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OPTIMAL CONTROL PROBLEMS OF NONLOCAL INTERACTION

EQUATIONS

Simone Fagioli1,* , Alic Kaufmann2 and Emanuela Radici2

Abstract. In the present work we deal with the existence of solutions for optimal control problems
associated to transport equations. The behaviour of a population of individuals will be influenced by the
presence of a population of control agents whose role is to lead the dynamics of the individuals towards a
specific goal. The dynamics of the population of individuals is described by a suitable nonlocal transport
equation, while the role of the population of agents is designed by the optimal control problem. This
model has been first studied in [12] for a class of continuous nonlocal potentials, while in the present
project we consider the case of mildly singular potentials in a gradient flow formulation of the target
transport equation.
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1. Introduction

The modelling of self-organising system has been intensively investigated in recent decades. The different
mechanisms underlying the phenomena were largely studied, see [21, 26, 27, 38, 47, 48], and most of these works
concern the description of different interaction rules such as attraction, repulsion and alignment, common in
particle physics [30, 40], cell and population biology [8, 17, 23, 24, 42, 43], and social sciences [5, 22, 25, 31, 45, 46].
On the other side, the control problem of self-organising systems, namely the possibility of modifying the
behaviour of agents by directing them towards a fixed target, while maintaining their usual rules of interaction,
has produced an increasing number of contributions in the literature, see [1–4, 13] and references therein.

As a result of the above considerations we can think to describe the system with a discrete set of N interacting
agents, or particles, with positions X1(t), ..., XN (t) ∈ Rd depending on time, and with given masses n1, ..., nN >
0. In a classical dynamic framework the evolution in time of the particles can be described through the Cauchy
problem on RdN

Ẋj(t) = −
N∑
k=1

nkK(Xj(t)−Xk(t)) + u(t),
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for j = 1, . . . , N , where u is a control variable, to be chosen in a set of admissible control functions, minimiser
of a proper cost functional J := J (u,X1, . . . , XN ) taking into account the desired behaviour of the particles
as well as the cost of the control. A natural modelling choice is to consider the control variable as a family of M
control particles Y1, ..., YM ∈ Rd of masses m1, ...,mM > 0, interacting with X1(t), ..., XN (t). Thus, the problem
can be formulated as follows

Ẋj(t) = −
N∑
k=1

nkK(Xj(t)−Xk(t))−
M∑
h=1

mhH(Xj(t)− Yh(t)), j = 1, . . . , N,

Ȳ (t) = argmin
Ū

J
(
Ū(t), X̄(t)

)
,

(1.1)

where X̄ = (X1, ..., XN ), Ȳ = (Y1, ..., YM ) and Ū ranges over a set of admissible control vectors.
In dealing with the optimisation problem (1.1) one can face in the so-called curse of dimensionality, see [9],

i.e. the difficulty in solving the problem when the dimension of (X,Y ) becomes large.
This dimensionality problem can be bypassed by introducing an optimal control strategy independent on

the number of agents but depending on their distributions. More precisely, if ρ represents the distribution of
the population of particles (X1, ..., XN ), and ν is the distribution corresponding to the particles (Y1, ..., YN ),
assuming that the total mass of the population is conserved, the evolution equation in (1.1) can be replaced by
its continuous counterpart, that is the transport equation

∂tρ(t, x) = −div (ρ(t, x)vν(t, x)),

where the velocity field vν will depend on the distribution of the population ρ and the distribution of the control
agents ν via non-local interaction kernels,

vν(t, x) = K ∗ ρ(t, x) +H ∗ ν(t, x) =

∫
K(t, x− y)dρ(t, y) +

∫
H(t, x− y)dν(t, y).

In order to drive/control the dynamics of ρ, we minimize a functional J (ν, ρ) under the constraint that the
transport equation is satisfied. The functional could take into account the desired behavior of ρ but also the
cost of the control agents. More precisely, we deal with the optimal control problem

inf J (ν, ρ) s.t. ∂tρ(t, x) = −div [(K ∗ ρ(t, x) +H ∗ ν(t, x))ρ(t, x)]. (1.2)

The rigorous passage from the agent based optimisation problem (1.1) to the continuous problem (1.2) can
be performed by applying the mean field game approach introduced by Lasry and Lions [39], see [15, 16, 32]
and references therein for a more deep treatment of the topic. We also mention [36] where a Galerkin-type
discretization was used, and [33] where a BBGKY hierarchy approach to the finite dimensional optimal control
problems to infinite dimensional control problems limit was performed.

Similarly to the finite dimensional case, the optimisation problem (1.2) can be applied in several context
such as evacuation problems [1–3, 25], alignment in swarming dynamics of animals or robots [18, 34, 35] and
social sciences [4, 49]. Note that, if K corresponds to the gradient of an interaction potential W , then our
argument applies to a class of functionals W , including Morse and Yukawa type potentials, with a wide range
of applications in models in biology and materials science, [11, 14, 28, 50].

Typical form for the functional J in (1.2) is

J (ν, ρ) =

∫ T

0

∫
Ω

C(ν(t, x), ρ(t, x))dx dt,
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where the cost function C describes a certain mutual interaction between the measures ν and ρ [18]. Examples
for this cost function can be distance function C(ν(t, x), ρ(t, x)) = c(t)|x − x0|pν(t, x) used in the evacuation
problems or functions of the second moment of ρ that allow to control the alignment of the species, as well as
the clustering towards a target opinion, see [18, 49] and references therein for more details.

