, x′ ∈ Ba[x∗], condition (4.3) implies

e(R0(x0, x) ∩ Bη/µ[0], R0(x0, x
′)) ≤ e(R0(x0, x) ∩Bb[0], R0(x0, x

′)) ≤ µ‖x− x′‖,

that is, condition (iii) in Theorem 4.1 holds. Furthermore, from (2.4) we conclude that

e
(
G−1
x0

(x) ∩ Bη[x∗], G
−1
x0

(x′)
)
≤ e

(
G−1
x0

(x) ∩ Ba[x∗], G
−1
x0

(x′)
)
≤ κ‖x− x′‖

for all x, x′ ∈ Bη/µ[0] ⊂ Bb[0]. So, condition (iv) in Theorem 4.1 also holds. Therefore, we can apply Theorem 4.1
to ensure the existence of y0 ∈ Bη[x∗] and v1 ∈ Bη/µ[0] such that y0 ∈ G−1

x0
(v1) and v1 ∈ R0(x0, y0); that is,

v1 ∈ Gx0(y0) ∩R0(x0, y0) = (f(x0) +B0(y0 − x0) + F (y0)) ∩R0(x0, y0). (4.10)

Moreover, Theorem 4.1 implies ‖y0−x∗‖ ≤ t‖x0−x∗‖. The inclusion (4.10) yields that y0 satisfies (4.1) for k = 0.
In particular, since t < 1, y0 ∈ Br∗ [x∗]. If y0 ∈ C ∩Bη[x∗] then take x1 := y0. Otherwise, take x1 ∈ PC(y0, x0, θ0).
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By using similar arguments as in Theorem 3.2 (see also Rem. 2.8) we obtain

‖x1 − x∗‖ ≤ (1 +
√

2θ0)‖x∗ − y0‖+
√

2θ0‖x∗ − x0‖

=
[
(1 +

√
2θ0)t+

√
2θ0

]
‖x∗ − x0‖ = t̃0‖x0 − x∗‖.

Since t̃0 < 1, we have x1 ∈ C ∩ Bη[x∗] ⊂ C ∩ Br∗ [x∗]. By induction, we suppose that there exist an integer
k > 1 and points x1, x2, . . . , xk ∈ C ∩ Br∗ [x∗] and y1, y2, . . . , yk ∈ Br∗ [x∗], satisfying

‖yj−1 − x∗‖ ≤ t‖xj−1 − x∗‖, ∀j = 1, 2, . . . , k, (4.11)

‖xj − x∗‖ ≤ t̃0‖xj−1 − x∗‖, ∀j = 1, 2, . . . , k. (4.12)

Without loss of generality, we assume that yj−1, xj−1 and x∗ are distinct from each other. Note that, as
xk ∈ Br∗ [x∗] and r∗ ≤ β, we can repeat the same argument from (4.9) with x0 replaced by xk, obtaining

d(0, Rk(xk, x∗)) ≤
η(1− κµ)

2µ
.

To apply Proposition 2.3 in the induction step, firstly we need to show that ‖Bk − f ′(x∗)‖ ≤ ζ for some
positive scalar ζ such that ζλ < 1. By combining (3.3), (4.11), (4.12) and using the fact that x0 ∈ Br∗ [x∗], we
have

‖f ′(x∗)−Bk‖ ≤ ‖f ′(x∗)−Bk−1‖+ c(‖xk−1 − x∗‖+ ‖yk−1 − x∗‖)

≤ ‖f ′(x∗)−B0‖+ c

k∑
j=0

(‖xj − x∗‖+ t‖xj − x∗‖)

≤ δ + (1 + t)c‖x0 − x∗‖+ (1 + t)c

k∑
j=1

‖xj − x∗‖

≤ δ + (1 + t)c

k∑
j=0

‖xj − x∗‖ ≤ δ + 2c

∞∑
j=0

t̃j0‖x0 − x∗‖ ≤ δ +
2ca

1− t̃0
.

