
ESAIM: COCV 28 (2022) 55 ESAIM: Control, Optimisation and Calculus of Variations
https://doi.org/10.1051/cocv/2022051 www.esaim-cocv.org

REDUCTION OF LOWER SEMICONTINUOUS SOLUTIONS OF

HAMILTON-JACOBI-BELLMAN EQUATIONS

Arkadiusz Misztela*

Abstract. This article is devoted to the study of lower semicontinuous solutions of Hamilton-
Jacobi equations with convex Hamiltonians in a gradient variable. Such Hamiltonians appear in the
optimal control theory. We present a necessary and sufficient condition for a reduction of a Hamiltonian
satisfying optimality conditions to the case when the Hamiltonian is positively homogeneous and also
satisfies optimality conditions. It allows us to reduce some uniqueness problems of lower semicontinuous
solutions to Barron-Jensen and Frankowska theorems. For Hamiltonians, which cannot be reduced in
that way, we prove the new existence and uniqueness theorems.
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1. Introduction

The Cauchy problem for the Hamilton-Jacobi equation

−Ut + H(t, x,−Ux) = 0 in (0,T ) ×RN ,
U(T, x) = g(x) in RN ,

(1.1)

with a convex Hamiltonian H in the gradient variable can be studied with connection to a calculus of variations
problem. Let H∗ be the Legendre-Fenchel conjugate of H in its gradient variable (in our case H∗ is an extended
real-valued function):

H∗(t, x, v) = sup
p∈RN
{ 〈v, p〉 − H(t, x, p) }.

Here 〈v, p〉 denotes the inner product of v and p. We will use the notation dom H∗(t, x, ·) for the effective domain
of H∗(t, x, ·), which is a set of all v such that H∗(t, x, v) 6= ±∞. The value function of a calculus of variations
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problem is defined by the formula

V(t0, x0) = inf
x(·) ∈A([t0,T ],RN)

x(t0)=x0

{
g(x(T )) +

∫ T

t0
H∗(t, x(t), ẋ(t)) dt

}
, (1.2)

where A([t0,T ],RN) denotes the space of all absolutely continuous functions from [t0,T ] into RN. If the value
function is real-valued and differentiable, it is well-known that it satisfies (1.1) in the classical sense. However, in
many situations the value function is extended real-valued and merely lower semicontinuous. Then the solution
of (1.1) must be defined in a nonsmooth sense in such a way that under quite general assumptions on H and g,
V is the unique solution of (1.1).

We consider the following optimality conditions:

(H1) H : [0,T ] ×RN ×RN → R is continuous with respect to all variables;
(H2) H(t, x, p) is convex with respect to p for every t ∈ [0,T ] and x ∈ RN;
(H3) For any R > 0 there exists CR > 0 such that for all t ∈ [0,T ], x ∈ IBR

and p, q ∈ RN one has |H(t, x, p) − H(t, x, q)| 6 CR|p − q|;
(H4) There exists an integrable function c : [0,T ]→ [0,+∞) such that for almost all

t ∈ [0,T ] and all x, p, q ∈ RN one has |H(t, x, p) − H(t, x, q)| 6 c(t)(1 + |x|)|p − q|;
(H5) For any R > 0 there exists an integrable function kR : [0,T ]→ [0,+∞) such that

|H(t, x, p) − H(t, y, p)| 6 kR(t)(1 + |p|)|x − y| for all x, y∈IBR, p∈RN and a.e. t ∈ [0,T ].

where IBR denotes a closed ball in RN of center 0 and radius R > 0 and | · | denotes the Euclidean norm on RN.
For a nonempty subset W of RN we define ‖W‖ := supξ∈W |ξ|.

Barron-Jensen [5] and Frankowska [13] studied extended viscosity solutions to semicontinuous functions for
Hamiltonians that are convex with respect to the last variable. Frankowska [13] called these solutions lower
semicontinuous solutions.

Definition 1.1. A function U : [0,T ] × RN → R ∪ {+∞} is a lower semicontinuous solution of (1.1) if U is a
lower semicontinuous function, U(T, x) = g(x) for all x ∈ RN, and for any (t, x) ∈ dom U, for all (pt, px) ∈ ∂U(t, x),
one has

− pt + H(t, x,−px) > 0 if 0 6 t < T, (1.3)

− pt + H(t, x,−px) 6 0 if 0 < t 6 T, (1.4)

where ∂U(t, x) denotes subdifferential of U at (t, x).

Frankowska [13] proved that the value function V is the unique lower semicontinuous solution of (1.1) if
the Hamiltonian H satisfies (H1)–(H5) and it is positively homogeneous in p, i.e. ∀r>0 H(t, x, rp) = rH(t, x, p).
Whereas g is a lower semicontinuous extended real-valued function which does not take on the value −∞. Earlier,
Barron-Jensen [5, 6] using quite different methods obtained similar results to those of Frankowska assuming
slightly stronger conditions on the Hamiltonian H. The paper by Barles [4] provides some extensions and an
informal discussion of Barron and Jensen’s ideas.

For lower semicontinuous solutions the uniqueness results of [5, 13] use positively homogeneous Hamiltonian
in p. This is not quite as restrictive as it seems at first. Because H : [0,T ] ×RN ×RN → R can be replaced by
H̄ : [0,T ] ×RN+1 ×RN+1 → R such that

H̄(t, x, r, p, q) is positively homogeneous in (p, q) for all t∈ [0,T ], x∈RN, r∈R,
H̄(t, x, r, p,−1) = H(t, x, p) for all t∈ [0,T ], x∈RN, r∈R, p∈RN .

(1.5)

Indeed, suppose that there are two lower semicontinuous solutions U1 and U2 of (1.1) with H and g. Then,
Ū1(t, x, r) = U1(t, x) + r and Ū2(t, x, r) = U2(t, x) + r both satisfy (1.1) with H̄ and ḡ(x, r) = g(x) + r. In view of
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the uniqueness result of [13] we get Ū1 = Ū2. Hence it follows that U1 = U2. It is possible, provided that H̄
satisfies not only (1.5), but also (H̄1)–(H̄5), where (H̄1)–(H̄5) denotes conditions (H1)–(H5) for H̄ with doubled
arguments (x, r) and (p, q). Therefore, it should be stated precisely what conditions on H imply the existence
of H̄ which satisfies conditions (1.5) and (H̄1)–(H̄5). We define such conditions on the Hamiltonian H in the
following theorem.

Theorem 1.2. Let H be given. Then the following conditions are equivalent:

(A) H satisfies (H1)–(H5) and there is a continuous function λ : [0,T ] ×RN → R+ such that ‖dom H∗(t, x, ·)‖ 6
λ(t, x) and ‖H∗(t, x, dom H∗(t, x, ·))‖ 6 λ(t, x) for all t ∈ [0,T ], x ∈RN; ∀R> 0 ∃ ζR(·) ∈ L1([0,T ],R+) such that
λ(t, ·) is ζR(t)-Lipschitz on IBR for a.e. t ∈ [0,T ]; ∃ϑ(·) ∈ L1([0,T ],R+) such that λ(t, x) 6 ϑ(t)(1 + |x|) for all
x ∈ RN and a.e. t ∈ [0,T ].

(B) There exists H̄ satisfying (1.5) and (H̄1)–(H̄5).

From the above theorem it follows that boundedness of the sets H∗(t, x, dom H∗(t, x, ·)) and dom H∗(t, x, ·)
by an appropriately regular function λ is a condition not only sufficient but also necessary for the reduction
described above. We prove Theorem 1.2 using recently derived results [22, 23] concerning representations of
Hamilton-Jacobi equations in the optimal control theory; see Section 3. In papers [12, 16, 20, 26, 27] one
investigates existence and uniqueness of lower semicontinuous solutions of (1.1), assuming a weak growth and
a weak Lipschitz continuity for the Hamiltonian H. These nonrestrictive conditions imply unboundedness of
the sets dom H∗(t, x, ·) and H∗(t, x, dom H∗(t, x, ·)). Thus, such Hamiltonian does not satisfy the condition (A).
The conditions (H3) and (H4) imposed on the Hamiltonian H imply some type of boundedness of the set
dom H∗(t, x, ·). However, there exists a large class of Hamiltonians H, that satisfy (H1)–(H5), but do not have
bounded sets H∗(t, x, dom H∗(t, x, ·)); see Section 2. This kind of Hamiltonians derive from the optimal control
problems with unbounded control set; see Example 2.10. We also give an example of Hamiltonian H with the
bounded sets dom H∗(t, x, ·) and H∗(t, x, dom H∗(t, x, ·)) such that an appropriately regular function λ bounding
them does not exist; see Example 2.7. Thus, we see that there exists a large class of Hamiltonians, that satisfy
conditions (H1)–(H5), but do not fulfill the condition (A). For such kind of Hamiltonians we prove the following
theorem.

Theorem 1.3. Let g be a lower semicontinuous extended real-valued function which does not take on the value
−∞. Assume that H satisfies (H1)–(H5). If V is the value function associated with H∗ and g, then V is a lower
semicontinuous solution of (1.1). Moreover, if U is a lower semicontinuous solution of (1.1), then U = V on
[0,T ] ×RN.

We prove Theorem 1.3 using methods of the viability theory similarly to Frankowska [13]; see Sections 4 and
5. The difference is that we consider set-valued maps with unbounded values. Whereas in paper [13] set-valued
maps with compact values are considered. These differences cause new difficulties, but we are able to deal with
them. Thus, we obtain result that do not need the positively homogeneous assumption on the Hamiltonian in
p. In papers [3, 7, 9, 11, 18, 19, 24, 25] one can find similar results to Theorem 1.3. However, these results
usually require that the solution is continuous and bounded and that the Hamiltonian satisfies some kind of
uniform continuity conditions with constant functions c(·) and kR(·). Galbraith [16] also obtained similar results
to Theorem 1.3. However, his methods need a strong Lipschitz-type assumption on the Hamiltonian with
respect to the time variable. In the literature related to such results one usually assumes that the Hamiltonian
is continuous in the time variable [13] or only measurable [15]. Recently, there has been a paper [8] assuming
that the Hamiltonian is discontinuous with respect to the time variable in the following sense: it has everywhere
left and right limits and is continuous on a set of the full measure. Finally, it is worth considering whether the
positively homogeneous assumption on the Hamiltonian in p can be removed in papers [8, 14, 15] using the
methods of this paper. At the moment we do not know if it is possible.

The outline of the paper is as follows. Section 2 contains a preliminary material and examples. In Section
3 we prove Theorem 1.2. Section 4 contains new viability and invariance theorems along with their proofs. In
Section 5 using viability and invariance theorems from Section 4 we prove Theorem 1.3.
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2. Preliminary material and examples

Let R = R ∪ {±∞} and ϕ : RM → R be a function. The sets: domϕ = { z ∈ RM | ϕ(z) 6= ±∞ }, gphϕ = { (z, r) ∈
RM × R | ϕ(z) = r } and epiϕ = { (z, r) ∈ RM × R | ϕ(z) 6 r } are called the effective domain, the graph and the
epigraph of ϕ, respectively. We say that ϕ is proper if it never takes the value −∞ and it is not identically equal
to +∞. Using properties of the Legendre-Fenchel conjugate from [30] we can prove the following proposition.

Proposition 2.1. Assume that H satisfies (H1)–(H2). If L(t, x, · ) = H∗(t, x, · ), then

(L1) L : [0,T ] ×RN ×RN → R is lower semicontinuous with respect to all variables;
(L2) L(t, x, v) is convex and proper with respect to v for every t ∈ [0,T ] and x ∈ RN;
(L3) ∀ (t, x, v) ∈ [0,T ] ×RN ×RN ∀ (tn, xn)→ (t, x) ∃ vn → v : L(tn, xn, vn)→ L(t, x, v).

Additionally, if H satisfies (H3), then the following property holds
(L4) ∀R > 0 ∃CR > 0 ∀ (t, x, v) ∈ [0,T ] × IBR ×R

N : |v| > CR ⇒ L(t, x, v) = +∞.
Additionally, if H satisfies (H4), then there exists a measure zero set N such that

(L5) ∀ (t, x, v) ∈ [0,T ] \N ×RN ×RN : |v| > c(t)(1 + |x|) ⇒ L(t, x, v) = +∞.

Actually, we can prove that (H1)–(H4) are equivalent to (L1)–(L5). The set gph S := { (z,w) ∈ RM × RN |

w ∈ S(z) } is called a graph of the set-valued map S : RM ( RN. A set-valued map S : RM ( RN is lower
semicontinuous in Kuratowski’s sense if for each open set O ⊂ RN the inverse image S −1(O) := { z ∈ RM | S(z)∩O 6=
∅ } is open in RM. It is equivalent to ∀ (z,w) ∈ gph S ∀ zn → z ∃wn → w : wn ∈ S(zn) for large n ∈ N.

Let us define the set-valued map Q : [0,T ] ×RN ( RN ×R by the formula

Q(t, x) := { (v, η) ∈ RN ×R | (v,−η) ∈ epi L(t, x, ·) }.

From results in Chapter 5 of [30] we deduce the following corollary.

Corollary 2.2. If L satisfies (L1)–(L3), then

(Q1)(Q1)(Q1) the set-valued map (t, x)→ Q(t, x) has nonempty, closed, convex values;
(Q2)(Q2)(Q2) the set-valued map (t, x)→ Q(t, x) is lower semicontinuous;
(Q3)(Q3)(Q3) the set-valued map (t, x)→ Q(t, x) has a closed graph.

Additionally, if L satisfies (L4), then the following inequality holds
(Q4)(Q4)(Q4) ‖dom L(t, x, ·)‖ 6 CR for every (t, x) ∈ [0,T ] × IBR and R > 0.

Additionally, if L satisfies (L5), then the following inequality holds
(Q5)(Q5)(Q5) ‖dom L(t, x, ·)‖ 6 c(t)(1 + |x|) for almost all t ∈ [0,T ] and every x ∈ RN.

We present Hausdorff continuity of a set-valued map in Lagrangian and Hamiltonian terms. For nonempty
subsets V, W of RM and a number r ∈ R we define rW := {r w | w ∈ W} and V +W := {v+w | v ∈ V, w ∈ W}. Set
IB(z, r) := {z} + rIB, where z∈RM, IB := IB1, r > 0.

Theorem 2.3 ([22], Thm. 2.3). Assume that H satisfies (H1)–(H4) or equivalently L satisfies (L1)–(L5). Let
L(t, x, · ) = H∗(t, x, · ) and H(t, x, · ) = L∗(t, x, · ). Then there are the equivalences (H5)⇔ (L6)⇔ (Q6):

(L6) For any R > 0 there exists an integrable map kR : [0,T ] → [0,+∞) such that for almost all t ∈ [0,T ]
and every x, y ∈ IBR, v ∈ dom L(t, x, ·) there exists w ∈ dom L(t, y, ·) satisfying inequalities |w − v| 6 kR(t)|y − x| and
L(t, y,w) 6 L(t, x, v) + kR(t)|y − x|.