The combination of a nonlocal transport equation and an optimisation problem, as formulated in (1.2), has
been first studied in [12], considering Lipschitz continuous densities ρ in the space of probability measures with
finite first moment and regular potentials K and H. The main novelty of the present manuscript is that we can
provide a positive answer to problem (1.2) in case of self-interactions kernels K showing jump type singularities,
thus answering an open question posed in [12]. In order to develop this improvement we will consider potentials
K,H of the form K = −∇W and H = −∇V , thus the nonlocal transport equation in (1.2) can be rephrased
as the following equation

∂tρ(t, x) = div
[
ρ(t, x)(∇W ∗ ρ(t, x) +∇V ∗ ν(t, x))

]
. (1.3)

Existence and uniqueness of weak type solutions to the above equation can be investigated using the so-called
Jordan Kinderlehrer and Otto (JKO) scheme, in the spirit of [7, 19, 37] or, more precisely, in the semi-implicit
version of the scheme introduced in [29]. Indeed, equation (1.3) can be formally reformulated as a gradient
flow of an associated energy functional defined on the Wasserstein space of probability measures endowed with
the Wasserstein distance dW2 , see (2.1) below. The main difference in this case is that the associated energy
functional is not static. Indeed, it will depend on the variable t because of the presence of the cross interaction
with the distribution of the control agents ν(t). Let us briefly exploit the formal gradient flow formulation of
(1.3). For every fixed time t, consider the energy functional Fν(t) : P2(Rd)→ R defined as

Fν(t)(ρ) :=
1

2

∫
Rd

W ∗ ρdρ+

∫
Rd

V ∗ ν(t)dρ.

Then, computing the spatial gradient of the first variation of Fν(t) w.r.t. the measure ρ, we have

∇
δFν(t)

δρ
(t, x) = ∇W ∗ ρ(t, x) +∇V ∗ ν(t, x). (1.4)

Combining (1.3) with (1.4) we obtain

∂tρ(t) = div
(
ρ(t)∇

δFν(t)

δρ

)
.

In order to rigorously formulate the above equation as a gradient flow in the Wasserstein space, one should be
able to identify the r.h.s. as follows

div
(
ρ(t)∇

δFν(t)

δρ

)
= −grad dW2

Fν(t)(ρ(t)),

where the gradient should be understood as a tangent vector in the space of probability measures endowed with
a proper Riemannian structure induced by the Wasserstein distance, [41].

Under the formalism sketched above, equation (1.3) can be formally equivalently regarded as

∂tρ = −grad dW2
Fν(t)(ρ). (1.5)

For equation in that form the JKO-scheme, see (JKO) below for a precise definition, can be interpreted as a
semi-implicit Euler scheme in time, where the time dependence through the control measure ν is left explicit.
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More precisely, considering a time step τ and a sequence of times tk, k = 0, 1, . . ., one can approximate (1.5) as
follows

ρ(tk+1) = ρ(tk)− τgrad dW2
Fν(tk)(ρ(tk+1)).

The above nonlinear equation can be solved by a minimising movements approach, that results to be the
following minimisation problem

min
ρ

{
1

2τ
d2
W2

(ρ, ρ(tk)) + Fν(tk)(ρ)

}
,

where the minimum is attempted over the space of probability measures.
Given these considerations, our contribution to the above line of research can be summarise as follows. In

Theorem 2.2, we will construct weak measure solutions to equation (1.3) under the assumptions of jump type
singularities for the gradient of W . The proof uses a semi-implicit version of the JKO-scheme that allows to
extend the standard compactness argument and improve the usual regularity in time, provided Lipschitz conti-
nuity in time of ν. We then investigate existence of solutions to the optimisation problem (1.2) in Theorem 2.3.
The regularity in time obtained in Theorem 2.2 allows us to require lower semi-continuity of the cost functional
J w.r.t narrow convergence and not weak-∗ as in [12]. Moreover, we can further improve this regularity in time
considering suitable convexity assumptions on the interaction potentials.

Structure of the paper : In Section 2 we introduce some notation, set the main assumptions on the interaction
potentials W and V in (Self) and (Cross) respectively and we state the main results in Theorems 2.2 and 2.3.
We conclude the section collecting some preliminary results. In Section 3, we prove Theorem 2.2 concerning
the existence of weak measure solutions to the transport equation (1.3), proving that these solutions satisfy a
suitable Lipschitz regularity in time. Finally, Section 4 is devoted to the proof of Theorem 2.3 on the existence
of solutions to the optimisation problem (1.2).

2. Preliminaries

2.1. The Wasserstein distance

In this section we collect the basic definition and known results about Wasserstein distances and probability
measures that will be useful for our analysis.

We denote by M(Rd) the set of all positive finite measures and MM (Rd) ⊂M(Rd) the subset of measures
with total mass less than M , i.e. µ ∈ M(Rd) such that µ(Rd) ≤ M . We call MR

M (Rd) the set of positive
measures with mass smaller or equal than M and support contained in the closure of the ball B(0, R) ⊂ Rd.

With P(Rd) we denote the set of probability measures and, if p ≥ 1, Pp(Ω) is the subset of P(Rd) containing
probability measures with finite p-moments, namely∫

Rd

|x|pdµ(x) < +∞.

The pushforward of a measure µ ∈ P(Rd1) by a function f : Rd1 → Rd2 is defined by

f#µ(A) = µ(f−1(A)) for every Borel set A ⊂ Rd2 .