That is, for all k ≥ 1,

‖f ′(x̄)−Bk‖ ≤ δ +
2ca

1− t̃0
. (4.13)

The above inequality combined with (4.4) implies

‖ − f(x∗) + f(xk) +Bk(xk − x∗)‖
≤ ‖ − f(x∗) + f(xk) + f ′(x∗)(x∗ − xk)‖+ ‖(f ′(x∗)−Bk)(x∗ − xk)‖

≤ ε‖x∗ − xk‖+

(
δ +

2ca

1− t̃0

)
‖x∗ − xk‖ ≤

(
ε+ δ +

2ca

1− t̃0

)
r∗ ≤ b.

Thus, −f(x∗) + f(xk) +Bk(xk−x∗) ∈ Bb[0]∩Gxk
(x∗). In particular, x∗ ∈ G−1

xk
(−f(x∗) + f(xk) +Bk(xk−x∗)).

Then, using (4.5), (4.6), (4.13) and the last inequality we can apply Proposition 2.3 to obtain

d(x∗, G
−1
xk

(0)) ≤ κ
(
ε+ δ +

2ca

1− t̃ 0

)
‖x∗ − xk‖ ≤

t(1− κµ)

2
‖x∗ − xk‖ =

η(1− κµ)

2
.



CONVERGENCE OF QUASI-NEWTON METHODS FOR SOLVING CONSTRAINED GENERALIZED EQUATIONS 15

Thus the conditions (vi) and (vii) in Theorem 4.1 are satisfied with u = xk. Now, since xk ∈ Br∗ [x∗] and η =
t‖xk−x∗‖, condition (4.7) ensures that η ≤ r∗ ≤ a and η/µ ≤ b. So, (4.3) implies condition (iii) of Theorem 4.1.
Furthermore, from (2.4) we conclude that condition (iv) in Theorem 4.1 holds for Γ = G−1

xj
with j = k. Thus,

the assumptions of Theorem 4.1 are satisfied with η = t‖xk − x∗‖, and hence there exists yk ∈ Bη[x∗] and
vk+1 ∈ Bη/µ[0] such that yk ∈ G−1

xk
(vk+1) and vk+1 ∈ Rk(xk, yk); that is,

vk+1 ∈ Gxk
(yk) ∩Rk(xk, yk) = (f(xk) +Bk(yk − xk) + F (yk)) ∩Rk(xk, yk). (4.14)

Moreover, Theorem 4.1 implies that ‖yk − x∗‖ ≤ t‖xk − x∗‖. The inclusion (4.14) also ensures that yk satis-
fies (4.1) for all k ≥ 0. Since t < 1 we have yk ∈ Br∗ [x∗]. Again, if yk ∈ C ∩ Bη[x∗] then take xk+1 := yk and
xk+1 ∈ PC∩Bc[x∗](yk, xk, θk) otherwise. By using similar arguments employed in Theorem 3.2, we finally get

‖xk+1 − x∗‖ ≤
[
(1 +

√
2θk)t+

√
2θk
]
‖x∗ − xk‖ = t̃k‖xk − x∗‖.

As t̃k < 1, we obtain xk+1 ∈ Br∗ [x∗], concluding the proof.

Remark 4.3. In Theorem 4 of [24], a related result to Theorem 4.2 for the unconstrained case, C = X, was
provided. But the authors suppose that Bk = f ′(xk) for all k. So, even for C = X, Theorem 4.2 generalizes such
previous result since we only require that Bk approximates f ′(xk).

5. Linear convergence of the Broyden-type quasi-Newton
methods

In this section, we consider both QN-InexP and IQN-InexP methods when Bk+1 in Step 3 is computed
by the classical Broyden update scheme. Let us denote by 〈·, ·〉 scalar products in Rn. The Broyden update rule
is defined as

Bk+1 := Bk +
(zk −Bksk)〈sk, ·〉

‖sk‖2
, (5.1)

where zk := f(yk)− f(xk) and sk := yk − xk. Despite of (3.2), a practical usual choice for B0 is B0 = f ′(x0).
The aim of this section is to show that the Broyden update rule satisfies the bounded deterioration prop-

erty (3.3), a crucial condition in Theorems 3.2 and 4.2. Therefore, (5.1) is one practical choice that fulfils the
general framework of our quasi-Newton methods.