(Q6)(Q6)(Q6) For any R > 0 there exists an integrable map kR : [0,T ]→ [0,+∞) such that Q(t, x) ⊂ Q(t, y) + kR(t) |x −
y| (IB × [−1, 1]) for almost all t ∈ [0,T ] and every x, y ∈ IBR.

Lemma 2.4 (Cesari ([10], Sects. 8.5 and 10.5)). Assume that L satisfies (L1)–(L4). Then the set-valued map
Q for all t ∈ [0,T ] and x ∈ RN has the following property

Q(t, x) =
⋂
ε> 0

cl conv Q(t, x; ε), where
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Q(t, x; ε) :=
⋃

|t−s|<ε, |x−y|<ε

Q(s, y).

2.1. Nonsmooth analysis

The distance from the point y ∈ RM to the nonempty subset E of RM is defined by dist(y, E) := infw∈E | y − w |.
For a function ϕ : RM → R and a point z ∈ domϕ, the subderivative function dϕ(z) : RM → R is defined by

dϕ(z)(v) := lim inf
τ→0+, y→v

ϕ(z + τy) − ϕ(z)
τ

.

The subdifferential of the function ϕ : RM → R at the point z ∈ domϕ is defined by

∂ϕ(z) :=
{

p ∈ RM | 〈v, p〉 6 dϕ(z)(v) for all v ∈ RM
}
.

The tangent cane to the subset E of RM at the point w ∈ E is defined by

TE(w) :=
{
ζ ∈ RM | lim inf

τ→0+

dist(w + τζ, E)
τ

= 0
}
.

We define the normal cone to the subset E of RM at the point w∈E by polarity with TE(w):

NE(w) :=
{
ξ ∈ RM | 〈ζ, ξ〉 6 0 for all ζ ∈ TE(w)

}
.

It follows from ([30], Prop. 6.5 and Ex. 6.16) that y−w ∈ NE(w) whenever w ∈ E and |y−w| = dist(y, E). Moreover,
it follows from ([30], Ex. 8.4 and Thm. 8.9) that p ∈ ∂ϕ(z) if and only if (p,−1) ∈ Nepiϕ(z, ϕ(z)). By the definition of
the normal cone for all (p, q) ∈ Nepiϕ(z, ϕ(z)) we have q 6 0. Moreover, Nepiϕ(z, r) ⊂ Nepiϕ(z, ϕ(z)) for all (z, r) ∈ epiϕ.

Lemma 2.5 (Rockafellar). Assume that ϕ : RM → R is a proper and lower semicontinuous function. Let z ∈
domϕ and (p, 0) ∈ Nepiϕ(z, ϕ(z)). Then there exist zk → z, pk → p, qk → 0 with ϕ(zk)→ ϕ(z) satisfying qk < 0 and
(pk, qk) ∈ Nepiϕ(zk, ϕ(zk)) for all k ∈ N.

2.2. Examples

Now we present examples of Hamiltonians which satisfy (H1)–(H5). These examples have nonregular
Lagrangians, so they do not satisfy the condition (A). It means that these Hamiltonians are not liable to
the reduction described in the introduction. However, they satisfy the assumptions of Theorem 1.3.

Example 2.6. Let us define the Hamiltonian H : R ×R→ R by the formula

H(x, p) :=

{
(
√
|xp| − 1)2 if |xp| > 1,

0 if |xp| 6 1.

This Hamiltonian satisfies conditions (H1)–(H5). Moreover, L(x, · ) = H∗(x, · ) has the form

L(x, v) =


+∞ if v 6∈ (−|x|, |x| ), x 6= 0,
|v|

|x| − |v| if v ∈ (−|x|, |x| ), x 6= 0,

0 if v = 0, x = 0,
+∞ if v 6= 0, x = 0.
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The function v→ L(x, v) is not bounded on dom L(x, ·) = (−|x|, |x| ) for every x ∈ R \ {0}. Therefore, a real-valued
function λ such that L(x, v) 6 λ(x) for all v ∈ dom L(x, ·) and x ∈ R does not exist. So this Hamiltonian does not
satisfy the condition (A).

Example 2.7. Let us define the Hamiltonian H : [0, 1] ×R→ R by the formula

H(t, p) :=

{
max

{
|p| − 1√

t
, 0
}

if p ∈ R, t 6= 0,
0 if p ∈ R, t = 0.

This Hamiltonian satisfies conditions (H1)–(H5). Moreover, L(t, · ) = H∗(t, · ) has the form

L(t, v) =


+∞ if v 6∈ [−1, 1], t 6= 0,
|v|√

t
if v ∈ [−1, 1], t 6= 0,

0 if v = 0, t = 0,
+∞ if v 6= 0, t = 0.

Let λ(t) = 1/
√

t for t ∈ (0, 1] and λ(0) = 0. Observe that ‖dom L(t, ·)‖ 6 1 for all t ∈ [0, 1] and ‖L(t, dom L(t, ·))‖ = λ(t)
for all t ∈ [0, 1]. Therefore, both the sets dom L(t, ·) and L(t, dom L(t, ·)) are bounded for all t ∈ [0, 1]. However,
the function λ on the set [0, 1] is unbounded. So this Hamiltonian does not satisfy the condition (A).

Example 2.8. Let us define the function α : [0, 1] ×R→ [0,+∞) by the formula

α(t, x) :=

{
max

{
|x|
√

t
− 1

t , 0
}

if x ∈ R, t 6= 0,
0 if x ∈ R, t = 0.

The function α is locally Lipschitz continuous. Let c(t) = 1/
√

t for t ∈ (0, 1] and c(0) = 0. Then c is an integrable
function. Moreover, α(t, x) 6 c(t)(1 + |x|) for all t ∈ [0, 1], x ∈ R. However, there is no such constant c that
α(t, x) 6 c(1 + |x|) for all x ∈ R and a.e. t ∈ [0, 1].

Let us define the function β : [0, 1] ×R→ [0,+∞) by the formula

β(t, x) :=


(√

t + |x|
) ∣∣∣ sin

(
1

√
t + |x|

)∣∣∣ if (t, x) 6= (0, 0),

0 if (t, x) = (0, 0).

The function β is continuous. Let k(t) = 2/
√

t for t ∈ (0, 1] and k(0) = 0. Then k is an integrable function. Moreover,
| β(t, x)− β(t, y) | 6 k(t) |x− y| for all t ∈ (0, 1], x, y ∈ R. Additionally, β(t, x) 6 1 + |x| for all t ∈ [0, 1], x ∈ R. However,
there is no such constant kR that | β(t, x) − β(t, y) | 6 kR |x − y| for all x, y ∈ IBR and a.e. t ∈ [0, 1].

Let us define the function γ : [0, 1] ×R→ [0,+∞) by the formula

γ(t, x) := α(t, x) + β(t, x).

The function γ is continuous. Moreover, for any R > 0 there exists an integrable function kR : [0, 1] → R+

such that γ(t, ·) is kR(t)-Lipschitz on IBR for a.e. t ∈ [0, 1]. Additionally, there exists an integrable function
c : [0, 1]→ R+ such that γ(t, x) 6 c(t)(1 + |x|) for all x ∈ R and a.e. t ∈ [0, 1]. However, the functions kR(·) and c(·)
cannot be bounded.
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Example 2.9. Let us define the Hamiltonian H : [0, 1] ×R ×R→ R by the formula

H(t, x, p) :=

{
(
√
γ(t, x) |p| − 1)2 if γ(t, x) |p| > 1,

0 if γ(t, x) |p| 6 1,

where γ is defined as in Example 2.8. This Hamiltonian satisfies conditions (H1)–(H5) with the unbounded
functions kR(·) and c(·). Indeed, let us fix t ∈ [0, 1] and x, y ∈ R. We observe that |H(t, x, p)−H(t, y, p)| 6 kR(t) (1 +

|p|) |x − y| for every p ∈ R if and only if |γ(t, x) − γ(t, y)| 6 kR(t) |x − y|. Moreover, |H(t, x, p) − H(t, x, q)| 6 c(t) (1 +

|x|) |p − q| for all p, q ∈ R if and only if γ(t, x) 6 c(t) (1 + |x|). Additionally, |H(t, x, p) − H(t, x, q)| 6 CR|p − q| for all
p, q ∈ R if and only if γ(t, x) 6 CR. Therefore, in view of Example 2.8, we obtain our assertion. We notice that
L(t, x, · ) = H∗(t, x, · ) has the form

L(t, x, v) =


+∞ if |v| > γ(t, x) 6= 0,
|v|

γ(t, x) − |v| if |v| < γ(t, x) 6= 0,

0 if v = 0, γ(t, x) = 0,
+∞ if v 6= 0, γ(t, x) = 0.

The function v → L(t, x, v) is not bounded on dom L(t, x, ·) = (−γ(t, x), γ(t, x)) for γ(t, x) 6= 0. So this Hamiltonian
does not satisfy the condition (A).

Example 2.10. Let us consider functions f and l satisfying the following conditions:

(1)(1)(1) f : [0,T ] ×RN ×RM → RN and l : [0,T ] ×RN ×RM → R are continuous;
(2)(2)(2) for any R > 0 there exists an integrable function kR : [0,T ]→ [0,+∞) such that
| f (t, x, a) − f (t, y, a)| + |l(t, x, a) − l(t, y, a)| 6 kR(t) |x − y| for every x, y∈IBR, a∈RM

and almost all t ∈ [0,T ];
(3)(3)(3) for any R > 0 there exists a constant CR > 0 such that | f (t, x, a)| 6 CR for every

t ∈ [0,T ], x ∈ IBR, a ∈ RM;
(4)(4)(4) there exists an integrable function c : [0,T ]→ [0,+∞) such that c(t) (1 + |x|) >
| f (t, x, a)| for every x ∈ RN, a ∈ RM and almost all t ∈ [0,T ];

(5)(5)(5) lim|a|→∞[inf(t,x) ∈ [0,T ]× IBR l(t, x, a)] = +∞ for every R > 0;
(6)(6)(6) { ( f (t, x, a), l(t, x, a) + r) | a ∈ RM, r ∈ [0,∞) } is convex for all t ∈ [0,T ], x ∈ RN.

For instance, the following functions:

f̂ (x, a1, a2) = a1|x|/(1 + |a1|), l̂(x, a1, a2) = |a1| + |a2| + |xa2|/(1 + |a2|),

where x ∈ R and (a1, a2) ∈ R ×R, satisfy (1)–(6). Let γ(·, ·) be defined as in Example 2.8.
Then the following functions:

f̌ (t, x, a1, a2) = a1γ(t, x)/(1 + |a1|), ľ(t, x, a1, a2) = |a1| + |a2| + γ(t, x)|a2|/(1 + |a2|),

where t ∈ [0, 1], x ∈ R and (a1, a2) ∈ R ×R, also satisfy (1)–(6), but with the unbounded functions kR(·) and c(·).
We observe that if f and l satisfy (1)–(5), then the Hamiltonian H given by

H(t, x, p) = supa ∈RM { 〈 p , f (t, x, a) 〉 − l(t, x, a) } (2.1)

satisfies (H1)–(H5). Moreover, the Hamiltonian Ĥ given by (2.1) with f̂ , l̂ is the same as in Example 2.6 and
the Hamiltonian Ȟ given by (2.1) with f̌ , ľ is the same as in Example 2.9.
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Using the results from Section 4 of [28] and Section 2 of [29] one can show that if f and l satisfy (1)–(6), and
g is proper and lower semicontinuous, and H is given by (2.1), then

V(t0, x0) = min
x(·) ∈A([t0,T ],RN)

x(t0)=x0

{
g(x(T )) +

∫ T

t0
H∗(t, x(t), ẋ(t)) dt

}

= min
(x,a)(·) ∈S f (t0,x0)

{
g(x(T )) +

∫ T

t0
l(t, x(t), a(t)) dt

}
.

where S f (t0, x0) denotes a set of all trajectory-measurable pairs of the control system{
ẋ(t) = f (t, x(t), a(t)), a(t) ∈ RM, a.e. t ∈ [t0,T ],
x(t0) = x0.

Remark 2.11. We cannot apply Theorem 1.3 to H : [0, 1] ×R→ R given by the formula

H(t, p) :=

{
max

{
|p|
√

t
− 1

t , 0
}

if p ∈ R, t 6= 0,
0 if p ∈ R, t = 0.

Because this Hamiltonian satisfies the conditions (H1)–(H2) and (H4)–(H5), but it does not satisfy the condition
(H3).

3. Reduction theorem

Let us define the Hamiltonian H : R ×R→ R by the formula

H(x, p) = max{ |p| |x| − 1, 0 }.

This Hamiltonian satisfies conditions (H1)–(H5). Moreover, L(x, · ) = H∗(x, · ) has the form

L(x, v) =


+∞ if v 6∈ [−|x|, |x| ], x 6= 0,∣∣ v

x
∣∣ if v ∈ [−|x|, |x| ], x 6= 0,

0 if v = 0, x = 0,
+∞ if v 6= 0, x = 0.

Let λ(x) = |x| + 1 for every x ∈ R. Then λ is Lipschitz continuous with a sublinear growth. Observe that
‖dom L(x, ·)‖ 6 λ(x) and ‖L(x, dom L(x, ·))‖ 6 λ(x) for all x ∈ R. Therefore the above Hamiltonian satisfies the
condition (A). The question is how to construct the Hamiltonian H̄ satisfying (1.5) and (H̄1)–(H̄5).

Barron-Jensen in Proposition 3.7 of [5] proposed the following construction of H̄:

H̄(x, r, p, q) := sup
v∈dom L(x,·)

{ 〈v, p〉 + q L(x, v) }

=

{
max { |p| |x| + q, 0 } if x 6= 0 and r, p, q ∈ R,

0 if x = 0 and r, p, q ∈ R.

Observe that H̄ satisfies (1.5), but the function x→ H̄(x, r, p, q) is not continuous for all (r, p, q) ∈ R×R× (0,∞).
Therefore H̄ does not satisfy (H̄1) and (H̄5). It means that the construction of H̄ proposed by Barron-Jensen is
not appropriate in this case.



HAMILTON-JACOBI-BELLMAN EQUATIONS 9

Our construction of the Hamiltonian H̄ is based on representations of H. The triple (A, f , l) is called a
representation of H if it satisfies the following equality

H(t, x, p) = supa ∈ A { 〈 p , f (t, x, a) 〉 − l(t, x, a) }.