If ρ ∈ P(Rd1 × Rd2) and π1, π2 designate the canonical projections defined on Rd1 × Rd2 , then π1# and π2#

are called the first and second marginal of ρ. Given µ ∈ P(Rd1) and ν ∈ P(Rd2) we denote by Γ(µ, ν) the set of
all couplings between µ and ν, i.e. all the probability measures in P(Rd1 × Rd2) whose first marginal is µ and
second marginal is ν.
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Let p ≥ 1 and µ, ν ∈ Pp(Rd), then their p-Wasserstein distance is defined as

dWp
(µ, ν) :=

(
inf

γ∈Γ(µ,ν)

∫
Rd×Rd

|x− y|pdγ(x, y)

)1/p

. (2.1)

In what follows we will denote by Γo(µ, ν) the set of optimal couplings between µ, ν, namely Γo(µ, ν) will contain
those elements of Γ(µ, ν) for which the infimum in the definition of p-Wasserstein distance is attained. It is a
standard result to prove that Γo(µ, ν) is non-empty.

Given r > 0 and ν ∈ Pp(Rd), we will denote by

BdWp
(ν, r) =

{
µ ∈ Pp(Rd) : dWp

(ν, µ) ≤ r
}

the closed p-Wasserstein ball centered at ν of radius r. We further introduce the following spaces

LipL,dWp
(0, T ;Pp) =

{
µ : [0, T ]→ Pp(Rd) : dWp

(µ(t), µ(s)) ≤ L|t− s|,∀ s, t ∈ [0, T ]
}
, (2.2)

for some L > 0, and

LipL′,d∗(0, T ;MR
M ) =

{
µ : [0, T ]→MR

M (Rd) : d∗(µ(t), µ(s)) ≤ L′|t− s|,∀t, s ∈ [0, T ]
}
, (2.3)

for some L′,M,R > 0, where and d∗ is a distance metrising the weak-∗ convergence of measures.

2.2. Assumptions and main results

In the present work we consider potentials W,V satisfying the following properties

(Self) W ∈ C(Rd) ∩C1(Rd \ {0}) is an even globally Lipschitz kernel such that W (0) = 0 and W is λ-convex
for some λ ≤ 0,

(Cross) V ∈ C1(Rd) is a globally Lipschitz function bounded from below by some V0 ∈ R

Let us observe that the global Lipschitz continuity of W and the condition W (0) = 0 automatically imply
that

W (x) ≤ C(1 + |x|2)

for some C > 0. Moreover, being W only Lipschitz continuous at the origin, the term ∇W ∗ ρ(t, ·) is not well
defined unless we better specify it. By calling ∂0W the element of minimal norm in the subdifferential of W at
x, then as shown in [20], Proposition 2.2 we have that (Self) assumption ensures that

∂0W ∗ µ(x) =

∫
{y 6=x}

∇W (x− y)dµ(y) and ∂0W ∗ µ ∈ L2(µ) for any µ ∈ P2(Rd).

Concerning the control functional J we assume that

(Contr) J : A→ R∪{+∞} be a control functional that is bounded from below and lower semi-continuous with
respect to the narrow convergence of measures.

In order to state rigorously our definition of weak solution of (1.3), let us first introduce the following piece
of notation. We denote by

Cdn(0, T ;P2) =
{
µ : [0, T ]→ P2(Rd) : µ is continuous w.r.t the narrow convergence of measures

}
,
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where dn is a distance metrising the narrow convergence of measures.

Definition 2.1 (Weak measure solutions). Let T > 0 and ρ0 ∈ P2(Rd). We say that ρ ∈ Cdn(0, T ;P2) is a weak
measure solution of (1.3) with initial datum ρ0 if ρ(0, ·) = ρ0 in P2(Rd), ∂0W ∗ ρ ∈ L1((0, T );L2(ρ(t))) and for
every φ ∈ C∞c ((0, T )× Rd) it holds

∫ T

0

∫
Rd

(
∂φ

∂t
(t, x) + (∂0W ∗ ρ(t, x) +∇V ∗ ν(t, x)) · ∇φ(t, x)

)
dρ(t, x) = 0.

We are now in position to present the main results of this work.

Theorem 2.2 (Transport problem). Let T > 0, ρ0 ∈ P2(Rd) and ν ∈ LipL′,d∗(0, T ;MR
M ) be fixed. Let then W,V

be a self and a cross interaction potential satisfying (Self) and (Cross) respectively. Then there exists a weak
measure solution ρ of (1.3) with initial datum ρ0 in the sense of Definition 2.1 in the space LipL,dW2

(0, T ;P2),

for some L = L(M,Lip(V ),Lip(W )) > 0.

Theorem 2.3 (Optimal control problem). Let T > 0 and ρ0 ∈ P2(Rd), and assume that W,V are interaction
potentials satisfying (Self), (Cross) respectively. Introduce the space

A := LipL′,d∗(0, T ;MR
M ) × LipL,dW2

(0, T ;P2)

and the control functional J be under assumption (Contr). Then the problem

inf
A
J (ν, ρ) s.t. ρ is a weak measure solution of (1.3) with ν and initial datum ρ(0) = ρ0 (2.4)

admits a solution.
Moreover, if we further assume that V is λ′-convex for some λ′ ≤ 0, then the minimization in (2.4) still

admits in the bigger space

A′ := LipL′,d∗(0, T ;MR
M ) × Cdn(0, T ;P2).

2.3. Technical preliminaries

In this section of the preliminaries, we collect a couple of auxiliary technical results which will be useful in
the proof of Theorems 2.2 and 2.3.

Lemma 2.4 ([10], Thm. 2.8). Let (µk)k≥1, (νk)k≥1 ⊂ P(Rd) such that µk ⇀ µ ∈ P(Rd) and νk ⇀ ν ∈ P(Rd)
in the narrow sense. Then we also have narrow convergence of the product measure, i.e. µk ⊗ νk ⇀ µ⊗ ν.

The next result relates the lower semi-continuity of a function to that of the corresponding integrand func-
tional. A more general formulation is proved in [7], Lemma 5.1.7. For completeness, we prove here a simplified
version suited to our scope.