Proposition 5.1. Let X and Y be Hilbert spaces. Suppose that the Fréchet derivative mapping f ′ is Lipschitz
continuous with constant L in a convex neighborhood X of a point x∗. Given Bk ∈ L(X,Y) and xk, yk ∈ X ,
yk 6= xk, the operator Bk+1 defined as in (5.1) satisfies

‖Bk+1 − f ′(x∗)‖ ≤ ‖Bk − f ′(x∗)‖+
L

2
(‖yk − x∗‖+ ‖x∗ − xk‖).

Proof. The proof is straightforward from the proof of Proposition 4.2 in [6] by taking xk+1 := yk.

Using Proposition 5.1, the local convergence of the Broyden variants of QN-InexP and IQN-InexP follows
directly from Theorems 3.2 and 4.2, respectively. Next we state such results.

Corollary 5.2. Let Ω ⊂ X be an open set, f : Ω → Y be a Fréchet differentiable function, F : Ω ⇒ Y be a
multifunction with closed graph and C ⊂ Ω be a nonempty closed convex set. Furthermore, let x∗ such that
0 ∈ f(x∗) + F (x∗), x∗ ∈ C.
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Suppose f +F is metrically regular at x∗ for 0 with modulus λ > 0, and that f has Fréchet derivative Lipschitz
continuous locally around x∗. Consider the QN-InexP method with θk ≥ 0 for all k and assume that

θ̂ := sup θk <
1

2
, δ := ‖B0 − f ′(x∗)‖ <

1

2λ
.

Then, if we choose Bk+1 as in (5.1), there exists a neighborhood U of x∗ such that, starting from any x0 ∈
C ∩ U\{x∗}, there is a sequence {xk} ⊂ C ∩ U generated by the QN-InexP method that converges linearly to
x∗.

If, in addition, items (vi) and (vii) of Theorem 4.2 are fulfilled, then the same conclusion is valid for the
IQN-InexP method with Bk+1 as in (5.1).

Remark 5.3. As the classic Broyden update (5.1) satisfies (3.3) (Prop. 5.1), the second part of the above
corollary generalizes ([3], Thm. 3.2), since we are considering an inexact quasi-Newton method. Even if C = X,
the previous corollary extends ([24], Thm. 4), since we are proving the convergence of the Broyden update
method.

6. Superlinear convergence under the Dennis-Moré condition

We dedicate this section to show under what conditions we can obtain superlinear convergence of the inexact
quasi-Newton method (4.1) by using the Broyden update (5.1). For this purpose, we will use the Hilbert-Schmidt
norm of an operator A ∈ L(X,Y) between Hilbert spaces X and Y, defined as

‖A‖HS :=

√∑
i∈I
‖Aei‖2,

where {ei, i ∈ I} is an orthonormal basis of X. We denote by T (X,Y) := {A ∈ L(X,Y) | ‖A‖HS < +∞} the set
of Hilbert-Schmidt operators.

It is straightforward to show, as done in [6], that Proposition 5.1 is valid also for the Hilbert-Schmidt
norm. To show the desired superlinear convergence we will use the Dennis-Moré theorem. This theorem gives
a characterization for the superlinear convergence in quasi-Newton methods and these results can be adapted
to generalized equations, see [6, 18]. Briefly, if a quasi-Newton method generates a sequence {xk} which stays
near x∗ and xk+1 6= xk for all k, then {xk} converges superlinearly to x∗ if, and only if, it is convergent and

lim
k→∞

‖(Bk − f ′(x∗))ŝk‖
‖ŝk‖

= 0, (6.1)

where ŝk is taken as xk+1 − xk.
It is well known that the Broyden update (5.1) with yk = xk+1, applied to a smooth equation in finite

dimensions with a nonsingular Jacobian at the reference solution x∗, satisfies (6.1); see e.g. Theorem 7.2.4 of
[31]. There are extensions of this claim for infinite dimensional Hilbert spaces [32, 39]. In [20], the Dennis-Moré
condition (6.1) was applied to generalized equations in Banach spaces. In our context, we have the following
statement:

Proposition 6.1. Let Ω ⊂ X be an open set, f : Ω→ Y be a function which is Fréchet differentiable, F : Ω ⇒ Y
be a multifunction with closed graph and C ⊂ Ω be a nonempty closed convex set. Furthermore, let x∗ be a
solution of (1.1). Suppose that f + F is strongly metrically subregular at x∗ for 0 with modulus λ > 0. Let {xk}
be a sequence generated by the IQN-InexP method with θk → 0, and assume that

d+(0, Rk(x, x∗)) ≤ γk‖x− x∗‖, (6.2)
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for all x in some neighborhood of x∗, k ≥ 0 and γk → 0. Then, if {xk} and {yk} both converge to x∗ and (6.1)
holds with ŝk = sk = yk − xk, yk 6= xk, then {xk} converges superlinearly to x∗.