We observe that the triple A = [−1, 1], f (x, a) = a|x|, l(x, a) = |a| is a representation of the Hamiltonian from the
example above. Moreover, the following Hamiltonian

H̄(x, r, p, q) := supa∈A { 〈 p, f (x, a) 〉 + q l(x, a) }
= max { |p| |x| + q, 0 }

satisfies (1.5) and (H̄1)–(H̄5). Obviously, our construction of the Hamiltonian H̄ makes sense, provided that we
can find an appropriately regular representation of H. In papers [22, 23] one proved that this kind representations
always exist.

Now we explain the reason that our construction of Hamiltonian H̄ gives the expected results in contrast to
the construction of Barron-Jensen. We know that Hamiltonian H from the above example satisfies (H1)–(H5).
Therefore, by Theorem 2.3 Lagrangian L satisfies (L6). It means that L is lower-Lipschitz continuous. On the
other hand, our example shows that L is not upper-Lipschitz continuous and, what is more, it is not upper
semicontinuous. Indeed, L is not upper semicontinuous, because lim supi→∞ L (1/i, 1/i) = 1 
 0 = L(0, 0). It is not
difficult to see that the main reason for ineffectiveness of the construction of H̄ proposed by Barron-Jensen is the
lack of upper-Lipschitz continuity of L. If the triple (A, f , l) is a faithful representation of H, then the functions
f and l are Lipschitz continuous. In particular, the function l is lower/upper-Lipschitz continuous. Due to that,
our construction of Hamiltonian H̄ gives the expected result.

In the proof of Theorem 1.2 we need slightly modified Theorems 3.1 and 3.4 from [22]. We use the first
theorem to prove (B)⇒ (A) and the second theorem to prove (A)⇒ (B).

Theorem 3.1. Assume that H satisfies the condition (A) from Theorem 1.2. Then there exists a representation
(IB, f , l) of H such that IB is a closed unit ball in RN+1 and

(R1)(R1)(R1) f : [0,T ] ×RN × IB→ RN and l : [0,T ] ×RN × IB→ R are continuous;
(R2)(R2)(R2) for any R > 0 there exists an integrable function KR : [0,T ]→ [0,+∞) such that

| f (t, x, a) − f (t, y, a)| + |l(t, x, a) − l(t, y, a)| 6 KR(t) |x − y| for every x, y∈IBR, a∈IB
and almost all t ∈ [0,T ];

(R3)(R3)(R3) | f (t, x, a)| + |l(t, x, a)| 6 C(t)(1 + |x|) for all x ∈ RN, a ∈ IB, and for a.e. t ∈ [0,T ],
and some integrable function C : [0,T ]→ [0,+∞).

Proof. Assume that H satisfies (H1)–(H5) with c(·), kR(·). Let λ be as in the condition (A) with ϑ(·), ζR(·). We
define e : [0,T ] ×RN ×RN+1 → R by the formula

e(t, x, a) := SN+1

[
epi H∗(t, x, ·) ∩ IB

(
ω(t, x) a, 2 dist(ω(t, x) a, epi H∗(t, x, ·))

)]
,

where SN+1[ · ] in the Steiner selection and ω(t, x) := 2λ(t, x) + 1. By Section 5 of [22] the function e(·, ·, ·) is well
defined and continuous. Moreover, e(t, · , a) is 1

2 KR(t)-Lipschitz on IBR for a.e. t ∈ [0,T ] and all a ∈ IB, where
KR(t) := 20(N + 1)(kR(t) + 2ζR(t)). Additionally,

∀ (t, x) ∈ [0,T ] ×RN+1 gph H∗(t, x, ·) ⊂ e(t, x, IB) ⊂ epi H∗(t, x, ·). (3.1)

We show that |e(t, x, a)| 6 1
2C(t)(1 + |x|) for a.e. t ∈ [0,T ] and all x ∈ RN, a ∈ IB, where C(t) := 20ϑ(t) + 6. Indeed,

by page 366 of [2] we have SN+1[W] ∈ W for every nonempty, convex and compact subset W of RN+1. Thus, for all
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t ∈ [0,T ], x ∈ RN, a ∈ RN+1, we obtain

e(t, x, a) ∈ IB
(
ω(t, x) a, 2 dist(ω(t, x) a, epi H∗(t, x, ·))

)
. (3.2)

Let v ∈ dom H∗(t, x, ·) 6= ∅. Then (v,H∗(t, x, v)) ∈ epi H∗(t, x, ·). Hence, we obtain

dist(0, epi H∗(t, x, ·)) 6 |(v,H∗(t, x, v))| 6 |v| + |H∗(t, x, v))| 6 2λ(t, x) (3.3)

for all t ∈ [0,T ] and x ∈ RN. Combining (3.2) and (3.3) we obtain

|e(t, x, a)| 6 ω(t, x) |a| + 2 dist(ω(t, x) a, epi H∗(t, x, ·))
6 3ω(t, x) + 2 dist(0, epi H∗(t, x, ·))
6 3ω(t, x) + 4 λ(t, x) = 10 λ(t, x) + 3
6 (10ϑ(t) + 3)(1 + |x|)

for all t ∈ [0,T ], x ∈ RN, a ∈ IB.
Next, we define the functions f and l as components of the function e, i.e., e = ( f , l). Then, by (3.1) and

Proposition 5.7 pf [22], the triple (IB, f , l) is a representation of H. It is not difficult to prove that the functions
f and l satisfy (R1)–(R3).

Theorem 3.2. If the triple (IB, f , l) is a representation of H and the functions f , l satisfy (R1)–(R3), then H
satisfies the condition (A).

Proof. Let (IB, f , l) be a representation of H and f , l satisfy (R1)–(R3) with C(·), KR(·). Using (R1)–(R3) one
can show that H satisfies (H1)–(H5). We define a simplex in RN+1 by

∆ := {(α0, . . . , αN) ∈ [0, 1]N+1 | α0 + · · · + αN = 1}.

Obviously, the set ∆ is compact. Moreover, we define the set A by A := IB
N+1× ∆. We notice that the set A is

compact. The functions f, l are defined for every t ∈ [0,T ], x ∈ RN and a = (a0, . . . , aN , α0, . . . , αN) ∈ IB N+1× ∆ = A

by the formulas:

f(t, x, a) :=
N

∑
n=0

αn f (t, x, an), l(t, x, a) :=
N

∑
n=0

αnl(t, x, an).

Using (R1)–(R3) one can show that f, l are continuous. Moreover, f(t, ·, a) and l(t, ·, a) are KR(t)-Lipschitz on IBR

for a.e. t ∈ [0,T ] and all a ∈ A. Additionally, |f(t, x, a)| 6 C(t)(1 + |x|) and |l(t, x, a)| 6 C(t)(1 + |x|) for a.e. t ∈ [0,T ]
and all x ∈ RN, a ∈ A. It is not difficult to show that the triple (A, f, l) is also the representation of H. In view of
Lemma 4.2 in [22] and Theorem 2.29 of [30] we obtain the following equalities:

f(t, x, A) = conv f (t, x, A) = dom H∗(t, x, ·). (3.4)

We define λ : [0,T ] ×RN → [0,∞) by the formula

λ(t, x) := supa∈A

{
|f(t, x, a)| + |l(t, x, a)|

}
.

We observe that λ is a continuous function. Moreover, λ(t, ·) is ζR(t)-Lipschitz on IBR for a.e. t ∈ [0,T ], where
ζR(t) := 2KR(t). Additionally, λ(t, x) 6 ϑ(t)(1 + |x|) for a.e. t ∈ [0,T ] and all x ∈ RN, where ϑ(t) := 2C(t). Fix t ∈ [0,T ]
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and x ∈ RN. If v̄ ∈ dom H∗(t, x, ·), then by the equality (3.4) there exists ā ∈ A such that v̄ = f(t, x, ā). Therefore,
by Lemma 4.1 of [22],

H∗(t, x, v̄) = H∗(t, x, f(t, x, ā)) 6 l(t, x, ā) 6 λ(t, x). (3.5)

Since (A, f, l) is a representation of H, there exists ã ∈ A such that H(t, x, 0) = −l(t, x, ã) The latter equality
implies, for all v ∈ dom H∗(t, x, ·),

− λ(t, x) 6 −|l(t, x, ã)| = −|H(t, x, 0)| 6 H∗(t, x, v). (3.6)

Combining (3.5) and (3.6) we obtain ‖H∗(t, x, dom H∗(t, x, ·))‖ 6 λ(t, x) for all t ∈ [0,T ], x ∈ RN. Moreover, using
(3.4), we obtain ‖dom H∗(t, x, ·)‖ 6 λ(t, x) for all t ∈ [0,T ], x ∈ RN. It completes the proof.

Proof Theorem 1.2. Let H : [0,T ] ×RN ×RN → R be given.
Suppose that H satisfies the condition (A). Then, in view of Theorem 3.1, there exists a representation

(IB, f , l) of H satisfying (R1)–(R3). Define H̄ : [0,T ] ×RN+1×RN+1 → R by

H̄(t, x, r, p, q) := supa∈IB

〈(
p, q
)
,
(

f (t, x, a), l(t, x, a)
)〉
.

Using (R1)–(R3), it is not difficult to prove that H̄ satisfies (H̄1)–(H̄5). Moreover, H̄ is positively homogeneous
in (p, q), this comes directly from its definition. Since the triple (IB, f , l) is a representation of H, we have

H̄(t, x, r, p,−1) = supa∈IB

〈(
p,−1

)
,
(

f (t, x, a), l(t, x, a)
)〉

= supa∈IB

{〈
p, f (t, x, a)

〉
− l(t, x, a)

}
= H(t, x, p).

Thus H̄ satisfies (1.5). Consequently, the condition (B) holds.
Conversely, suppose that the condition (B) holds. Then there exists H̄ satisfying (1.5) and (H̄1)–(H̄5) with

c(·), kR(·). We define the set-valued map Ē : [0,T ] ×RN+1 ( RN+1 by

Ē(t, x, r) :=
{

(v, η) ∈ RN+1
∣∣ 〈(v, η), (p, q)

〉
6 H̄(t, x, r, p, q) for all (p, q) ∈ RN+1

}
.

From results in Section 7 of [13] we deduce that Ē has nonempty, compact, convex values and is continuous.
Moreover, Ē(t, ·, ·) is kR(t)-Lipschitz on IBR for a.e. t ∈ [0,T ] and ‖Ē((t, x, r))‖ 6 c(t)(1 + |(x, r)|) for a.e. t ∈ [0,T ]
and all (x, r) ∈ RN+1. Additionally,

H̄(t, x, r, p, q) = sup (v,η)∈Ē(t,x,r)

〈
(p, q), (v, η)

〉
for all t ∈ [0,T ], (x, r) ∈ RN+1, (p, q) ∈ RN+1. Let KR(t) := 20(N + 1)kR(t) and C(t) := 2c(t). By Theorem 9.6.2 of [2]
there exists a continuous function ē : [0,T ] × RN+1× IB → RN+1 such that ē(t, x, r, IB) = Ē(t, x, r) for all t ∈ [0,T ],
(x, r) ∈ RN+1. Moreover, the function ē(t, ·, ·, a) is 1

2 KR(t)-Lipschitz on IBR and |ē(t, x, r, a)| 6 1
2C(t)(1 + |(x, r)|) for

a.e. t ∈ [0,T ] and all (x, r) ∈ RN+1, a ∈ IB. Next, we define functions f̄ and l̄ as components of a function ē, i.e.,
ē = ( f̄ , l̄). Then we have

H(t, x, p) = H̄(t, x, 0, p,−1)
= sup(v,η)∈Ē(t,x,0)

〈
(p,−1), (v, η)

〉
= supa∈IB

〈(
p,−1

)
,
(

f̄ (t, x, 0, a), l̄(t, x, 0, a)
)〉

= supa∈IB

{〈
p , f̄ (t, x, 0, a)

〉
− l̄(t, x, 0, a)

}
.
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Let f (t, x, a) := f̄ (t, x, 0, a) and l(t, x, a) := l̄(t, x, 0, a). Then (IB, f , l) is a representation of H and the functions
f , l satisfy (R1)–(R3). Therefore, in view of Theorem 3.2, H satisfies the condition (A), which completes the
proof.

4. Viability and invariance theorems

In this section we present viability and invariance theorems with unbounded differential inclusions. Working
with unbounded differential inclusions we encounter new problems which we solve in this section. Let πK(·) be
a projection of RN onto a nonempty closed convex subset K of RN. We denote by χK(·) an indicator function of
a subset K of RN.

4.1. Invariance theorem

We start by formulating the invariance theorem:

Theorem 4.1 (Invariance theorem). Assume that L satisfies (L1)–(L6). Let U be a proper and lower
semicontinuous function satisfying the following condition:

For every (t, x) ∈ dom U ∩ (0,T ] ×RN , every (nt, nx, nu) ∈ Nepi U(t, x,U(t, x)),
every v ∈ dom L(t, x, ·), one has nt + 〈v, nx〉 − nuL(t, x, v) > 0. (4.1)

Then for every t0 ∈ [0,T ) and every absolutely continuous function (x, u) : [t0,T ] → RN+1 satisfying (ẋ, u̇)(t) ∈
Q(t, x(t)) for a.e. t ∈ [t0,T ] and u(T ) > U(T, x(T )), we obtain the following inequality u(t) > U(t, x(t)) for all
t ∈ [t0,T ].

We show that the standard methods fail when used in trying to prove the Theorem 4.1.
In the first method we take Q̂(s, x, u) = {1}×Q(π[0,T ](s), πIBR (x)) for all s, u ∈ R, x ∈ RN, where R = ‖x([t0,T ])‖+1.

Define y(t) = (t, x(t), u(t)) and ϕ(t) = dist(y(t), epi U) for all t ∈ [t0,T ]. We notice that ẏ(t) ∈ Q̂(y(t)) for a.e. t ∈ [t0,T ]
and ϕ is absolutely continuous with ϕ(T ) = 0. The latter and (4.1) imply ϕ̇(t) 6 k ϕ(t) for a.e. t ∈ [t0,T ], provided
that Q̂ is k-Lipschitz with respect to all variables; see Theorem 4.2 of [26]. Hence, using Gronwall’s lemma, we
have ϕ(t) = 0 for all t ∈ [t0,T ]. Therefore, u(t) > U(t, x(t)) for all t ∈ [t0,T ]. We cannot apply this method to prove
Theorem 4.1, because we do not assume that Q is Lipschitz continuous with respect to the time variable.