Proposition 2.5. Let f : Rd → R∪ {+∞} be a lower semi-continuous function, bounded from below. Then the
functional J : P(Rd)→ R∪ {+∞} defined as J(µ) =

∫
fdµ is lower semi-continuous with respect to the narrow

convergence of measures.

Proof. Thanks to Baire Theorem, it is possible to find a non-decreasing sequence of continuous functions fk :
Rd → R converging pointwise to f . Up to a careful truncation argument, it is always possible to assume that
the functions fk are bounded from above (in general, not uniformly in k). On the other hand, being f bounded
from below by assumption, we can always assume that fk + c ≥ 0 for some c ∈ R.
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By the monotone convergence Theorem we deduce that

lim
k→∞

∫
Rd

(fk − c)dµ =

∫
Rd

(f − c)dµ for every µ ∈ P(Rd)

which in turn implies that limk→∞ Jk(µ) = J(µ), where we denoted Jk(µ) the functional
∫
fkdµ. Since the

functionals Jk are non-decreasing in k and they are all continuous with respect to the narrow convergence of
measures, i.e.

dn(µh, µ) = 0 =⇒ Jk(µh)→ Jk(µ),

we infer that J is lower semi-continuous with respect to the narrow convergence.

A straightforward consequence is the lower semi-continuity of the optimal transport cost.

Proposition 2.6 ([6, 7, 44]). Let c : Rd × Rd → R≥0 be a non-negative lower semi-continuous cost function
and µ, ν ∈ P(Rd). Then the optimal transport cost

C(µ, ν) = inf
γ∈Γ(µ,ν)

∫
Rd×Rd

c(x, y)dγ(x, y)

is lower semi-continuous with respect to narrow convergence of measures.

Corollary 2.7. Since the cost c(x, y) = |x− y|p satisfies the conditions of Proposition 2.6, the p-Wasserstein
distance is lower semi-continuous with respect to the narrow convergence of measures.

The next Lemma shows that closed p-Wasserstein balls are sequentially compact in Pp(Rd) with respect to
the q-Wasserstein topology for every 1 ≤ q < p. Despite this result being well known in the literature, we report
the proof for completeness.

Proposition 2.8. Let ν ∈ Pp(Rd) and (µk)k ⊂ Pp(Rd) such that (µk)k ⊂ BdWp
(ν, r) for some r > 0. Then

there exists µ ∈ Pp(Rd) ∩BdWp
(ν, r) such that Wq(µk, µ)→ 0 for all q ∈ [1, p).

Proof. In order to prove the statement it is enough to show that the q-moments of (µk)k are uniformly integrable
for every q ∈ [1, p). Then tightness of the sequence (µk)k and the convergence of the q-moments will follow as
a consequence.

Our first aim is to prove that for every ε > 0 there exists some R = R(ε) > 0 such that∫
{|x|>R}

|x|qdµk(x) < ε for all k ∈ N and q ∈ [1, p). (2.5)

In order to do this, we first need a uniform estimate on the p-moments of the sequence (µk)k. This comes
straightforward by the p-Wasserstein bound, indeed for each k ∈ N we can find γk ∈ Γo(µk, ν) and compute∫

Rd

|x|pdµk(x) =

∫
Rd×Rd

|x|pdγk(x, y) ≤ 2pdWp(µk, ν)p + 2p
∫
Rd

|y|pdν(y) ≤ C <∞ (2.6)

for some C = C(r, p, ν) > 0 independent on k.
Let now q ∈ [1, p) and ε > 0 be fixed, then (2.5) is a consequence of (2.6). Indeed∫

{|x|>R}
|x|qdµk(x) =

∫
{|x|>R}

1

|x|p−q
|x|pdµk(x)
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≤ 1

Rp−q

∫
{|x|>R}

|x|pdµk(x)

≤ 1

Rp−q
C < ε for all k ∈ N

as soon as R is big enough depending on ε, p, q, C.
Let us observe that the above computation actually holds for every q ∈ [0, p). In particular, with the choice

q = 0, we deduce that the sequence (µk)k is tight and thus, by Prokhorov’s Theorem, a not relabeled subsequence
narrowly converges to some µ ∈ P(Rd). Moreover, applying the monotone convergence theorem together with
(2.6) it is easy to see that the limit measure µ has finite p-moment, i.e. it is an element of Pp(Rd). Moreover,
thanks to the lower semi-continuity of the p-Wasserstein distance recalled in Corollary 2.7, we immediately
deduce that µ ∈ BdWp

(ν, r).
To conclude, we only need to prove that the q-moments of µk converge to the q-moment of µ for every

q ∈ [1, p).
Thanks to (2.5) and the fact that µ ∈ Pp(Rd), thus also in Pq(Rd) for all q ∈ [1, p), for every ε > 0 it is

possible to find some R = R(ε, q) > 0 big enough so that∫
|x|>R

|x|q dµk(x) <
ε

3
for all k, and

∣∣∣∣∫
Rd

(
|x|q −min{|x|q, R}

)
dµ(x)

∣∣∣∣ < ε

3
.

Then, since µk narrowly converges to µ, we can find some k̄ = k̄(ε,R) ∈ N such that for all k ≥ k̄ the following
estimate holds ∣∣∣∣∫

Rd

|x|qd(µk − µ)(x)

∣∣∣∣ ≤ ∣∣∣∣∫
Rd

(
|x|q −min{|x|q, R}

)
d(µk − µ)(x)

∣∣∣∣
+

∣∣∣∣∫
Rd

min{|x|q, R}d(µk − µ)(x)

∣∣∣∣ < ε,

thus concluding the proof.