Proof. The strong subregularity of f + F at x∗ for 0 with modulus λ > 0 implies that (see Def. 2.1)

‖yk − x∗‖ ≤ λd(0, f(yk) + F (yk)) (6.3)

for all k large enough, let us say, k ≥ k0. In turn, Step 1 of IQN-InexP (expression (4.1)) ensures, for each
k ≥ 0, the existence of uk ∈ Rk(xk, yk) such that

uk − f(xk)− f ′(x∗)sk − (Bk − f ′(x∗))sk + f(yk) ∈ f(yk) + F (yk). (6.4)

Thus, combining (6.3) and (6.4) we obtain, for all k ≥ k0,

‖yk − x∗‖ ≤ λ‖uk − f(xk)− f ′(x∗)sk − (Bk − f ′(x∗))sk + f(yk)‖
≤ λ‖uk‖+ λ‖f(yk)− f(xk)− f ′(x∗)sk‖+ λ‖(Bk − f ′(x∗))sk‖. (6.5)

From the Fréchet differentiability of f , there is an index k1 ≥ k0 and a sequence {εk}k≥k1 such that γk ≤ εk → 0
and, for each k ≥ k1,

‖f(z)− f(x∗)− f ′(x∗)(z − x∗)‖ ≤ εk‖z − x∗‖ for all z ∈ Xk, (6.6)

where Xk is a neighborhood of x∗ containing xk and yk (remember that yk → x∗ by hypothesis). Also, from (6.1),
we can increase if necessary the terms of the sequence {εk} to satisfy

‖(Bk − f ′(x∗))sk‖ ≤ εk‖sk‖ = εk‖yk − xk‖ ≤ εk‖xk − x∗‖+ εk‖yk − x∗‖ (6.7)

for all k ≥ k1. Due to condition (6.2), xk → x∗ and uk ∈ Rk(xk, x∗) for all k, we have

‖uk‖ = ‖0− uk‖ ≤ sup{‖0− x‖ | x ∈ R(xk, x∗)} = d+(0, Rk(xk, x∗)) ≤ εk‖xk − x∗‖ (6.8)

for all k ≥ k1. Using (6.6) and the fact that xk, yk ∈ Xk, the second term of sum in (6.5) can be bounded as

‖f(yk)− f(xk)− f ′(x∗)sk‖ = ‖f(yk)− f(xk)− f ′(x∗)(yk − xk) + f(x∗)− f(x∗) + f ′(x∗)(x∗ − x∗)‖
≤ ‖f(yk)− f(x∗)− f ′(x∗)(yk − x∗)‖+ ‖f(xk)− f(x∗)− f ′(x∗)(xk − x∗)‖
≤ εk‖yk − x∗‖+ εk‖xk − x∗‖.

Thus, we use the previous inequality, (6.7) and (6.8) in (6.5) to obtain

‖yk − x∗‖ ≤ 3λεk‖xk − x∗‖+ 2λεk‖yk − x∗‖

for all k ≥ k1. As εk → 0, we can suppose without loss of generality that k1 is such that 2λεk < 1 for all k ≥ k1,
and hence we conclude that

‖yk − x∗‖ ≤
3λεk

1− 2λεk
‖xk − x∗‖

for all k ≥ k1. Now, from Remark 2.8 we have

‖xk+1 − x∗‖ ≤ (1 +
√

2θk)‖yk − x∗‖+
√

2θk‖xk − x∗‖
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for all k. So, combining the previous two inequalities we arrive at

‖xk+1 − x∗‖
‖xk − x∗‖

≤ rk := (1 +
√

2θk)
3λεk

1− 2λεk
+
√

2θk,

whenever k ≥ k1. Since εk → 0 and θk → 0, we have rk → 0 and thus {xk} converges to x∗ superlinearly. This
concludes the proof.