The second method is similar to the first one, but does not require the assumption that Q is Lipschitz
continuous with respect to the time variable. Let Q̂(t, x, u) = Q(t, πIBR (x)) for all t ∈ [0,T ], x ∈ RN, u ∈ R, where
R = ‖x([t0,T ])‖ + 1. Then (ẋ, u̇)(t) ∈ Q̂(t, x(t), u(t)) and Q̂(t, ·, ·) is kR(t)-Lipschitz for a.e. t ∈ [0,T ]. Define ϕ(t) =

dist((x, u)(t), epi U(t, ·)) for all t ∈ [t0,T ]. Our assumptions imply that ϕ(·) is lower semicontinuous with ϕ(T ) = 0.
One can prove, due to (4.1), that dϕ(t)(1) 6 k(t)ϕ(t) for a.e. t ∈ [t0,T ]; see page 394 of [1]. The latter inequality
yields ϕ ≡ 0, provided that dϕ(t)(1) < ∞ for every t ∈ [t0,T ]; see page 42 of [17]. Unfortunately, without additional
assumptions, we cannot say whether the latter condition is true. So, we cannot apply this method to prove
Theorem 4.1.

The third method is based on the reduction set-valued map with unbounded values to the case of set-valued
map with compact values. This kind of method was used by author in the work [20]. Let R = ‖x([t0,T ])‖ + 1.
By (L3) there exists δ > 0 such that Q(t, x) ∩ (IBδ × [−δ, δ]) 6= ∅ for all t ∈ [0,T ], x ∈ IBR. Let λ = 1 + 3δ +

ess sup t∈[t0,T ] |(ẋ, u̇)(t)|. We define Q̂(t, x, u) = Q(t, πIBR (x)) ∩ (IBλ × [−λ, λ]) for every t ∈ [0,T ], x ∈ RN, u ∈ R. The

set-valued map Q̂ is continuous and Q̂(t, ·, ·) is kR(t)-Lipschitz for a.e. t ∈ [0,T ]; see Proposition 4.39 of [30].
Moreover, (ẋ, u̇)(t) ∈ Q̂(t, x(t), u(t)) for a.e. t ∈ [0,T ]. Now we can use invariance theorem with compact differential
inclusions proved in the work of Frankowska ([13], Thm. 3.3). Unfortunately, we cannot use this reduction to
prove our Theorem 4.1, because in general the function u̇(·) is unbounded, i.e. λ = ∞.

As we mentioned earlier, Frankowska proved the invariance theorem for set-valued maps with compact values;
see ([13], Thm. 3.3). In the proof of this theorem, she used the parametrization Θ of the set-valued map Q̂ with
the parameter set IB. Indeed, in view of Theorem 9.6.2 of [2] there exists a continuous single-valued map Θ defined
on [0,T ] ×RN+1 × IB into RN+1 such that Θ(t, x, u, IB) = Q̂(t, x, u) for all t ∈ [0,T ], x ∈ RN, u ∈ R. Moreover, Θ(t, ·, ·, ·)
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is kR(t)-Lipschitz for a.e. t ∈ [0,T ]. Let (ẋ, u̇)(t) ∈ Q̂(t, x(t), u(t)) for a.e. t ∈ [t0,T ]. Then, by Filippov Theorem,
there exists a measurable function a : [t0,T ] → IB such that (ẋ, u̇)(t) = Θ(t, x(t), u(t), a(t)) for a.e. t ∈ [t0,T ]. We
notice that a(·) is also integrable, since it is bounded. Then we can choose a sequence of continuous functions
ai : [t0,T ] → IB converging to a(·) in L1-spaces. Let fi(t, x, u) = Θ(t, x, u, ai(t)) for all t ∈ [t0,T ], x ∈ RN, u ∈ R. We
observe that fi is continuous and fi(t, ·, ·) is kR(t)-Lipschitz for a.e. t ∈ [t0,T ]. By Picard-Lindelöf Theorem, there
exist unique solutions (ẋi, u̇i)(t) = fi(t, xi(t), ui(t)) with (xi, ui)(T ) = (x(T ), u(T )). In view of Viability Theorem, we
have (xi, ui)(t) ∈ epi U(t, ·) for all t ∈ [t0,T ]. Passing to the limit as i → ∞, we obtain (x, u)(t) ∈ epi U(t, ·) for all
t ∈ [t0,T ]. Obviously, we cannot use this method to prove Theorem 4.1, because parametrization of the set-valued
map Q with the compact parameter set does not exist. However, there is a parametrization of the set-valued
map Q with the unbounded parameter set:

Theorem 4.2 ([23], Thm. 5.1). Assume that Q : [0,T ] × RN ( RM satisfies (Q1)-(Q3). Then there exists a
continuous function Θ : [0,T ] ×RN ×RM → RM such that

(P1) Θ(t, x,RM) = Q(t, x) for all t ∈ [0,T ], x ∈ RN;

(P2) a = Θ(t, x, a) for all a ∈ Q(t, x), t ∈ [0,T ], x ∈ RN.

Additionally, if Q satisfies (Q6), then we have

(P3)
∣∣Θ(t, x, a) − Θ(t, y, b)

∣∣ 6 10 M
(
kR(t)|x − y| + |a − b|

)
for all x, y ∈ IBR, a, b ∈ RM and almost all t ∈ [0,T ].

It turns out that the lack of compactness of the parameter set causes a serious problem. Indeed, let (ẋ, u̇)(t) ∈
Q(t, x(t)) for a.e. t ∈ [t0,T ]. If Θ(t, x,RN+1) = Q(t, x) for all t ∈ [0,T ], x ∈ RN, then by Filippov Theorem there
exists a measurable function a : [t0,T ]→ RN+1 such that (ẋ, u̇)(t) = Θ(t, x(t), a(t)) for a.e. t ∈ [t0,T ]. Obviously, the
measurable function a(·) may not be integrable. Therefore, we cannot approximate a(·) by continuous functions in
L1-spaces, which prevents the continuation of the Frankowska method. It turns out that the above approximation
problem can be solved using an extra-property. Property (P2) in Theorem 4.2 is called the extra-property.
We discovered this property by researching the regularities of the value functions in [23]. We observe that
Parametryzation Theorem 9.6.2 in the monograph of Aubin-Frankowska [2] does not contain the property
of type (P2). Now, we show how this extra-property can be used to solve the approximation problem. Let
(ẋ, u̇)(t) ∈ Q(t, x(t)) for a.e. t ∈ [t0,T ]. Define a(t) := (ẋ(t), u̇(t)) for a.e. t ∈ [t0,T ]. In view of (P2) we have (ẋ, u̇)(t) =

a(t) = Θ(t, x(t), a(t)) for a.e. t ∈ [t0,T ]. Since (x, u)(·) is an absolutely continuous function, (ẋ, u̇)(·) is an integrable
function. Thus, a(·) is also integrable. Therefore, a(·) can be approximated by continuous functions in L1-
spaces. Summarizing, the method of Frankowska can be applied to the unbounded case, provided that we have
appropriately regular parametrization of the set-valued map.

Proof of Theorem 4.1. In view of Corollary 2.2 and Theorem 2.3 the set-valued map Q satisfies the conditions
of Theorem 4.2. Therefore there exists a continuous function Θ satisfying the assertions: (P1), (P2) and (P3) of
Theorem 4.2. Set R := ‖x(·)‖ + ‖u(·)‖ + 2, where ‖ · ‖ denotes the supremum norm.

We define the function Θ̄ : [0,T ] ×RN ×R ×RN+1 → RN ×R by the formula

Θ̄(t, x, u, a) := Θ(t, πIBR (x), a).

Since Θ satisfies (P3), we conclude that for all t ∈ [0,T ], x, y ∈ RN, u,w ∈ R, a, b ∈ RN+1,

|Θ̄(t, x, u, a) − Θ̄(t, y,w, b)| = |Θ(t, πIBR (x), a) − Θ(t, πIBR (y), b)|
6 10 (N + 1)

(
kR(t) |πIBR (x) − πIBR (y)| + |a − b|

)
6 10 (N + 1)

(
kR(t) |x − y| + |u − w| + |a − b|

)
. (4.2)
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By (P1) we get Θ̄(t, x, u,RN+1) = Q(t, x) for all t ∈ [0,T ], x ∈ IBR, u ∈ R. We always have Nepi U(t, x, u) ⊂
Nepi U(t, x,U(t, x)) for all (t, x, u) ∈ epi U. Therefore, in view of (4.1),

∀ (t, x, u) ∈ epi U ∩ (0,T ] × IBR ×R, ∀ (nt, nx, nu) ∈ Nepi U(t, x, u),
∀ a ∈ RN+1, nt + 〈 (nx, nu), Θ̄(t, x, u, a) 〉 > 0.

By continuity of Θ̄ and properties ([30], Cor. 6.21), ([2], p. 130) of normal and tangent canes

∀ (t, x, u) ∈ epi U ∩ (0,T ] × IBR ×R, ∀ a ∈ RN+1, (−1,−Θ̄(t, x, u, a)) ∈ Tepi U(t, x, u). (4.3)

Set a(·) := (ẋ, u̇)(·) ∈ Q(·, x(·)). Then (ẋ(t), u̇(t)) = Θ̄(t, x(t), u(t), a(t)) for a.e. t ∈ [t0,T ]. Indeed, since Θ satisfies (P2)
and x([t0,T ]) ⊂ IBR, we have

(ẋ(t), u̇(t)) = a(t) = Θ(t, x(t), a(t)) = Θ(t, πIBR (x(t)), a(t)) = Θ̄(t, x(t), u(t), a(t)).

Since a(·) ∈ L1([t0,T ],RN+1), we can choose functions ai(·) ∈ C([t0,T ],RN+1) such that limi→∞ ‖(ai − a)(·)‖L1 = 0,
where ‖ · ‖L1 denotes the standard norm in L1([t0,T ],RN+1). Since Θ satisfies (4.2), in view of Picard-Lindelöf
Theorem, there exist unique solutions (xi, ui)(·) ∈ C1([t0,T ],R2N+1) of initial value problems

(ẋi(t), u̇i(t)) = Θ̄(t, xi(t), ui(t), ai(t)) for all t ∈ [t0,T ], (4.4)

(xi, ui)(T ) = (x(T ), u(T )).

By the inequality (4.2) we have

|(ẋi, u̇i)(t) − (ẋ, u̇)(t)| = |Θ̄(t, xi(t), ui(t), ai(t)) − Θ̄(t, x(t), u(t), a(t))|
6 10 (N + 1)

(
kR(t) |xi(t) − x(t)| + |ui(t) − u(t)| + |ai(t) − a(t)|

)
.

Therefore, because of Gronwall’s lemma,

‖(xi, ui)(·) − −(x, u)(·)‖ 6 10 (N + 1) ‖(ai − a)(·)‖L1 exp
(∫ T

t0
20 (N + 1) (1 + kR(t)) dt

)
.

Since limi→∞ ‖(ai − a)(·)‖L1 = 0, we have limi→∞ ‖(xi, ui)(·)− (x, u)(·)‖ = 0. It means that (xi, ui)(·) converge uniformly
to (x, u)(·) on [t0,T ]. In particular there exists i0 such that xi([t0,T ]) ⊂ IBR−1 for all i > i0.

Now we show that (xi, ui)(t) ∈ epi U(t, ·) for all t ∈ [t0,T ] and i > i0. Let us fix i > i0. We define τ• := inf{ τ ∈
[t0,T ] | ∀ t ∈ [τ,T ] (xi, ui)(t) ∈ epi U(t, ·) }. Suppose, contrary to our claim, that t0 < τ• 6 T . By lower semicon-
tinuity of U we have (xi, ui)(τ•) ∈ epi U(τ•, ·). We define the function f : R × RN × R → R × RN × R by the
formula

f (t, x, u) =


( 1, Θ̄(t0, x, u, ai(t0) ) if t < t0,

( 1, Θ̄(t, x, u, ai(t) ) if t0 6 t 6 T,

( 1, Θ̄(T, x, u, ai(T ) ) if t > T,

We observe that f is continuous. Furthermore, in view of (4.3), we have

∀ (t, x, u) ∈ epi U ∩ (t0,T + 1) × IBR ×R, − f (t, x, u) ∈ Tepi U(t, x, u). (4.5)
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In view of Nagumo Backward Viability Local Theorem ( see [1] ) there exist t• ∈ (t0, τ•) and a function (s•, x•, u•)(·)
of class C1 such that 

(ṡ•(t), ẋ•(t), u̇•(t)) = f (s•(t), x•(t), u•(t)) for all t ∈ [t•, τ•],

(s•, x•, u•)(t) ∈ epi U for all t ∈ [t•, τ•],

(s•, x•, u•)(τ•) = (τ•, xi(τ•), ui(τ•)) ∈ (t0,T ] × IBR−1 ×R.

Observe that s•(t) = t for all t ∈ [t•, τ•]. Therefore, (x•, u•)(t) ∈ epi U(t, ·) for all t ∈ [τ•, τ•]. Since (x•, u•)(·) is also
a solution of (4.4) on [t•, τ•] with (x•, u•)(τ•) = (xi(τ•), ui(τ•)), we have (x•, u•)(t) = (xi, ui)(t) for all t ∈ [t•, τ•].
Therefore (xi, ui)(t) ∈ epi U(t, ·) for all t ∈ [t•,T ], which contradicts the definition of τ•.

Therefore (xi, ui)(t) ∈ epi U(t, ·) for all t ∈ [t0,T ] and i > i0. Passing to the limit as i→ ∞, we obtain (x, u)(t) ∈
epi U(t, ·) for all t ∈ [t0,T ].

4.2. Viability theorem

We start by formulating the viability theorem:

Theorem 4.3 (Viability theorem). Assume that L satisfies (L1)–(L5). Let U be a proper and lower
semicontinuous function satisfying the following condition:

For every (t, x) ∈ dom U ∩ [0,T ) ×RN , every (nt, nx, nu) ∈ Nepi U(t, x,U(t, x)),
there exist (tk, xk)→ (t, x) and αk → 0, exists vk ∈ dom L(tk, xk, ·) such that
nt + 〈vk, nx〉 − nuL(tk, xk, vk) 6 αk for all k ∈ N.

(4.6)

Then for every (t0, x0) ∈ dom U ∩ [0,T )×RN there exists an absolutely continuous function (x, u) : [t0,T ]→ RN ×R

with (x, u)(t0) = (x0,U(t0, x0)) which satisfies (ẋ, u̇)(t) ∈ Q(t, x(t)) for a.e. t ∈ [t0,T ] and u(t) > U(t, x(t)) for all
t ∈ [t0,T ].

We notice that the boundary condition (4.6) is new. In the next section we show that every lower semicon-
tinuous solution of (1.1) satisfies the new boundary condition (4.6); see Proposition 5.8. However, not every
lower semicontinuous solution of (1.1) satisfies the following classic boundary condition:

For every (t, x) ∈ dom U ∩ [0,T ) ×RN , every (nt, nx, nu) ∈ Nepi U(t, x,U(t, x)),
there exist v ∈ dom L(t, x, ·) such that nt + 〈v, nx〉 − nuL(t, x, v) 6 0. (4.7)

For instance, we consider the Lagrangian L : [0,T ] ×R ×R→ R given by

L(t, x, v) =


+∞ if |v| > 2, t 6= x,
|v|

2
√
|t−x| exp(2

√
|t−x| ) if |v| 6 2, t 6= x,

0 if v = 0, t = x,
+∞ if v 6= 0, t = x.