Remark 2.9. Let us emphasise two aspects in the proof of Proposition 2.8. The first one is that Wasserstein
balls are always tight. Secondly, the closed p-Wasserstein ball is compact with respect to the q-Wasserstein
topology for any q ∈ [1, p) and with respect to the narrow convergence of measures.

The next Lemma is a straightforward consequence of the uniform continuity in time of ν ∈ LipL′,d∗(0, T ;MR
M )

which is granted by the Heine-Cantor Theorem.

Lemma 2.10. Let T > 0 and ν ∈ LipL′,d∗(0, T ;MR
M ) for some fixed constants L′,M,R > 0. For every k ∈ N,

consider τk := T/k and the piecewise constant curves νk : [0, T ]→MR
M (Rd) defined as

νk(t) :=

k−1∑
i=0

ν(τk(i+ 1))1[τki,τk(i+1))(t).

Then dn(νk(t), ν(t))→ 0 as k →∞ for every t ∈ [0, T ].

The rest of this section is devoted to prove uniqueness and stability properties of weak measure solutions of
(1.3) in the class of 2-Wasserstein absolutely continuous curves, under the further assumption that the cross
interaction potential V also enjoys the λ-convexity property.
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Lemma 2.11. Let t ∈ [0, T ], ν ∈ LipL′,d∗(0, T ;MR
M ), W,V be as in (Self), (Cross) respectively and assume

that V is λ′-convex for some λ′ ≤ 0. Consider the energy functional Fν(t) : P2(Rd)→ R defined as

Fν(t)(µ) :=
1

2

∫
Rd

W ∗ µdµ+

∫
Rd

V ∗ ν(t)dµ

and, given ξ, η ∈ P2(Rd) and γ ∈ Γo(ξ, η), consider the interpolating curve γs := ((1 − s)π1 + sπ2)#γ for s ∈
[0, 1]. Then Fν(t) enjoys the following convex inequality

Fν(t)(γs) ≤ (1− s)Fν(t)(ξ) + sFν(t)(η)−
(

1 +
M

2

)
λ̄s(1− s)d2

W2
(ξ, η) (2.7)

where λ̄ = min{λ, λ′}.

Proof. For simplicity let us write Fν(t) = W + Vν(t), where we have set

W (µ) :=
1

2

∫
Rd

W ∗ µdµ and Vν(t)(µ) :=

∫
Rd

V ∗ ν(t) dµ. (2.8)

If γ and γs are as in the statement, thanks to the convexity properties of the potentials W,V , we can compute

W (γs) =

∫
Rd×Rd

W (x− y)dγs(y)dγs(x)

=

∫
Rd×Rd×Rd×Rd

W ((1− s)x1 + sx2 − ((1− s)y1 + sy2))︸ ︷︷ ︸
=(1−s)(x1−y1)+s(x2−y2)

dγ(y1, y2)dγ(x1, x2)

≤ (1− s)
∫
Rd×Rd

W (x1 − y1)dξ(y1)dξ(x1) + s

∫
Rd×Rd

W (x2 − y2)dη(y2)dη(x2)

− λ

2
(1− s)s

∫
Rd×Rd×Rd×Rd

|x1 − y1 − (x2 − y2)|2dγ(x1, x2)dγ(y1, y2)

≤ (1− s)W (ξ) + sW (η)− λ(1− s)sd2
W2

(ξ, η),

and similarly

Vν(t)(γs) =

∫
Rd×Rd

V (x− y)dν(t)(y)dγs(x)

=

∫
Rd×Rd

∫
Rd

V ((1− s)x1 + sx2 − y︸ ︷︷ ︸
(1−s)(x1−y)+s(x2−y)

)dν(t)(y)dγ(x1, x2)

≤ (1− s)
∫
Rd×Rd

V (x1 − y)dν(t)(y)dξ(x1) + s

∫
Rd×Rd

V (x2 − y)dν(t)(y)dη(x2)

− λ′

2
(1− s)s

∫
Rd×Rd

|x1 − x2|2
∫
Rd

dν(t)(y)dγ(x1, x2)

≤ (1− s)Vν(t)(ξ) + sVν(t)(η)− λ′M
2

(1− s)sd2
W2

(ξ, η).

Then (2.7) follows by summing up the two above estimates and recalling that λ̄ < λ, λ′.
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Proposition 2.12 (Stability for the Transport problem). Let T > 0, ν ∈ LipL′,d∗(0, T ;MR
M ), W,V be as in

(Self), (Cross) respectively and assume that V is λ′-convex for some λ′ ≤ 0. Given %0, %̂0 ∈ P2(R2), let %, %̂ be
two weak measure solutions of (1.3) with initial datum %0 and %̂0 respectively in the sense of Definition 2.1.
Moreover, assume that %, %̂ are absolutely continuous curves with respect to the 2-Wasserstein distance. Then
the following stability estimate holds

dW2
(%(t), %̂(t)) ≤ dW2

(%(0), %̂(0))e−λ̄(M+2)t for all t ∈ [0, T ], (2.9)

where λ̄ = min{λ, λ′}. In particular, weak measure solutions of (1.3) for the same initial datum are unique in
the class of 2-Wasserstein absolutely continous curves.