The next result, which proof can be found in Theorem 4.8 of [7], establishes a condition for the Broyden
update to satisfy the Dennis-Moré condition (6.1) with ŝk = sk := yk − xk.

Proposition 6.2. Consider a function f : X→ Y and a point x∗ ∈ X such that the derivative mapping f ′(x)
is Lipschitz continuous around x∗ with respect to the Hilbert-Schmidt norm. Also, consider the Broyden update
(5.1) in which B0 − f ′(x∗) is a Hilbert-Schmidt operator. If the sequences {xk} and {yk} are linearly convergent
to x∗ then they satisfy the Dennis-Moré condition (6.1).

We finalize this section with the superlinear convergence of the QN-InexP method (Algorithm 1), which is
a consequence of Propositions 6.1 and 6.2.

Theorem 6.3. Consider the constrained generalized equation (1.1) with a solution x∗ and suppose that the
derivative mapping f ′(x) is Lipschitz continuous around x∗ with respect to the Hilbert-Schmidt norm. Consider
the QN-InexP method applied to (1.1) with the Broyden update (5.1), where B0 is chosen to satisfy (3.2) and
such that B0 − f ′(x∗) is a Hilbert-Schmidt operator. If f + F is strongly metrically subregular at x∗ for 0, then
every sequence {xk} generated by QN-InexP that converges to x∗ is superlinearly convergent.

7. Numerical experiments

In this section we consider the quasi-Newton scheme with matrices Bk following (5.1). For simplicity, we
suppose Ω = Rn. In order to write the inclusion z̄ ∈ F (x) in a tractable way, we assume that the set F (x) can
be described by equality and inequality constraints, that is,

F (x) = {z ∈ Y | h(x, z) = 0, g(x, z) ≤ 0}, (7.1)

where h and g are continuously differentiable functions. Thus

z̄ ∈ F (x) ⇔ h(x, z̄) = 0, g(x, z̄) ≤ 0.

Therefore, determining a solution yk of the subproblem 0 ∈ f(xk) + Bk(y − xk) + F (y) is equivalent to find
yk ∈ X and zk ∈ Y such that

zk = −[f(xk) +Bk(yk − xk)], h(yk, zk) = 0, g(yk, zk) ≤ 0.

In turn, a sufficient condition for the above expressions to be satisfied is (yk, zk) to be an optimal solution of

min
y,z

1

2

∥∥z +
[
f(xk) +Bk(y − xk)

]∥∥2

2
(7.2a)

subject to h(y, z) = 0, (7.2b)

g(y, z) ≤ 0 (7.2c)

with null objective value. This problem can be solved by standard nonlinear optimization methods. So, we have
a practical way to test whether z̄ ∈ F (x) or not, at least approximately since (7.2) is considered solved when an
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optimality accuracy is achieved. This is in agreement with the inexactness allowed in the IQN-InexP variant
(Algorithm 2).

Taking into account (7.1), the stopping criterion 0 ∈ f(xk) + F (xk) is equivalent to

h(xk,−f(xk)) = 0, g(xk,−f(xk)) ≤ 0.

Thus, the following (approximate) criterion is natural to declare convergence:

ek := max{‖h(xk,−f(xk))‖∞, ‖g(xk,−f(xk))+‖∞} ≤ 10−6.

Note that xk ∈ C by construction in Algorithms 1 and 2, since the approximate projection in the sense of
Definition 2.5 maintains feasibility.

In order to compute the iterate xk+1 ∈ PC(yk, xk, θk) satisfying condition (2.5), we employ the Frank-Wolfe
algorithm provided in [5], which is applied to the projection problem

min
x

1

2
‖x− yk‖22 subject to x ∈ C. (7.3)

We added large box-constraints ` ≤ x ≤ u to the above problem, since the Frank-Wolfe algorithm is designed
to deal with compact convex feasible sets.