(4.8)

This Lagrangian satisfies (L1)–(L5); see [21]. Let V : [0,T ] ×R→ R be given by

V(t, x) =


exp

(
−2
√

x − t
)
− 1 if x > t,

1 − exp
(
−2
√

t − x
)

if 2t − T 6 x < t,
1 if x < 2t − T.

(4.9)

Then V is the value function associated with g(·) = V(T, ·) and L; see Section 5 of [21]. Moreover, V is a lower
semicontinuous solution of (1.1); see Theorem 4.2 of [21]. We observe that (1,−1, 0) ∈ Nepi V (ξ, ξ,V(ξ, ξ)), where
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ξ ∈ (0,T ). We suppose that (4.7) holds. Then 1 + (−1) · 0 − 0 · L(ξ, ξ, 0) 6 0, which is impossible. However, for
(tk, xk) = (ξ, ξ) − 1

2k (ξ, ξ−T ), αk = 1
k and vk = 1 − 1

2k , we have 1 + (−1) · vk − 0 · L(tk, xk, vk) 6 αk for all k ∈ N.
We notice that the above Lagrangian does not satisfy the condition (L6). Obviously, this condition is not

required in Theorem 4.3. Nevertheless, the natural question arises, whether adding the condition (L6) helps.
It turns out that it helps, but not much. Namely, if the Lagrangian L satisfies (L1)–(L6), the set-valued map
t → dom L(t, x, ·) is continuous in the Hausdorff sense for every x ∈ RN, and the set dom L(t, x, ·) is closed for every
(t, x) ∈ [0,T ] ×RN, then the conditions (4.6) and (4.7) are equivalent. In Example 2.7 the Lagrangian L satisfies
(L1)–(L6), but t → dom L(t, ·) is not continuous. In Example 2.6 the Lagrangian L satisfies (L1)–(L6), but the
set dom L(x, ·) is not closed for all x ∈ R \ {0}.

In the proof of Theorem 4.3 we construct a viable trajectory using Euler’s broken lines and methods from
the monography of Cesari [10], similarly to Plaskacz-Quincampoix in the proof of Theorem 3.19 in [26]. There
are two significant differences between proofs of Theorem 4.3 and Theorem 3.19 of [26]. The first one relates to
the modification of the ε-approximate solution. This change is needed, because in Theorem 4.3 we assume the
new boundary condition (4.6), but Plaskacz-Quincampoix in Theorem 3.19 of [26] assume the classic boundary
condition. The modification of the proof can be done due to Lemma 4.4, which generalizes ([26], Lem. 4.1).
The second difference relies on isolating a local version of Theorem 4.3. This decomposition is required, since in
Theorem 4.3 functions c(·), kR(·) might be unbounded, but Plaskacz-Quincampoix in Theorem 3.19 of [26] work
with constant functions c(·), kR(·).

Lemma 4.4. If 〈 f , y − w〉 < |y − w|2, then the inequality

|y + h( f − (y − w)) − w| 6 |y − w| (4.10)

holds for each h satisfying

0 6 h < 2
|y − w|2 − 〈 f , y − w〉
| f − (y − w)|2

. (4.11)

Proof. First, we show that (4.11) is well-defined. Indeed, if f = y − w, then

|y − w|2 = 〈y − w, y − w〉 = 〈 f , y − w〉 < |y − w|2,

which is impossible. Let f 6= y − w. Then, by 〈 f , y − w〉 < |y − w|2, we have

0 < 2
|y − w|2 − 〈 f , y − w〉
| f − (y − w)|2

.

Next, we show that (4.10) holds. By multiplying both sides of (4.11) by | f − (y−w)|2 and moving the expressions
from right to left we obtain

2〈y − w, f 〉 − 2|y − w|2 + h| f − (y − w)|2 < 0.

We transform the above inequality as follows

0 > 2〈y − w, f 〉 − 2〈y − w, y − w〉 + h| f − (y − w)|2

> 2〈y − w, f − (y − w)〉 + h| f − (y − w)|2.

By multiplying both sides of the above inequality by h, we get

2h〈y − w, f − (y − w)〉 + h2| f − (y − w)|2 6 0.
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By adding |y − w|2 to both sides of the above inequality, we have

|y − w|2 + 2h〈y − w, f − (y − w)〉 + h2| f − (y − w)|2 6 |y − w|2,

hence

|y − w + h( f − (y − w))|2 6 |y − w|2.

We observe that the above inequality implies (4.10).

Theorem 4.5 (Local viability theorem). Assume that L satisfies (L1)–(L4). Let U be a proper and lower
semicontinuous function satisfying the following condition:

For every (t, x, u) ∈ epi U ∩ [0,T ) ×RN ×R, every (nt, nx, nu) ∈ Nepi U(t, x, u),
there exist (tk, xk)→ (t, x) and αk → 0, exists vk ∈ dom L(tk, xk, ·) such that
nt + 〈vk, nx〉 − nuL(tk, xk, vk) 6 αk for all k ∈ N.

(4.12)

Then for every (t0, x0, u0) ∈ epi U ∩ [0,T ) ×RN ×R there exist T0 ∈ (t0,T ) and an absolutely continuous function
(x, u) : [t0,T0] → RN ×R with (x, u)(t0) = (x0, u0) which satisfies (ẋ, u̇)(t) ∈ Q(t, x(t)) for a.e. t ∈ [t0,T0] and u(t) >
U(t, x(t)) for all t ∈ [t0,T0].

Remark 4.6. In Theorem 4.5 the condition (L5) is not required. Moreover, the conditions (4.6) and (4.12) are
equivalent, since Nepi U(t, x, u) ⊂ Nepi U(t, x,U(t, x)) for (t, x, u) ∈ epi U.

Proof Theorem 4.5. Fix (t0, x0, u0) ∈ epi U ∩ [0,T ) × RN × R and set R := |x0| + 2. Define L•(t, x, u, v) :=
L(π[0,T ](t), πIBR

(x), v) and Q•(t, x, u) := Q(π[0,T ](t), πIBR
(x)) for every t, u ∈ R, x, v ∈ RN. In view of (L4) there exists

a constant CR > 0 such that ‖dom L(t, x, ·)‖ 6 CR for every (t, x) ∈ [0,T ] × IBR. Therefore ‖dom L•(t, x, u, ·)‖ 6 CR

for every t, u ∈ R, x ∈ RN. Since functions U and L are proper and lower semicontinuous, there exists a constant
D > 0 such that U(t, x) > −D and L(t, x, v) > −D for every t ∈ [0,T ], x ∈ IBR, v ∈ IBCR . Therefore L•(t, x, u, v) > −D
for every t, u ∈ R, x, v ∈ RN.

Step 1. Definition and properties of an εεε-approximate solution. Let ε and tε satisfy

0 < ε 6 ε0 := (T − t0) [2(1 + T )]−1, (4.13)

t0 < tε 6 T0 := min
{

t0 + [1 + CR]−1, t0 + (T − t0) 2−1} . (4.14)

We say that a family ∑ = {[t j, τ j) | j ∈ J} of nonempty intervals is a subdivision of the interval [t0, tε) if [t j, τ j) ∩
[ti, τi) = ∅ for all j 6= i and [t0, tε) =

⋃
j∈J[t j, τ j). Let y(·) = (s(·), x(·), u(·)) be an absolutely continuous function

defined on [t0, tε) into R × RN × R such that y(t0) = (t0, x0, u0). We say that a triple
(
[t0, tε), y(·),∑

)
is an ε-

approximate solution if the following inequality holds

dist(y(t), epi U) 6 ε for all t ∈ [t0, tε), (4.15)

and for all j ∈ J there exist f j, w j, w̄ j such that

(i) ∀ t ∈ [t j, τ j) y(t) = y(t j) + (t − t j)( f j − (y(t j) − w j)),
(ii) f j ∈ {1} × Q•(w̄ j), |w̄ j − w j| 6 ε, w j ∈ epi U,

(iii) |w j − y(t j)| = dist(y(t j), epi U),
(iv) If y(t j) ∈ epi U, then (τ j − t j)| f j| 6 ε,
(v) If y(t j) /∈ epi U, then |y(t) − w j| 6 |y(t j) − w j| for all t ∈ [t j, τ j).
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We show that an ε-approximate solution satisfies the following inequality

|w j − y(t)| 6 ε for all t ∈ [t j, τ j). (4.16)

Indeed, suppose that y(t j) ∈ epi U. Then by (iii), (i) we get w j = y(t j), |w j − y(t)| = (t − t j)| f j|. The latter, together
with (iv), implies (4.16). Now, suppose that y(t j) /∈ epi U. Then by (iii), (4.15) we get |w j − y(t j)| 6 ε. The latter,
together with (v), implies (4.16).

We need the following notations:

(tw
j , x

w
j , u

w
j ) = w j , (nt

j, n
x
j , n

u
j ) = y(t j) − w j ,

(1, v j,−η j) = f j , where η j > L•(w̄ j, v j) and |w̄ j − w j| 6 ε.

We also need auxiliary functions defined by

nu = ∑
j∈J
χ[t j,τ j)n

u
j , nx = ∑

j∈J
χ[t j,τ j)n

x
j , nt = ∑

j∈J
χ[t j,τ j)n

t
j ,

v = ∑
j∈J
χ[t j,τ j)v j , η = ∑

j∈J
χ[t j,τ j)η j .

Note that in view of (i) and (4.16) we have

ṡ(t) = 1 − nt(t) for a.e. t ∈ [t0, tε) , |nt(t)| 6 ε for all t ∈ [t0, tε) , (4.17)

ẋ(t) = v(t) − nx(t) for a.e. t ∈ [t0, tε) , |nx(t)| 6 ε for all t ∈ [t0, tε) , (4.18)

u̇(t) = −η(t) − nu(t) for a.e. t ∈ [t0, tε) , |nu(t)| 6 ε for all t ∈ [t0, tε) . (4.19)

We show that the following properties hold:

|s(t) − t| 6 T0 ε, |x(t)| 6 R − 1 for all t ∈ [t0, tε),
|ṡ(t)| 6 2 and |ẋ(t)| 6 CR + 1 for a.e. t ∈ [t0, tε).

(4.20)

Indeed, by (4.13) and (4.17) we get |ṡ(t)| 6 1 + |nt(t)| 6 2. Moreover, s(·) is absolutely continuous, so |s(t) − t| =
|t0 +

∫ t
t0 ṡ(ς) dς − t| = |t0 +

∫ t
t0 (1 − nt(ς)) dς − t| = |

∫ t
t0 nt(ς) dς| 6 T0 ε. Since v j ∈ dom L•(w̄ j, ·), we get |v j| 6 CR. The

latter, together with (4.13) and (4.18), implies |ẋ(t)| 6 |v(t)| + |nx(t)| 6 CR + 1. Hence, using absolute continuity
of x(·), we have |x(t)| 6 |x0| +

∫ t
t0 |ẋ(ς)| dς 6 |x0| + (tε − t0)(CR + 1). Therefore, in view of (4.14), we obtain |x(t)| 6

|x0| + (T0 − t0)(CR + 1) 6 |x0| + 1 = R − 1.
We also show that the following properties hold:

|u(t)| 6 |u0| + (T0 + 1)(D + 1) for all t ∈ [t0, tε),
u̇(t) 6 D + 1 and − D 6 η(t) for a.e. t ∈ [t0, tε).

(4.21)

Indeed, by η j > L•(w̄ j, v j) > −D we get η(t) > −D. The latter, together with (4.19), implies u̇(t) = −η(t) − nu(t) 6
D + 1. Hence, using absolute continuity of u(·), we obtain u(t) = u0 +

∫ t
t0 u̇(ς) dς 6 |u0| + T0(D + 1). The inequality

|u(t)| 6 |u0| + (T0 + 1)(D + 1) will be proved once we prove that −D − 1 6 u(t). Let wt = (st, xt, ut) ∈ epi U satisfy
|y(t)−wt | = dist(y(t), epi U). Then, using (4.15), we obtain |y(t)−wt | 6 ε 6 1. Therefore |x(t)− xt | 6 1 and |u(t)−ut | 6
1. Hence, using (4.20), we get |xt | 6 |x(t)| + 1 6 R. Moreover, because of wt = (st, xt, ut) ∈ epi U, we have st ∈ [0,T ]
and U(st, xt) 6 ut. Since (st, xt) ∈ [0,T ] × IBR, we obtain −D 6 U(st, xt). Therefore −D 6 U(st, xt) 6 ut 6 u(t) + 1.
So −D − 1 6 u(t).

Step 2. Extension of an εεε-approximate solution. We first show that if a triple
(
[t0, tε), y(·),∑

)
is an

ε-approximate solution, then the limit limt→tε y(t) exists and y(·) is an absolutely continuous function on [t0, tε],
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where y(tε) := limt→tε y(t). Hence, by (4.15),

dist(y(tε), epi U) = limt→tε dist(y(t), epi U) 6 ε. (4.22)

Since (s, x)(·) is absolutely continuous on [t0, tε) and (ṡ, ẋ)(·) is bounded almost everywhere on [t0, tε) (from
(4.20)), it follows that the limit limt→tε (s, x)(t) exists and (s, x)(·) is absolutely continuous on [t0, tε], where
(s, x)(tε) := limt→tε (s, x)(t). Let tn := tε − 1

2n (tε − t0) for all n ∈ N. In view of (4.21) we obtain

∫ tε

t0
χ[t0,tn](t) |u̇(t)| dt =

∫ tn

t0
2 max{u̇(t), 0} dt −

∫ tn

t0
u̇(t) dt

6 2(tn − t0)(D + 1) − u(tn) + u(t0)
6 2|u0| + (3T0 + 1)(D + 1). (4.23)

Due to the above inequality and Lebesgue’s Monotone Convergence Theorem we obtain that u̇(·) is integrable
on [t0, tε]. Hence it follows that the limit limt→tε u(t) exists and u(·) is absolutely continuous on [t0, tε], where
u(tε) := limt→tε u(t).

Now, we show that if
(
[t0, tε), y(·),∑

)
is an ε-approximate solution with tε < T0, then there exists an ε-

approximate solution
(
[t0, τε), ȳ(·), ∑̄

)
with tε < τε < T0 which satisfies y(t) = ȳ(t) for all t ∈ [t0, tε) and ∑ ⊂ ∑̄.