Proof. The main tool of this proof consists in showing that any weak measure solution ρ of (1.3) that is
absolutely continuous in (P2(R2), dW2) satisfies the following Evolution Variational Inequality

1

2

d

dt
d2
W2

(ρ(t), η) +

(
1 +

M

2

)
λ̄d2

W2
(ρ(t), η) ≤ Fν(t)(η)−Fν(t)(ρ(t)) (2.10)

for all t ∈ [0, T ] and η ∈ P2(Rd). Indeed, the claimed stability follows as an immediate consequence of (2.10)
because, choosing first ρ(t) = %(t) and η = %̂(t) and then ρ(t) = %̂(t) and η = %(t), up to sum the two inequalities,
we get

d

dt
d2
W2

(%(t), %̂(t)) + (M + 2)λ̄d2
W2

(%(t), %̂(t)) ≤ 0.

Then a Grönwall type argument implies

d2
W2

(%(t), %̂(t)) ≤ d2
W2

(%(0), %̂(0))e−λ̄(M+2)t

and, in turn, the desired stability estimate (2.9).
Therefore, to conclude, we are left to prove the validity of inequality (2.10). Thanks to (2.7) of Lemma 2.11,

if γ ∈ Γo(ξ, η) and γs := ((1− s)π1 + sπ2)#γ for s ∈ [0, 1], we know that

Fν(t)(γs)−Fν(t)(ξ)

s
≤ −Fν(t)(ξ) + Fν(t)(η)−

(
1 +

M

2

)
λ̄(1− s)d2

W2
(ξ, η).

Choosing ξ = ρ(t) for some t ∈ [0, T ] and passing to the liminf as s→ 0 we then obtain

lim inf
s↘0

Fν(t)(γs)−Fν(t)(ρ(t))

s
+

(
1 +

M

2

)
λ̄d2

W2
(ρ(t), η) ≤ Fν(t)(η)−Fν(t)(ρ(t)). (2.11)

If we now call

v(t)(x) =

∫
x 6=y
∇W (x− y)dρ(t)(y) +∇V ∗ ν(t)(x),

then Proposition 2.2 of [19] implies that

lim inf
s↘0

Fν(t)(γs)−Fν(t)(ρ(t))

s
≥
∫
Rd×Rd

v(t)(x) · (y − x)dγ(x, y). (2.12)
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Once here, since ρ is assumed to be absolutely continuous, we can apply Theorem 8.4.7 and Remark 8.4.8 of
[7] to infer that ∫

Rd×Rd

v(t)(x) · (y − x)dγ(x, y) =
1

2

d

dt
d2
W2

(ρ(t), η).

Finally, (2.10) follows combining the above identity with (2.11) and (2.12).

3. Transport problem

In this section, we present the proof of Theorem 2.2 which is one of the main novelties of this paper, since
it improves the regularity in time for solutions of nonlocal transport equations obtained with the JKO-scheme
introduced in the following. For clarity, we recall that we now consider nonlocal interaction potentials W,V
satisfying the assumptions (Self), (Cross) and we are concerned with finding a weak measure solutions in the
sense of Definition 2.1 for the initial value problem{

∂tρ(t, x) = div x

(
ρ(t, x)

(
∇W ∗ ρ(t, x) +∇V ∗ ν(t, x)

))
on (0, T )× Rd,

ρ(0, ·) = ρ0 ∈ P2(Rd).
(3.1)

As observed in the introduction, the continuity equation (3.1) formally shows a gradient flow structure
involving a non-local interaction potential W and a time-dependent external potential ∇V ∗ ν. This time-
dependence does not allow a proper gradient flow structure for (3.1).

However we can bring the well-known techniques used for such equations, see [7, 19, 44] to our case. More
precisely, we will construct a weak solution of the transport equation (3.1) following a suitable generalisation
of the celebrated Jordan–Kinderlehrer–Otto scheme, originally introduced in [37], that applies to such time-
depending energies Fν(t).

The generalised JKO scheme works as follows: given the time interval [0, T ], consider an uniform partition
with step-size τk := T/k for some k ∈ N, and perform the following minimisation problemρ

k
0 = ρ0

ρki+1 ∈ argmin
ρ∈P2(Rd)

1
2τk

d2
W2

(ρ, ρki ) + Fν(τk(i+1))(ρ) (JKO)

for each i = 0, . . . , k − 1. Note that this is formally equivalent to applying the implicit Euler scheme to (1.5).
In this section we will show that the piecewise constant measures

ρk(t) :=

k∑
i=0

ρki 1[τki,τk(i+1))(t), (3.2)

will converge in some proper topology to a weak measure solution of (3.1) (or, equivalently, (1.3)) in the sense
of Definition 1.1. Moreover, we will prove that such limit solution enjoys good Lipschitz regularity in P2(Rd).

As first step we show that the minimization problem in (JKO) is always well posed under our assumptions. For
τ ∈ (0, T ) fixed and µ̄ ∈ P2(Rd) we introduce the penalised energy functional Φντ (µ̄; ·) : P2(Rd) → R ∪ {+∞},
defined as follows

Φντ (µ̄;µ) :=
1

2τ
d2
W2

(µ̄, µ) + Fν(τ)(µ). (3.3)
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Proposition 3.1. Let W,V be as in (Self) and (Cross) respectively and let ν ∈ LipL′,d∗(0, T ;MR
M ) be fixed.

Let µ̄ ∈ P2(Rd) be a fixed reference measure. Then, for all τ > 0 the minimization problem

argmin
µ∈P2(Rd)

Φντ (µ̄;µ) (3.4)

always admits solution.

Proof. Let τ ∈ (0, T ) be fixed and arbitrary small.
We will show that the penalised energy functional Φντ (µ̄; ·) is lower semicontinuous and for every Λ ∈ R, the

level-set

EΛ = {µ ∈ P2(Rd) : Φντ (µ̄;µ) ≤ Λ}

is sequentially compact. As consequence, we will see that Φντ (µ̄; ·) is bounded from below and we conclude the
existence of minimizers by standard application of the Direct Method of Calculus of Variations.