In the next sections, we present three illustrative numerical examples of our theory. Our implementation is
made in Matlab© R2016b using double precision. All tests were run on GNU/Linux Ubuntu 20.04. To solve
problem (7.2) we use the interior point method implemented in the fmincon routine with maximum number of
iterations equals to 1000 and optimality tolerance 10−6. Regarding the projection step, the sequence {θk} was
chosen as θ0 = 10−2 and θk = max{0.9 θk−1, 10−8}, k ≥ 1. This choice is purely empiric, and tries to reflect the
inexact computation allowed by theory (note that even θk → 0 is not required in Thms. 3.2 and 4.2). A more
accurate choice may be supported by the inequality in Remark 2.8, but more research is necessary on this topic.
The gradients of hi and gj are given in each case. Finally, since it is required that x0 ∈ C, we project the given
initial point onto C if necessary by solving (7.3) once with Matlab’s interior point method (the Frank-Wolfe
algorithm of [5] also needs to be initialized within C).

7.1. Problem 1

Similarly to [6], let us consider f : R2 → R2, F : R2 ⇒ R2 and C given by

f(x1, x2) = (3x3
1 − 2x2

1, 0),

F (x1, x2) =

{
{−x1, x1} × {0}, x1 ≥ 0

∅ × {0}, x1 < 0
,

C = R× [1/2, 1].

The solutions of the generalized equation f(x) +F (x) 3 0 subject to x ∈ C are (0, x2) and (1, x2), x2 ∈ [1/2, 1].
There are different ways to write F (x) as (7.1). Each of them affects the numerical resolution of the problem

by a previously selected algorithm (in our case, the interior point method of Matlab©). For this example, we
choose F (x) = {z ∈ R2 | z2

1 − x1 = 0, z2 = 0}.
Table 1 shows the execution starting from x0 = (0.7, 0). Columns “iter” and “conv. rate” stands for

“iteration” and ‖xk − x∗‖∞/‖xk−1 − x∗‖∞, respectively, where x∗ = (0, 0.5) is the point to that algorithm
approximates. From the third column, we can observe the linear convergence rate of {xk} to x∗ related in the
theory (e.g. Thm. 3.2). We run the algorithm from several distinct initial points, and in all cases it converges to
(0, min{1,max{0.5, (x0)2}}). That is, the sequence {(x2)k} converges to the extreme of the interval [1/2, 1] if
the initial value is not in this interval, while otherwise it is constant. This behaviour is expected and reflects the
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Table 1. Resolution of Problem 1 starting from (0.7, 0.6).

iter ek conv. rate

1 6.975990e−01
2 3.075904e−01 4.554906e-01
3 4.694257e−02 1.472804e-01
4 1.808056e−04 3.850256e-03
5* 2.367476e−10* 1.309404e-06

Table 2. Resolution of Problem 2 starting from (0.9, 0.5).

iter ek conv. rate
1 5.785110e−01
2 5.344404e−01 6.067537e−01
3 2.963137e−01 5.615067e−01
4 1.049330e−01 3.465348e−01
5 3.895669e−02 4.236108e−01
6 6.432412e−04 1.409197e−02
7 6.269612e−06 9.883571e−03
8* 2.101206e−09* 3.351656e−04

initial projection onto C. The algorithm has a preference for solutions with x1 = 0. This probably occurs by the
fact that the term 3x3

1 of f tends to be minimized in the objective function of (7.2). Evidently, the algorithm
reaches a valid solution of the problem.

7.2. Problem 2

The next problem is a modification of Problem 1 that imposes a stricter relationship between the variables
x1 and x2:

f(x1, x2) = (3x3
1 − 2x2

1,−x1x2),

F (x1, x2) =

{
{−x1, x1} × {1− x1}, x1 ≥ 0

∅ × {0}, x1 < 0
,

C = R× [0, 2].

The solutions are (0, x2), x2 ∈ [0, 2], and (1, 0). Here, F (x) = {z ∈ R2 | z2
1 − x1 = 0, z2 = 1− x1} for x1 ≥ 0.

The algorithm is attracted to (0, 1) for different initial points, including the solution (0, 0). Evidently this
depends on the implementation, and can be justified by the way that we initialize z when solving problem (7.2).
Table 2 shows the execution for x0 = (0.9, 0.5). As in Problem 1, we can observe a linear rate of convergence
to (0, 1).