Indeed, suppose that y(tε) ∈ epi U. Then we take an arbitrary fε ∈ {1} × Q•(y(tε)) and τε ∈ (tε,T0) such that
(τε − tε)| fε| 6 ε. Let wε = y(tε) = w̄ε. We define the function ȳ(·) on [t0, τε) by the formula ȳ(t) := y(t) for every
t ∈ [t0, tε) and ȳ(t) := y(tε) + (t − tε)( fε − (y(tε) − wε)) for every t ∈ [tε, τε). We define the set ∑̄ by ∑∪

{
[tε, τε)

}
.

We notice that
(
[t0, τε), ȳ(·), ∑̄

)
defined as above satisfies (4.15) and (i)–(v). In particular, due to y(t0) ∈ epi U,

the family of all ε-approximate solutions is nonempty. Suppose that y(tε) /∈ epi U. Then, due to (4.22), we have
0 < dist(y(tε), epi U) 6 ε. Let wε = (sε, xε, uε) ∈ epi U be a proximal point of y(tε) in epi U, then wε 6= y(tε) and

|y(tε) − wε| = dist(y(tε), epi U) 6 ε. (4.24)

Due to the properties of the normal cone from Section 2.1 we have

y(tε) − wε ∈ Nepi U(wε). (4.25)

Since (sε, xε, uε) ∈ epi U, we get sε ∈ [0,T ]. We show that sε < T . Indeed, by (4.24), (4.20) we get |sε − tε| 6
|sε − s(tε)| + |s(tε) − tε| 6 ε + T0 ε. Hence, using (4.13), (4.14), we obtain

sε 6 tε + ε + T0 ε < tε + ε (1 + T ) 6 t0 + 1
2 (T − t0) + 1

2 (T − t0) = T.

Therefore (sε, xε, uε) ∈ epi U ∩ [0,T ) ×RN ×R. Moreover, we know that (4.25) holds true. In view of (4.12) there
exist (tk, xk)→ (sε, xε), αk → 0 and vk ∈ dom L(tk, xk, ·) such that

〈(1, vk,−L(tk, xk, vk)), y(tε) − wε〉 6 αk for all k ∈ N. (4.26)

Let fk := (1, vk,−L(tk, xk, vk)) and w̄k := (tk, xk, uε) for all k ∈ N. One can choose k0 ∈ N such that αk0 < |y(tε) − wε|
2

and |w̄k0 − wε| 6 ε. Therefore 〈 fk0 , y(tε) − wε〉 < |y(tε) − wε|
2. In view of Lemma 4.4 we can choose τε such that

tε < τε < T0 and

|y(tε) + (t − tε)( fk0 − (y(tε) − wε)) − wε| 6 |y(tε) − wε| for all t ∈ [tε, τε). (4.27)

Set w̄ε := w̄k0 and fε := fk0 . We define the function ȳ(·) on [t0, τε) by the formula ȳ(t) := y(t) for all t ∈ [t0, tε)
and ȳ(t) := y(tε) + (t − tε)( fε − (y(tε) − wε)) for all t ∈ [tε, τε). We define the set ∑̄ by ∑∪

{
[tε, τε)

}
. By (4.27) we
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get |ȳ(t) − wε| 6 |y(tε) − wε| for all t ∈ [tε, τε). The latter, together with (4.24), implies that dist(ȳ(t), epi U) 6 ε
for all t ∈ [tε, τε). Since |w̄k0 − wε| 6 ε, we have |xk0 − xε| 6 ε. In view of (4.24) we get |x(tε) − xε| 6 ε. Therefore
|xk0 − x(tε)| 6 2ε. The latter, together with (4.20), implies

|xk0 | 6 |x(tε)| + 2ε 6 R − 1 + 2ε 6 R − 1 + 1 = R.

Since (tk0 , xk0 ) ∈ [0,T ] × IBR, we have

fε = fk0 ∈ {1} × Q(tk0 , xk0 ) = {1} × Q•(w̄k0 ) = {1} × Q•(w̄ε).

Therefore the triple
(
[t0, τε), ȳ(·), ∑̄

)
defined above satisfies (4.15) and (i)–(v).

In the family of all ε-approximate solutions we define a partial order relation
(
[t0, tε), y(·),∑

)
4
(
[t0, τε), ȳ(·), ∑̄

)
if and only if [t0, tε)⊂ [t0, τε), ∑ ⊂ ∑̄, and y(t)= ȳ(t) for all [t0, tε). We observe that in the family of all ε-approximate
solutions every chain

{(
[t0, tλε), yλ(·),∑λ

)}
λ∈Λ

has an upper bound
(
[t0, τε), ȳ(·), ∑̄

)
, where [t0, τε) :=

⋃
λ∈Λ[t0, tλε),

∑̄ :=
⋃
λ∈Λ ∑̄, and ȳ(t) := yλ(t) for all t ∈ [t0, tλε), λ ∈ Λ. By Kuratowski-Zorn Lemma there exists a maximal

element
(
[t0, t∗ε), y∗(·),∑∗

)
. We show that t∗ε = T0. Suppose, contrary to our claim, that t∗ε < T0. Then there exists

an ε-approximate solution
(
[t0, τ∗ε), ȳ∗(·), ∑̄∗

)
such that

(
[t0, t∗ε), y∗(·),∑∗

)
≺
(
[t0, τ∗ε), ȳ∗(·), ∑̄∗

)
, which contradicts

the definition of the maximal element. So there is an ε-approximate solution on the whole interval [t0,T0].
Step 3. Convergence of approximate solutions. Let yn(·) = (sn(·), xn(·), un(·)) be an 1

n -approximate
solution defined on [t0,T0] for all n ∈ N0 := N ∩ [1/ε0,∞).

The function (sn, xn)(·) is absolutely continuous on [t0,T0] and (sn, xn)(t0) = (t0, x0) for every n ∈ N0. In view
of (4.20) the family {(sn, xn)(·)}n∈N0 is equi-bounded and the family {(ṡn, ẋn)(·)}n∈N0 is equi-absolutely integrable.
Therefore, in view of Arzelà-Ascoli and Dunford-Pettis Theorems, there exists a subsequence (we do not rela-
bel) such that (sn, xn)(·) converges uniformely to an absolutely continuous function (s, x) : [t0,T0] → R1+N and
(ṡn, ẋn)(·) converges weakly in L1([t0,T0],R1+N) to (ṡ, ẋ)(·). Moreover, by (4.20), we get |s(t)− t| = limn→∞ |sn(t)− t| 6
limn→∞

1
n T0 = 0 and |x(t)| = limn→∞ |xn(t)| 6 R − 1. Therefore s(t) = t and x(t) ∈ IBR for all t ∈ [t0,T0]. Additionally,

(s, x)(t0) = (s0, x0).
The function un(·) is absolutely continuous on [t0,T0] and un(t0) = u0 for every n ∈ N0. In view of (4.21) the

family {un(·)}n∈N0 is equi-bounded and for all n ∈ N0 we get

Var[t0,T0]un(·) 6
∫ T0

t0
|u̇n(t)| dt =

∫ T0

t0
2 max{u̇n(t), 0} dt −

∫ T0

t0
u̇n(t) dt

6 2(T0 − t0)(D + 1) − un(T0) + un(t0) 6 2|u0| + (3T0 + 1)(D + 1).

The above inequality implies that the variations of functions un(·) on [t0,T0] are equi-bounded. Therefore, in view
of Helly Theorem (cf. Thm. 15.1.i in [10]), there exists a subsequence (we do not relabel) such that un(·) converges
pointwise (everywhere) to a bounded variation function ũ : [t0,T0] → R. Therefore, ũ(t0) = limn→∞ un(t0) = u0.
Obviously, the function ũ(·) may not be absolutely continuous.

Since ẋσ+k(·) ⇀ ẋ(·) as k → ∞ in L1([t0,T0],RN) for all σ ∈ N0, by the Mazur Theorem, there exist real
numbers λσk,N > 0 for k = 1, 2, . . . ,N and N ∈ N such that ∑

N
k=1 λ

σ
k,N = 1 and ∑

N
k=1 λ

σ
k,N ẋσ+k(·) −→ ẋ(·) as N → ∞ in

L1([t0,T0],RN) for all σ ∈ N0. Then for all σ ∈ N0 there exists an increasing sequence {Nσ
m}m∈N such that

zσm(t) :=
Nσ

m

∑
k=1

λσk,Nσ
m

ẋσ+k(t) −→ ẋ(t) as m→ ∞ a.e. t ∈ [t0,T0].

For a.e. t ∈ [t0,T0] we set

ησm(t) :=
Nσ

m

∑
k=1

λs
k,Nσ

m
ησ+k(t),
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by (4.21) we get ησm(t) > −D for a.e. t ∈ [t0,T0] and all σ ∈ N0, m ∈ N, and

ησ(t) := lim infm→∞ η
σ
m(t), η(t) := lim infσ→∞ ησ(t),

we observe that ησ(t) > −D and η(t) > −D for a.e. t ∈ [t0,T0] and all σ ∈ N0.
Now we show that for all τ0 ∈ [t0,T0] the following inequality is true:∫ τ0

t0
η(t) dt 6 ũ(t0) − ũ(τ0). (4.28)

Indeed, fix τ0 ∈ (t0,T0], ε > 0. We can choose σ0 ∈ N0 such that ũ(τ0) − ε 6 uσ+k(τ0) and (τ0 − t0)/(σ + k) 6 ε for
all σ > σ0, k ∈ N. In view of (4.19) we get u̇n(t) = −ηn(t)− nu

n(t), |nu
n(t)| 6 1

n for a.e. t ∈ [t0,T0] and all n ∈ N0. Then
for all m ∈ N and σ > σ0 we have

∫ τ0

t0
ησm(t) dt =

Nσ
m

∑
k=1

λσk,Nσ
m

∫ τ0

t0
ησ+k(t) dt =

Nσ
m

∑
k=1

λσk,Nσ
m

(
−

∫ τ0

t0
u̇σ+k(t) dt −

∫ τ0

t0
nu
σ+k(t) dt

)
6

Nσ
m

∑
k=1

λσk,Nσ
m

(
uσ+k(t0)−uσ+k(τ0)+

τ0 − t0
σ + k

)
6

Nσ
m

∑
k=1

λσk,Nσ
m

(
ũ(t0)−ũ(τ0)+2ε

)
= ũ(t0) − ũ(τ0) + 2ε.

By the Fatou Lemma we obtain∫ τ0

t0
η(t) dt 6 lim inf

σ→∞

∫ τ0

t0
ησ(t) dt 6 lim inf

σ→∞
lim inf

m→∞

∫ τ0

t0
ησm(t) dt 6 ũ(t0) − ũ(τ0) + 2ε.

Since ε > 0 is arbitrary, we conclude that the inequality (4.28) is true.
Now we show that for a.e. t ∈ [t0,T0] we have

(ẋ(t),−η(t)) ∈ Q•(t, x(t), ũ(t)). (4.29)

Indeed, fix t ∈ (t0,T0) and ε > 0. In view of (4.16) and (ii) we have |wn
jn − yn(t)| 6 1

n and |w̄n
jn − wn

jn | 6
1
n . Therefore

|w̄n
jn − yn(t)| 6 2

n for all n ∈ N0. For all large n ∈ N0 we obtain |yn(t) − −(t, x(t), ũ(t))| 6 ε and |w̄n
jn − yn(t)| 6 ε.

Therefore |w̄n
jn − (t, x(t), ũ(t))| 6 ε for all large n ∈ N0. In view of (ii) we get (vn(t),−ηn(t)) = (vn

jn ,−η
n
jn ) ∈ Q•(w̄n

jn ).
Hence, it follows that for all large n ∈ N0 we have

(vn(t),−ηn(t)) ∈ Q•(t, x(t), ũ(t); ε).

In view of (4.18) we get ẋn(t) ∈
(
vn(t) + 1

n IB
)
, so for all large n ∈ N0 we get

(ẋn(t),−ηn(t)) ∈ Q•(t, x(t), ũ(t); ε) + 1
n

(
IB × [−1, 1]

)
.

Hence for all large σ ∈ N0 and all m ∈ N we have

(zσm(t),−ησm(t)) ∈ conv Q•(t, x(t), ũ(t); ε) + 1
σ

(
IB × [−1, 1]

)
.

Passing to a subsequence as m→ ∞ we have

(ẋ(t),−ησ(t)) ∈ cl conv Q•(t, x(t), ũ(t); ε) + 1
σ

(
IB × [−1, 1]

)
,
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passing to a subsequence as σ→ ∞ we have

(ẋ(t),−η(t)) ∈ cl conv Q•(t, x(t), ũ(t); ε).

Since ε > 0 is arbitrary, we obtain

(ẋ(t),−η(t)) ∈
⋂
ε>0

cl conv Q•(t, x(t), ũ(t); ε).

The latter together with Lemma 2.4 implies (4.29).
In view of (4.15), for every t ∈ [t0,T0] and n ∈ N0, we have

dist
(
(sn(t), xn(t), un(t)), epi U

)
6

1
n
.

Passing to the limit as n → ∞, we obtain dist
(
(t, x(t), ũ(t)), epi U

)
= 0 for every t ∈ [t0,T0]. Therefore ũ(t) >

U(t, x(t)) for all t ∈ [t0,T0]. Define u(τ) := ũ(t0)−
∫ τ

t0 η(t) dt. Then u(·) is an absolutely continuous function on [t0,T0].
Moreover, by (4.28), we have u(t) > ũ(t) for all t ∈ [t0,T0]. Hence it follows that u(t) > ũ(t) > U(t, x(t)) for all
t ∈ [t0,T0]. Furthermore, by (4.29), we get (ẋ(t), u̇(t)) ∈ Q•(t, x(t), ũ(t)) for a.e. t ∈ [t0,T0]. Since (t, x(t)) ∈ [0,T ]× IBR

for all t ∈ [t0,T0], we get (ẋ(t), u̇(t)) ∈ Q•(t, x(t), ũ(t)) = Q(t, x(t)) for a.e. t ∈ [t0,T0].

Remark 4.7. In the above proof we cannot replace condition (L4) by (L5), because (L4) implies boundedness
of sequence {v j} j∈J , but (L5) does not. Condition (L5) plays an important role in the next proof.

Proof Theorem 4.3. Fix (t0, x0) ∈ dom U ∩ [0,T ) × RN. We consider the family F of all pairs [ y(·), [t0, τ) ] such
that an absolutely continuous function y(·) = (x, u)(·) defined on the nondegenerate interval [t0, τ) ⊂ [t0,T ] is a
solution to 

(ẋ, u̇)(t) ∈ Q(t, x(t)) for a.e. t ∈ [t0, τ),
(x, u)(t) ∈ epi U(t, ·) for all t ∈ [t0, τ),
(x, u)(t0) = (x0,U(t0, x0)).