The lower semi-continuity of the term involving V in Fν(τ) follows immediately by the continuity and
boundedness of V and Proposition 2.5, while the remaining part of the penalised energy functional Φντ (µ̄; ·) has
been proved to be lower-semi continuous in [20], Lemma 2.3.

To show that EΛ is sequentially compact, we need to check the compactness of a sequence (µn)n such that

Λ ≥
∫
Rd×Rd

W (x− y)dµn(x)dµn(y) +

∫
Rd

V ∗ ν(τ)dµn +
1

2τ
d2
W2

(µ̄, µn). (3.5)

As already noticed, assumptions (Self) ensures that W (z)− λ
2 |z|

2 is convex and even. Moreover W (z)− λ
2 |z|

2 ≥ 0
for every z ∈ Rd, in particular

W (x− y) ≥ λ

2
|x− y|2 ≥ λ(|x|2 + |y|2) (3.6)

since λ ≤ 0. Then, taking γn ∈ Γo(µ̄, µn) and using (3.6), we can estimate∫
Rd×Rd

W (x− y)dµn(x)dµn(y) +
1

2τ
d2
W2

(µ̄, µn)

=

∫
Rd×Rd

[
W (x− y)− λ(|x|2 + |y|2)

]
dµn(x)dµn(y) + 2λ

∫
Rd

|y|2dµn(y) +
1

2τ
d2
W2

(µ̄, µn)

≥
∫
Rd

2λ|y|2dµn(y) +
1

2τ
d2
W2

(µ̄, µn)

=

∫
Rd×Rd

[
2λ|y|2 +

1

2τ
|x− y|2

]
dγn(x, y)

≥
∫
Rd×Rd

(
4λ+

1

2τ

)
|x− y|2dγn(x, y) + 4λ

∫
Rd

|x|2dµ̄(x),

where the last inequality holds since

2λ|y|2 ≥ 4λ|x− y|2 + 4λ|x|2,

which can be proved combininig the fact that |y|2 ≤ 2|x − y|2 + 2|x|2 with λ ≤ 0. Now observe that, for a
given constant C > 0, it is alwyas possible to choose τ small enough (i.e. smaller than τ < 1

2(C−4λ) ) such that
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4λ+ 1
2τ > C. From the above argument we infer

Λ ≥ Cd2
W2

(µ̄, µn) + 4λ

∫
Rd

|x|2dµ̄+ Vν(τ)(µn),

thus

d2
W2

(µ̄, µn) ≤
Λ− 4λ

∫
Rd |x|2dµ̄− Vν(τ)(µn)

C

and, being V ≥ V0 and µ̄ ∈ P2(Rd), we can conclude

d2
W2

(µ̄, µn) ≤
Λ− 4λ

∫
Rd |x|2dµ̄− V0M

C
< r (3.7)

for some r > 0 depending on Λ, C, V0,M, λ and the second moment of µ̄. In particular, the sequence (µn)n
belongs to the 2-Wasserstein ball BdW2

(µ̄, r) and thanks to the observations in Remark 2.9 we deduce that

there is a subsequence (µnk
)k which is narrowly converging to some µ∗ ∈ BdW2

(µ̄, r). Moreover, since µn ≤ Λ
for every n ∈ N, by lower semicontinuity of Φντ (µ; ·) we get that

Φντ (µ̄;µ∗) ≤ lim inf
k→∞

Φντ (µ̄;µnk
) ≤ Λ,

hence µ∗ ∈ EΛ and the level sets of Φντ (µ̄; ·) are sequentially compact.
We can conclude the proof by noticing that Φντ (µ̄; ·) is bounded from below. Indeed, if (µn)n is a minimising

sequence we can assume without loss of generality that (µn)n ⊂ EΛ for some Λ > 0. As a consequence, for every
n we get that

dW2
(µn, δ0) ≤

√
2τΛ + dW2

(µ̄, δ0) <∞,

and since dW2
(µ, δ0) corresponds to the second moment of a measure µ ∈ P2(Rd), we recover that the second

moments of µn are uniformly bounded in n.
Moreover, since the map z 7→ W (z) − λ

2 |z|
2 is convex and even, then it has a global minimum and hence

there exists some A < 0 such that W (z)− λ
2 |z|

2 ≥ A. As a consequence,

W (z) ≥ −|A| − |λ|
2
|z|2 ≥ −max

{
|A|, |λ|

2

}
︸ ︷︷ ︸

:=B

(1 + |z|2)

and we can estimate∫
Rd×Rd

W (x− y)dµn(x)dµn(y) ≥
∫
Rd×Rd

−B(1 + |x− y|2)dµn(x)dµn(y)

≥ −B − 4

∫
Rd×Rd

|x|2dµn(x)

which is finite thanks to the uniform boundedness of the second moments of µn.
On the other hand, the assumptions ensure that 1

2τ d
2
W2

(µ, µ̄) + Vν(τ)(µ) ≥MV0 and hence the lower bound
on Φντ (µ̄; ·).
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Proposition 3.1 allows us to define for every k ≥ 1, a sequence ρk0 , ρ
k
1 , . . . , ρ

k
k solving (JKO). Once here we

can consider piecewise constant interpolation in time of the measures ρki and pass to the limit as the time step
of the scheme converges to 0. We obtain the following compactness result.

Proposition 3.2. Let T > 0 and ρ0 ∈ P2(Rd) be fixed. Consider the curve ρk : [0, T ] → P2(Rd) defined in
(3.2). Then there exists a curve ρ ∈ LipL,dW2

(0, T ;P2) with L = 6(M Lip(V ) + Lip(W )), such that, up to a non
relabeled subsequence, it holds

dn(ρk(t), ρ(t))→ 0 as k →∞ for every t ∈ [0, T ].