7.3. Problem 3

Here we consider the bilevel problem

min
x,y

φ(x, y)

subject to (x, y) ∈ D
y ∈ arg min

y
q(x, y)
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subject to Y y ≤ c−Xx,

where x ∈ Rn, y ∈ Y and c ∈ Rp. We assume that D 6= ∅ is closed and convex, and that q(x, ·) is a continuously
differentiable convex function for all x.

It is well known that computing a feasible point (x, y) of the above problem is NP-hard in general, since y
must be a global minimizer of an optimization problem. This difficult is increased if the upper level constraints
(x, y) ∈ D contain lower level variables yi’s. For details on bilevel problems, see [16]. One way to deal with
bilevel problems is rewriting the lower level problem under their Karush-Kuhn-Tucker (KKT) conditions:

∇yq(x, y) + Y tλ = 0

λ ≥ 0

(Xx+ Y y − c)tλ = 0

Y y ≤ c−Xx.

Since q(x, ·) is convex, these conditions are sufficient to optimality of the lower level problem. Defining

F (x, y, λ) = {0}2 ×NR(λ1)× · · · ×NR(λp)

f(x, y, λ) =
(
∇yq(x, y)− Y tλ , Xx+ Y y − c

)
C =

(
D ∩ {(x, y) | Xx+ Y y ≤ c}

)
× Rp+,

a point (x, y) is feasible for the bilevel problem if, and only if, there is a λ such that

0 ∈ f(x, y, λ) + F (x, y, λ), (x, y, λ) ∈ C.

Note that the above generalized equation does not involve inequalities. They are totally encapsulated by the
projection step.

To illustrate the functionality of our algorithm, let us consider the particular instance

q(x, y) =
1

2
(‖x‖2 + ‖y‖2)

X =

[
2 1
−1 2

]
, Y =

[
1 1
1 1

]
, c =

[
−1
−1

]
,

D = {(x, y) ∈ R4 | x1 + x2 + y1 + y2 ≤ 1}.

In general, our implementation converges to different points when we vary the initial point. This is in agreement
with the fact that, for each x, the lower level problem possibly admits a different minimizer. Starting from
(x0, y0, λ0) = (0, 0, 0, 0, 0, 0), the algorithm reaches

x∗ ≈ (0.4012 , −0.2009 ), y∗ ≈ ( 2.8779 · 10−8 , 3.6537 · 10−8 ), λ∗ ≈ ( 0.0000 , 0.0000 ),

with e∗ ≈ 3.65 · 10−8 (in this case, ek encompasses the KKT residue of the lower level problem). The execution
is presented in Table 3.

We do not calculate the “rate of convergence” for Problem 3 since it requires to know a priori the solution set
of the generalized equation, i.e., the feasible set of the bilevel problem. So, it is hard to decide numerically if the
iterate (xk, yk, λk) is close to the solution set, or even close to a particular solution. On the other hand, it is not
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Table 3. Resolution of Problem 3.

iter ek
1 1.428588e-01
2 1.568136e-01
3 2.339251e-01
4 1.008833e-01
5 3.987558e-02
...

...
32 1.677399e-03
33 1.645132e-03
34 1.614623e-03
35* 3.653530e-08*

reasonable use the last iterate (x∗, y∗, λ∗) to make this computation because this point carries approximation
errors, leading to a false estimative for ‖xk − x∗‖∞/‖xk−1 − x∗‖∞.

8. Conclusions

In this paper, we deal with constrained generalized equations. This is a very general class of problems, encom-
passing several other contexts, such as standard nonlinear optimization, variational inequalities and equilibrium
problems. We presented two general quasi-Newton frameworks for solving constrained generalized equations that
employ an inexact projection step. Firstly, we discuss a quasi-Newton scheme where subproblems are solved
exactly. Its local convergence is provided under a bounded deterioration condition on the update quasi-Newton
operator/matrix. Secondly, we extend the proposed method allowing subproblems to be solved inexactly. The
resulting (inexact quasi-Newton) method is closer to the numerical practice, where inexactness is naturally
present. We also proved that the inexact scheme converges locally under mild assumptions.