(4.30)

In view of Theorem 4.5 the family F is nonempty. In the family F we define a partial order relation [ y(·), [t0, τ) ] 4
[ ȳ(·), [t0, τ̄) ] if and only if [t0, τ) ⊂ [t0, τ̄) and y(t) = ȳ(t) for all t ∈ [t0, τ). We observe that in the family F every
chain { [ yλ(·), [t0, τλ) ] }λ∈Λ has an upper bound [ ȳ(·), [t0, τ̄) ], where ȳ(t) := yλ(t) for all t ∈ [t0, τλ), λ ∈ Λ and
[t0, τ̄) :=

⋃
λ∈Λ[t0, τλ). By the Kuratowski-Zorn Lemma in F the exists a maximal element [ y•(·), [t0, τ•) ].

We show that limt→τ− y•(t) exists and y•(·) is absolutely continuous on [t0, τ•], where y•(τ•) := limt→τ−• y•(t),
and y•(τ•) ∈ epi U(τ•, ·). Indeed, let y•(·) = (x•(·), u•(·)) and tn = τ• − 1

2n (τ• − t0), n ∈ N. Since y•(·) is a solution of
(4.30), we get ẋ•(t) ∈ dom L(t, x•(t), ·) for a.e. t ∈ [t0, τ•). Hence, using (L5), we have |ẋ•(t)| 6 c(t)(1 + |x•(t)|) for a.e.
t ∈ [t0, τ•). Since x•(·) is absolutely continuous on [t0, τ•), we have

|x•(t)| 6 |x0| +

∫ tn

t0
c(s) ds +

∫ tn

t0
c(s) |x•(s)| ds for all t ∈ [t0, tn], n ∈ N.

By Gronwall’s Lemma

|x•(t)| 6
(
|x0| +

∫ T

0
c(s) ds

)
exp

(∫ T

0
c(s) ds

)
=: R for all t ∈ [t0, τ•).

The latter inequality, together with (L4), implies that |ẋ•(t)| 6 CR for a.e. t ∈ [t0, τ•) and some constant CR.
Hence it follows that ẋ•(·) is integrable on [t0, τ•]. Thus the limit limt→τ− x•(t) exists and the function x•(·) is



HAMILTON-JACOBI-BELLMAN EQUATIONS 23

absolutely continuous on [t0, τ•], where x•(τ•) := limt→τ−• x•(t). Since functions L and U are proper and lower
semicontinuous, there exists a constant D > 0 such that −D 6 L(t, x, v) and −D 6 U(t, x) for all t ∈ [0,T ], x ∈ IBR,
v ∈ IBCR . Since y•(·) is a solution of (4.30), we get −D 6 L(t, x•(t), ẋ•(t)) 6 −u̇•(t), so u̇•(t) 6 D for a.e. t ∈ [t0, τ•).
Moreover, −D 6 U(tn, x•(tn)) 6 u•(tn) for every n ∈ N. Since u•(·) is absolutely continuous on [t0, τ•), we obtain,
for all n ∈ N,

∫ t•

t0
χ[t0,tn](t) |u̇•(t)| dt =

∫ tn

t0
2 max{u̇•(t), 0} dt −

∫ tn

t0
u̇•(t) dt

6 2T D + u•(t0) − u•(tn) 6 2T D + |U(t0, x0)| + D.

Due to the above inequality and Lebesgue’s Monotone Convergence Theorem we obtain that u̇•(·) is integrable
on [t0, τ•]. Hence it follows that the limit limt→τ− u•(t) exists and u•(·) is absolutely continuous on [t0, τ•], where
u•(τ•) := limt→τ−• u•(t). In view of (4.30) we have u•(tn) > U(tn, x•(tn)) for all n ∈ N. The latter inequality, together
with lower semicontinuity of U, implies u•(τ•) > U(τ•, x•(τ•)). So y•(τ•) ∈ epi U(τ•, ·).

The proof is completed by showing that τ• = T . Suppose, contrary to our claim, that τ• < T . Then, in view
of Theorem 4.5, there exist τ̄• ∈ (τ•,T ) and ȳ(·) = (x̄, ū)(·) such that

˙̄y(t) ∈ Q(t, x̄(t)) p.w. t ∈ [τ•, τ̄•),
ȳ(t) ∈ epi U(t, ·), ∀ t ∈ [τ•, τ̄•),
ȳ(τ•) = y•(τ•).

We define the function ȳ•(·) by the formula ȳ•(t) := y•(t) for all t ∈ [t0, τ•) and ȳ•(t) := ȳ(t) for all t ∈ [τ•, τ̄•).
We observe that [ ȳ•(·), [t0, τ̄•) ] ∈ F and [ y•(·), [t0, τ•) ] ≺ [ ȳ•(·), [t0, τ̄•) ], which contradicts the definition of the
maximal element [ y•(·), [t0, τ•) ].

5. Hamilton-Jacobi-Bellman theory

We define the functional Γ[ · ] for any x(·) ∈ A ([t0,T ],RN) by the formula

Γ[x(·)] = g(x(T )) +

∫ T

t0
L(t, x(t), ẋ(t)) dt.

Then the value function for any (t0, x0) ∈ [0,T ] ×RN is given by

V(t0, x0) =

{
inf {Γ[x(·)] | x(·) ∈ A ([t0,T ],RN), x(t0) = x0} if t0 ∈ [0,T ),
g(x0) if t0 = T.

Theorem 5.1. Assume that L satisfies (L1)–(L5) and g is a proper, lower semicontinuous function. Let V be
the value function associated with L and g. Then we have the following.

(a) V is a proper, lower semicontinuous function.

(b) For every (t0, x0) ∈ dom V ∩ [0,T ) × RN there exists x̄(·) ∈ A([t0,T ],RN) such that V(t0, x0) = Γ[x̄(·)] and
x̄(t0) = x0.

The theorem is a consequence of the results from Theorem 7.6 of [22] and Theorem 6.3 of [23]. It is easy to note
that condition (HLC) in Theorem 7.6 of [22] and Theorem 6.3 of [23] can be weakened to the condition: for every
R > 0 there exists an integrable function kR : [0,T ]→ [0,∞) such that L(t, x, v) > −kR(t) for all x ∈ IBR, v ∈ RN and
a.e. t ∈ [0,T ]. By (L4) there exists a constant CR > 0 such that ‖dom L(t, x, ·)‖ 6 CR for all (t, x) ∈ [0,T ]× IBR. Since
L is proper and lower semicontinuous (due to (L1)–(L2)), there exists a constant kR > 0 such that L(t, x, v) > −kR
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for all t ∈ [0,T ], x ∈ IBR, v ∈ IBCR . Thus L(t, x, v) > −kR for all t ∈ [0,T ], x ∈ IBR, v ∈ RN. It means that the
condition (L6) is not necessary in the above theorem.

In the Section 5.1 we show that the value function V, associated with H∗ and g, is a lower semicontinuous
solution of (1.1), provided that H satisfies (H1)–(H4) and g is proper and lower semicontinuous. We will see
that the condition (H5) is not required to prove the above fact. In the Section 5.2, assuming additionally that
H satisfies (H5), we show that the value function V is a unique lower semicontinuous solution of (1.1). It turns
out that the condition (H5) is necessary in some sense to prove the uniqueness result. More precisely, one can
propose two different lower semicontinuous solutions of (1.1) with the Hamiltonian H satisfying (H1)–(H4); see
[21].

5.1. Existence of lower semicontinuous solutions

Theorem 5.2. Assume that L satisfies (L1)–(L5) and g is proper, lower semicontinuous. If V is the value
function associated with L and g, then for all (t0, x0) ∈ dom V ∩ [0,T ) ×RN there exists v0 ∈ R

N such that

dV(t0, x0)(1, v0) 6 −L(t0, x0, v0). (5.1)

Proof. Fix (t0, x0) ∈ dom V ∩ [0,T ) × RN. By Theorem 5.1 there exists x̄(·) ∈ A([t0,T ],RN) such that V(t0, x0) =

Γ[x̄(·)] and x̄(t0) = x0. We define the absolutely continuous function ū : [t0,T ]→ R by the formula

ū(t) := g(x̄(T )) +

∫ T

t
L(s, x̄(s), ˙̄x(s)) ds.

Observe that ū(t0) = V(t0, x0), ū(t) > V(t, x̄(t)) for all t ∈ [t0,T ] and ˙̄u(t) = −L(t, x̄(t), ˙̄x(t)) for a.e. t ∈ [t0,T ]. Since
V(t0, x0) < +∞, we have ˙̄x(t) ∈ dom L(t, x̄(t), ·) for a.e. t ∈ [t0,T ]. Therefore, by (L4), we obtain | ˙̄x(t)| 6 CR for a.e.
t ∈ [t0,T ], where R := maxt∈[t0,T ] |x̄(t)|. The latter inequality, together with absolute continuity of x̄(·), implies that
x̄(·) is Lipschitz continuous. Hence there exist hn → 0+ and v0 ∈ R

N such that

1
hn

∫ t0+hn

t0
˙̄x(t) dt =

x̄(t0 + hn) − x̄(t0)
hn

→ v0. (5.2)

We choose vn such that x̄(t0 + hn) = x0 + vnhn. Then we have (1, vn)→ (1, v0). Moreover

dV(t0, x0)(1, v0) 6 lim inf
n→∞

V((t0, x0) + hn(1, vn)) − V(t0, x0)
hn

= lim inf
n→∞

V(t0 + hn, x̄(t0 + hn)) − V(t0, x0)
hn

6 lim inf
n→∞

ū(t0 + hn) − ū(t0)
hn

= lim inf
n→∞

1
hn

∫ t0+hn

t0
˙̄u(t) dt

6 lim inf
n→∞

1
hn

∫ t0+hn

t0
−L(t, x̄(t), ˙̄x(t))) dt. (5.3)

We consider two cases:
Case 1. If dV(t0, x0)(1, v0) = −∞, then the inequality (5.1) holds obviously.
Case 2. If dV(t0, x0)(1, v0) > −∞, then denoting by η0 the right hand side of (5.3) we obtain η0 > −∞. Since

L is proper and lower semicontinuous, there exists a constant D > 0 such that L(t, x, v) > −D for all t ∈ [0,T ],
x ∈ IBR, v ∈ IBCR . Hence, −L(t, x̄(t), ˙̄x(t)) 6 D for a.e. t ∈ [t0,T ]. The latter inequality yields η0 < +∞. Therefore η0
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is a real number. Fix ε > 0 and choose n0 ∈ N such that for every n > n0 the following property holds

∀ t ∈ [t0, t0 + hn], |t0 − t| < ε, |x0 − x̄(t)| < ε. (5.4)

We observe that for a.e. t ∈ [t0,T ] we have

( ˙̄x(t),−L(t, x̄(t), ˙̄x(t))) ∈ Q(t, x̄(t)),

so using (5.4) for a.e. t ∈ [t0, t0 + hn] we have

( ˙̄x(t),−L(t, x̄(t), ˙̄x(t))) ∈ Q(t0, x0; ε).

Therefore for a.e. t ∈ [t0, t0 + hn] we have

( ˙̄x(t),−L(t, x̄(t), ˙̄x(t))) ∈ cl conv Q(t0, x0; ε),

hence for every n > n0 we have

1
hn

∫ t0+hn

t0

(
˙̄x(t),−L(t, x̄(t), ˙̄x(t))

)
dt ∈ cl conv Q(t0, x0; ε).

Passing to a subsequence as n→ ∞ we have

(v0, η0) ∈ cl conv Q(t0, x0; ε).

Since ε is arbitrary, we obtain

(v0, η0) ∈
⋂
ε>0

cl conv Q(t0, x0; ε).

By Lemma 2.4 we get (v0, η0) ∈ Q(t0, x0). The latter, together with (5.3), implies

dV(t0, x0)(1, v0) 6 η0 6 −L(t0, x0, v0).

Thus the inequality (5.1) also holds in this case.

Remark 5.3. We cannot strengthen the conclusion of Theorem 5.2 by requiring that v0 ∈ dom L(t0, x0, ·). Indeed,
let L and V be given by (4.8) and (4.9) respectively. Suppose that (5.1) holds for some v0 ∈ dom L(t0, x0, ·), then
+∞ = dV(ξ, ξ)(1, 0) 6 −L(ξ, ξ, 0) = 0 for all ξ ∈ (0,T ), which is impossible.

Lemma 5.4. Assume that L satisfies (L1)–(L3). Let (t0, x0, u0) ∈ (0,T ] ×RN ×R and v0 ∈ dom L(t0, x0, ·). Then
there exist τ > 0 and a function (x, u) : [t0 − τ, t0] → RN × R of class C1 with (x, u)(t0) = (x0, u0) which satisfies
(ẋ(t), u̇(t)) ∈ Q(t, x(t)) for all t ∈ [t0 − τ, t0] and (ẋ, u̇)(t−0 ) = (v0,−L(t0, x0, v0)).

Proof. Fix (t0, x0, u0) ∈ (0,T ] × RN × R and v0 ∈ dom L(t0, x0, ·). From Corollaty 2.2 it follows that Q satisfies
(Q1)-(Q3). In view of Theorem 4.2 there exists a continuous function Θ(·, ·, ·) satisfying (P1) and (P2). Let us fix
a0 := (v0,−L(t0, x0, v0)) ∈ Q(t0, x0). We define a continuous function Θ̄(·, ·, ·) for every (t, x, u) ∈ [0,T ] ×RN ×R by

Θ̄(t, x, u) := Θ(t, x, a0).
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In view of Peano Theorem there exist τ > 0 and the function (x, u) : [t0 − τ, t0] → RN ×R of class C1 which is a
solution to {

(ẋ, u̇)(t) = Θ̄(t, x(t), u(t)) for all t ∈ [t0 − τ, t0],
(x, u)(t0) = (x0, u0).

By (P1) for all t ∈ [t0 − τ, t0] we have

(ẋ, u̇)(t) = Θ̄(t, x(t), u(t))
= Θ(t, x(t), a0) ∈ Q(t, x(t)).

Since a0 ∈ Q(t0, x0), from (P2) we deduce

(ẋ, u̇)(t−0 ) = Θ̄(t0, x(t0), u(t0))
= Θ̄(t0, x0, u0) = Θ(t0, x0, a0)
= a0 = (v0,−L(t0, x0, v0)).

This finishes the proof.