We analysed the particular case when the classical Broyden update rule is employed. For both exact and
inexact quasi-Newton methods, we show that, in this case, the deterioration condition is satisfied directly.
Illustrative numerical experiments with the Broyden variant were made to align theory with practice.

As future works, we intend to answer whether the condition of bounded deterioration can be replaced by some-
thing weaker or whether, with additional assumptions, we could obtain another update rule besides Broyden’s.
Another line of research is to study the variational inequality problem

0 ∈ f(x) +NC(x),

by considering the inexact quasi-Newton method

(f(xk) + (Bk + B̄)(xk+1 − xk) +NC(xk+1)) ∩ Bηkψ(xk)(0) 6= ∅, k = 0, 1, . . . , (8.1)

with Bk satisfying the Broyden update, B̄ an n × n matrix, {ηk} a sequence of positive numbers converging
to zero and ψ a Lipschitz function. As in [22], we intend to consider Newton-Kantorovich theorem on (8.1).
Moreover, we propose to apply the quasi-Newton iteration

∇h(xk) +Bk(xk+1 − xk) +NC(xk+1) 3 0 (8.2)

to the first-order necessary optimality condition ∇h(x) +NC(x) 3 0 of the optimization problem

minimize h(x) subject to x ∈ C,
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where h is a twice continuously differentiable function and C is a closed and convex set. We propose to update
Bk defined in (8.2) firstly by the Broyden update (5.1) with zk = ∇h(xk+1)−∇h(xk) and sk = xk+1 − xk, and
secondly using the BFGS method, that is,

Bk+1 := Bk +
yky

T
k

yTk sk
− Bksks

T
kBk

sTkBksk
,

where yk := ∇h(xk+1)−∇h(xk) and sk := xk+1 − xk.
It is worth noting that, as reported in [22], the scheme (8.2) can be used for solving control-constrained

optimal control problems. So, we also propose to do numerical experiments to the quasi-Newton method (8.2)
and to compare the results with the ones obtained in [22].

During the review process, an anonymous referee asks about the possibly of weakening the assumption that
f + F is metrically regular in our convergence results. This is a very interesting issue. In fact, as pointed out
recently in [40], metric regularity fails to hold in important situations. So, a topic for further research is to
establish the convergence of Quasi-Newton schemes under, for instance, Hölder-type hypotheses. Also, besides
Definition 2.5, other type of projections should be considered in the convergence analysis, especially those with
numerical appeal.

Acknowledgements. We would like to thank the comments and suggestions of the two anonymous referees which helped
us to improve our work.
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[28] M.L. Gonçalves and J.G. Melo, A Newton conditional gradient method for constrained nonlinear systems. J. Comput. Appl.
Math. 311 (2017) 473–483.

[29] H. He, C. Ling and H.-K. Xu, A relaxed projection method for split variational inequalities. J. Optim. Theory Appl. 166
(2015) 213–233.

[30] N. Josephy, Newton’s method for generalized equations and the pies energy model, Ph.D. thesis, University of Wisconsin–
Madison (1979).

[31] C.T. Kelley, Iterative methods for linear and nonlinear equations, SIAM (1995).
[32] C.T. Kelley and E.W. Sachs, A new proof of superlinear convergence for Broyden’s method in Hilbert space. SIAM J. Optim.

1 (1991) 146–150.
[33] D. Klatte and B. Kummer, Approximations and generalized Newton methods. Math. Progr. 168 (2018) 673–716.

[34] A. Moudafi, Split monotone variational inclusions. J. Optim. Theory Appl. 150 (2011) 275–283.

[35] S.M. Robinson, Extension of Newton’s method to nonlinear functions with values in a cone. Numer. Math. 19 (1972) 341–347.
[36] S.M. Robinson, Generalized equations and their solutions, Part I: Basic theory. Springer Berlin Heidelberg, Berlin, Heidelberg

(1979), pp. 128–141.
[37] S.M. Robinson, Strongly regular generalized equations. Math. Oper. Res. 5 (1980) 43–62.

[38] S.M. Robinson, Generalized Equations. Springer Berlin Heidelberg, Berlin, Heidelberg (1983), pp. 346–367.

[39] E.W. Sachs, Broyden’s method in Hilbert space. Math. Progr. 35 (1986) 71–82.
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