Theorem 5.5. Assume that L satisfies (L1)–(L5) and g is proper, lower semicontinuous. If V is the value
function associated with L and g, then for all (t0, x0) ∈ dom V ∩ (0,T ] ×RN and all v0 ∈ dom L(t0, x0, ·) we have

dV(t0, x0)(−1,−v0) 6 L(t0, x0, v0). (5.5)

Proof. Fix (t0, x0) ∈ dom V ∩ (0,T ] × RN and v0 ∈ dom L(t0, x0, ·). In view of Lemma 5.4 there exist τ > 0 and a
function (x1, u1) : [t0 − τ, t0] → RN × R of class C1 with (x1, u1)(t0) = (x0,V(t0, x0)) which satisfies (ẋ1(t), u̇1(t)) ∈
Q(t, x1(t)) for all t ∈ [t0 − τ, t0] and (ẋ1, u̇1)(t−0 ) = (v0,−L(t0, x0, v0)). Let 0 < hn < τ and hn → 0. Then, we choose a
sequence vn such that x1(t0 − hn) = x0 − hnvn and vn → v0. By Theorem 5.1 (b) there exists x2(·) ∈ A([t0,T ],RN)
such that V(t0, x0) = Γ[x2(·)] and x2(t0) = x0. We define an absolutely continuous function u2 : [t0,T ]→ R by the
formula

u2(t) := g(x2(T )) +

∫ T

t
L(s, x2(s), ẋ2(s)) ds.

Then, we can define an absolutely continuous function (x̄, ū)(·) on [t0 − τ,T ] by

(x̄, ū)(t) :=

{
(x1, u1)(t) if t ∈ [t0 − τ, t0],
(x2, u2)(t) if t ∈ [t0,T ].

Observe that ū(t0) = V(t0, x0), ū(T ) = g(x̄(T )) and ( ˙̄x, ˙̄u)(t) ∈ Q(t, x̄(t)) for a.e. t ∈ [t0 − τ,T ]. Hence, for all t ∈
[t0 − τ,T ], we have

ū(t) = ū(T ) +

∫ T

t
− ˙̄u(s) ds > g(x̄(T )) +

∫ T

t
L(s, x̄(s), ˙̄x(s)) ds > V(t, x̄(t)).

Since V(t, x̄(t)) 6 ū(t) for all t ∈ [t0 − τ,T ] and V(t0, x0) = ū(t0), we obtain

dV(t0, x0)(−1,−v0) 6 lim inf
n→∞

V((t0, x0) + hn(−1,−vn)) − V(t0, x0)
hn
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= lim inf
n→∞

V(t0 − hn, x1(t0 − hn)) − V(t0, x0)
hn

= lim inf
n→∞

V(t0 − hn, x̄(t0 − hn)) − V(t0, x0)
hn

6 lim
n→∞

ū(t0 − hn) − ū(t0)
hn

= lim
n→∞

u1(t0 − hn) − u1(t0)
hn

= −u̇1(t−0 ) = L(t0, x0, v0),

which completes the proof.

Theorem 5.6 (Existence). Assume that H satisfies (H1)–(H4) and g is proper and lower semicontinuous. If V
is the value function associated with H∗ and g, then V is a lower semicontinuous solution of (1.1).

Proof. Let L(t, x, · ) = H∗(t, x, · ). In view of Proposition 2.1 L satisfies (L1)–(L5).
Fix (t, x) ∈ dom V ∩ [0,T ) ×RN. Then by Theorem 5.2 there exists v̄ ∈ RN such that

dV(t, x)(1, v̄) 6 −L(t, x, v̄). (5.6)

Let (pt, px) ∈ ∂V(t, x). Then, by the definition of the subdifferential, we deduce that

〈 (pt, px), (1, v̄) 〉 6 dV(t, x)(1, v̄). (5.7)

Combining inequalities (5.6) and (5.7) we obtain that

pt + 〈px, v̄〉 6 −L(t, x, v̄).

The latter inequality, together with H(t, x, · ) = L∗(t, x, · ), implies that

−pt + H(t, x,−px) > −pt + 〈−px, v̄〉 − L(t, x, v̄) > 0.

Therefore the inequality (1.3) holds.
Fix (t, x) ∈ dom V ∩ (0,T ] ×RN. Then, by Theorem 5.5, we have

∀ v ∈ dom L(t, x, ·), dV(t, x)(−1,−v) 6 L(t, x, v). (5.8)

Let (pt, px) ∈ ∂V(t, x). Then, by the definition of the subdifferential, we deduce that

∀ v ∈ dom L(t, x, ·), 〈(pt, px), (−1,−v)〉 6 dV(t, x)(−1,−v). (5.9)

Combining inequalities (5.8) and (5.9) we obtain

∀ v ∈ dom L(t, x, ·), −pt − 〈px, v〉 6 L(t, x, v).

The latter inequality, together with H(t, x, · ) = L∗(t, x, · ), implies that

−pt + H(t, x,−px) = −pt + sup v∈RN {〈−px, v〉 − L(t, x, v)} 6 0.

Therefore the inequality (1.4) holds.
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5.2. Uniqueness of lower semicontinuous solutions

Proposition 5.7. Let U be a proper and lower semicontinuous function. Assume that H satisfies (H1)–(H2).
If for every (t, x) ∈ dom U ∩ (0,T ] ×RN and every (pt, px) ∈ ∂U(t, x) the inequality (1.4) holds, then the condition
(4.1) also holds.

Proof. Let L(t, x, · ) = H∗(t, x, · ). In view of Proposition 2.1 the Lagrangian L satisfies (L1)–(L3). Let us fix
(t, x) ∈ dom U ∩ (0,T ] ×RN.

Let (nt, nx, nu)∈Nepi U(t, x,U(t, x)) and nu<0. Then, by the definition of the normal cone,(
nt/|nu|, nx/|nu|,−1

)
∈ Nepi U(t, x,U(t, x)).

Due to relation between normal cones and subdifferentials, from Section 2.1, we get

(nt/|nu|, nx/|nu|) ∈ ∂U(t, x).

The latter, together with (1.4), implies that

−nt/|nu| + H(t, x,−nx/|nu|) 6 0.

Since H(t, x, · ) = L∗(t, x, · ), for all v ∈ dom L(t, x, ·) we have

−nt/|nu| + 〈 −nx/|nu|, v 〉 − L(t, x, , v) 6 0.

By multiplying both sides of the above inequality by −|nu|, we get

nt + 〈nx, v〉 − nuL(t, x, v) > 0,

which completes the proof of (4.1) in this case.
Let (nt, nx, 0) ∈ Nepi U(t, x,U(t, x)). In view of Lemma 2.5 there exist (tk, xk) → (t, x) and (nt

k, n
x
k , n

u
k) → (nt, nx, 0)

satisfying nu
k < 0 and (nt

k, n
x
k , n

u
k) ∈ Nepi U(tk, xk,U(tk, xk)) for all k ∈ N. Then, by the definition of a normal cone,

for all k ∈ N we have (
nt

k/|n
u
k |, nx

k/|n
u
k |, −1

)
∈ Nepi U(tk, xk,U(tk, xk)).

Due to relation between normal cones and subdifferentials, from Section 2.1, we get

(nt
k/|n

u
k |, n

x
k/|n

u
k |) ∈ ∂U(tk, xk),

for all k ∈ N. The latter, together with (1.4), implies that, for all large k ∈ N,

−nt
k/|n

u
k | + H(tk, xk,−nx

k/|n
u
k |) 6 0.

Since H(t, x, · ) = L∗(t, x, · ), we have, for all v ∈ dom L(tk, xk, ·) and all large k ∈ N,

−nt
k/|n

u
k | + 〈−nx

k/|n
u
k |, v 〉 − L(tk, xk, v) 6 0.

By multiplying both sides of the above inequality by −|nu
k |, we get

nt
k + 〈 nx

k , v 〉 − nu
k L(tk, xk, v) > 0, (5.10)
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for all v ∈ dom L(tk, xk, ·) and all large k ∈ N. Let us fix v̄ ∈ dom L(t, x, ·). By (L3) there exists vk → v̄ such that
L(tk, xk, vk)→ L(t, x, v̄). Hence vk ∈ dom L(tk, xk, ·) for all large k ∈ N. If we set v := vk in the inequality (5.10) and
pass to the limit as k → ∞, then,

nt + 〈 nx, v̄ 〉 > 0,

which completes the proof of (4.1).

Proposition 5.8. Let U be a proper and lower semicontinuous function. Assume that H satisfies (H1)–(H3).
If for every (t, x) ∈ dom U ∩ [0,T ) ×RN and every (pt, px) ∈ ∂U(t, x) the inequality (1.3) holds, then the condition
(4.6) also holds.

Proof. Let L(t, x, · ) = H∗(t, x, · ). In view of Proposition 2.1 the Lagrangian L satisfies (L1)–(L4). Let us fix
(t, x) ∈ dom U ∩ [0,T ) ×RN.

Let (nt, nx, nu)∈Nepi U(t, x,U(t, x)) and nu<0. Then, by the definition of the normal cone,(
nt/|nu|, nx/|nu|, −1

)
∈ Nepi U(t, x,U(t, x)).

Due to relation between normal cones and subdifferentials, from Section 2.1, we get

(nt/|nu|, nx/|nu|) ∈ ∂U(t, x).

The latter, together with (1.3), implies that

−nt/|nu| + H(t, x,−nx/|nu|) > 0.

Since H(t, x, · ) = L∗(t, x, · ) and (L4) holds, there exists v ∈ dom L(t, x, ·) such that

−nt/|nu| + 〈−nx/|nu|, v 〉 − L(t, x, v) > 0.

By multiplying both sides of the above inequality by −|nu|, we have

nt + 〈nx, v〉 − nuL(t, x,U(t, x), v) 6 0.

If we set tk := t, xk := x, vk := v, αk := 0, then we obtain (4.6) in this case.
Let (nt, nx, 0) ∈ Nepi U(t, x,U(t, x)). In view of Lemma 2.5 there exist (tk, xk) → (t, x) and (nt

k, n
x
k , n

u
k) → (nt, nx, 0)

satisfying nu
k < 0 and (nt

k, n
x
k , n

u
k) ∈ Nepi U(tk, xk,U(tk, xk)) for all k ∈ N. Then, by the definition of a normal cone,

for all k ∈ N we have (
nt

k/|n
u
k |, nx

k/|n
u
k |, −1

)
∈ Nepi U(tk, xk,U(tk, xk)).

Due to relation between normal cones and subdifferentials, from Section 2.1, we get

(nt
k/|n

u
k |, n

x
k/|n

u
k |) ∈ ∂U(tk, xk),

for all k ∈ N. The latter, together with (1.3), implies that, for all large k ∈ N,

−nt
k/|n

u
k | + H(tk, xk,−nx

k/|n
u
k |) > 0.
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Since H(t, x, · ) = L∗(t, x, · ) and (L4) holds, there exists vk ∈ dom L(tk, xk, ·) such that

−nt
k/|n

u
k | + 〈−nx

k/|n
u
k |, vk〉 − L(tk, xk, vk) > 0.

By multiplying both sides of the above inequality by −|nu
k |, we get

nt
k + 〈nx

k , vk〉 + |nu
k | L(tk, xk, vk) 6 0. (5.11)

Let R := sup{|xk | | k ∈ N}. Then, by (L4), we obtain |vk | 6 CR for all large k ∈ N. Since L is proper and lower
semicontinuous (due to (L1)–(L2)), there exists a constant D > 0 such that L(t, x, v) > −D for all t ∈ [0,T ],
x ∈ IBR, v ∈ IBCR . Hence L(tk, xk, vk) > −D for all k ∈ N. The latter, together with (5.11), implies that, for all large
k ∈ N,

nt
k + 〈 nx

k , vk 〉 6 −|nu
k | L(tk, xk, vk) 6 |nu

k |D.

Set ak := nt − nt
k, bk := nx − nx

k , ck := |nu
k |D. We observe that sequences {ak}, {bk} and {ck} converge to 0 as k → ∞.

Moreover we derive that

nt + 〈vk, nx〉 = ak + nt
k + 〈vk, bk + nx

k〉 = ak + 〈vk, bk〉 + nt
k + 〈vk, nx

k〉

6 ak + |vk ||bk | + ck 6 ak + CR|bk | + ck =: αk.

Obviously αk → 0 as k → ∞, which completes the proof of (4.6).

Theorem 5.9 (Uniqueness). Assume that H satisfies (H1)–(H5) and g is proper and lower semicontinuous.
Let V be the value function associated with H∗ and g. If U is a lower semicontinuous solution of (1.1), then
U = V on [0,T ] ×RN.

Proof. Let L(t, x, ·)= H∗(t, x, ·). By Proposition 2.1 and Theorem 2.3 L satisfies (L1)–(L6).
We first show that U 6 V on [0,T ] × RN. Obviously U(T, x0) = g(x0) = V(T, x0) for all x0 ∈ R

N. Let us fix
(t0, x0) ∈ dom V∩ [0,T )×RN. In view of Theorem 5.1 (b) there exists x̄(·) ∈ A([t0,T ],RN) such that V(t0, x0) = Γ[x̄(·)]
and x̄(t0) = x0. We define an absolutely continuous function ū : [t0,T ]→ R by the formula

ū(t) := g(x̄(T )) +

∫ T

t
L(s, x̄(s), ˙̄x(s)) ds.

Observe that ū(t0) = V(t0, x0), ū(T ) = g(x̄(T )) and ˙̄u(t) = −L(t, x̄(t), ˙̄x(t)) for a.e. t ∈ [t0,T ]. Hence ( ˙̄x, ˙̄u)(t) ∈ Q(t, x̄(t))
for a.e. t ∈ [t0,T ] and ū(T ) = U(T, x̄(T )). By Proposition 5.7 the condition (4.1) holds. Thus we can use Theorem
4.1 [Invariance Theorem]. In view of this theorem we have ū(t) > U(t, x̄(t)) for all t ∈ [t0,T ]. In particular

V(t0, x0) = ū(t0) > U(t0, x̄(t0)) = U(t0, x0).

Therefore V(t0, x0) > U(t0, x0) for all (t0, x0) ∈ [0,T ] ×RN.
Next, we show that U > V on [0,T ] ×RN. Obviously U(T, x0) = g(x0) = V(T, x0) for all x0 ∈ R

N. Fix (t0, x0) ∈
dom U ∩ [0,T )×RN. By Proposition 5.8 the condition (4.6) holds. So we can use Theorem 4.3 [Viability Theorem].
In view of this theorem there exists an absolutely continuous function (x, u) : [t0,T ] → RN ×R with (x, u)(t0) =

(x0,U(t0, x0)) which satisfies (ẋ, u̇)(t) ∈ Q(t, x(t)) for a.e. t ∈ [t0,T ] and u(t) > U(t, x(t)) for all t ∈ [t0,T ]. Hence
u(T ) > U(T, x(T )) = g(x(T )) and

U(t0, x0) = u(t0) = u(T ) +

∫ T

t0
−u̇(t) dt > g(x(T )) +

∫ T

t0
L(t, x(t), ẋ(t)) dt > V(t0, x0).
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Therefore U(t0, x0) > V(t0, x0) for all (t0, x0) ∈ [0,T ] ×RN.
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