Proof. For a fixed k ∈ N, we recall the definition of ρk

ρk(t) :=

k−1∑
i=0

ρki 1[τki,τk(i+1))(t)

where ρk0 = ρ0 and

ρki+1 ∈ argmin
µ∈P2(Rd)

1

2τk
d2
W2

(µ, ρki ) + Fν(τk(i+1))(µ) for every i = 0 . . . k − 1.

First of all, notice that ρk(t) ∈ P2(Rd) for every t ∈ [0, T ] since ρki ∈ P2(Rd) for every i = 0, . . . , k. Let us now
consider the i-th minimisation problem in (JKO), where we consider ρki as a competitor. We get

1

2τk
d2
W2

(ρki , ρ
k
i+1) + Fν(τk(i+1))(ρ

k
i+1) ≤ 0 + Fν(τk(i+1))(ρ

k
i ),

which in turn gives

1

2τk
d2
W2

(ρki , ρ
k
i+1) ≤ Fν(τk(i+1))(ρ

k
i )−Fν(τk(i+1))(ρ

k
i+1)

= W (ρki )−W (ρki+1)︸ ︷︷ ︸
first term

+ Vν(τk(i+1))(ρ
k
i )− Vν(τk(i+1))(ρ

k
i+1)︸ ︷︷ ︸

second term

.
(3.8)

Let us first focus on the first term. Notice that, for γki ∈ Γo(ρ
k
i , ρ

k
i+1), we can say

∫
Rd

W ∗ ρki dρki −
∫
Rd

W ∗ ρki+1dρki+1

=

∫
Rd×Rd×Rd×Rd

(W (x− y)−W (z − w))dρki (x)dρki (y)dρki+1(z)dρki+1(w)

≤
∫
Rd×Rd×Rd×Rd

Lip(W )(|x− z|+ |y − w|)dγki ⊗ γki (x, y, z, w)

=

∫
Rd×Rd

Lip(W )|x− z|dγki (x, z) +

∫
Rd×Rd

Lip(W )|y − w|dγki (y, w),
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and applying the Young inequality ab ≤ εa2

2 + b2

2ε on both terms with ε = 8τk, we obtain

W (ρki )−W (ρki+1) ≤16τk Lip(W )2

2
+

1

16τk

∫
Rd×Rd

|x− z|2dγki (x, z)

+
1

16τk

∫
Rd×Rd

|y − w|2dγki (y, w)

= 8τk Lip(W )2 +
1

8τk
d2
W2

(ρki , ρ
k
i+1).

(3.9)

Instead, for the second term we get∫
Rd

V ∗ ν(τk(i+ 1))d(ρki − ρki+1)

=

∫
Rd×Rd

V (x− y)d(ρki (x)− ρki+1(x))dν(τk(i+ 1))(y)

=

∫
Rd

(∫
Rd×Rd

V (x− y)dγki (x, z)−
∫
Rd×Rd

V (z − y)dγki (x, z)

)
dν(τk(i+ 1))(y)

≤
∫
Rd

(∫
Rd×Rd

Lip(V )|x− z|dγki (x, z)

)
dν(τk(i+ 1))(y)

≤
∫
Rd×Rd

M Lip(V )|x− z|dγki (x, z),

where in the last inequality we used that ν(τk(i + 1))(Rd) ≤ M . Applying again the Young inequality with
ε = 4Mτk, we then deduce

Vν(τk(i+1))(ρ
k
i )− Vν(τk(i+1))(ρ

k
i+1) ≤

∫
Rd×Rd

(
2M2τk(Lip(V ))2 +

|x− z|2

8τk

)
dγki (x, z)

= 2τk(Lip(V ))2M2 +
1

8τk
d2
W2

(ρki , ρ
k
i+1).

(3.10)

Gathering (3.8) together with the estimates (3.9) and the (3.10), we get

1

2τk
d2
W2

(ρki , ρ
k
i+1) ≤ 2τk Lip(V )2M2 + 8τk Lip(W )2 +

1

4τk
d2
W2

(ρki , ρ
k
i+1)

which directly implies the following uniform bound on the 2-Wasserstein distance

dW2(ρki , ρ
k
i+1) ≤ 6(M Lip(V ) + Lip(W ))τk. (3.11)

Let us observe that (3.11) does not depend on the index i neither on ν. Moreover, for any t ∈ [0, T ], summing
(3.11) for i = 0, . . . , k − 1 we have

dW2(ρ0, ρ
k(t)) ≤ 6(M Lip(V ) + Lip(W ))T, (3.12)

which means that ρk(t) ∈ BdW2
(ρ0, r) with r = 6(M Lip(V ) + Lip(W ))T for every t ∈ [0, T ].

Let now 0 ≤ s < t ≤ T and for each k ∈ N consider

s(k) := max{τki ≤ s : i ≤ k} and t(k) := max{τki ≤ t : i ≤ k},
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then s(k) ≤ t(k) and

s = lim
k→∞

s(k) and t = lim
k→∞

t(k).

Thanks to (3.11) and up to take k big enough (i.e. τk small enough), we can compute

dW2(ρk(s), ρk(t)) =dW2(ρks(k)/τk
, ρkt(k)/τk

) ≤
(t(k)−1)/τk∑
h=s(k)/τk

dW2(ρkh, ρ
k
h+1)

≤ 6(M Lip(V ) + Lip(W ))
(
t(k)− s(k)

)
and passing to the limsup in k we deduce

lim sup
k→∞

dW2
(ρk(s), ρk(t)) ≤ 6(M Lip(V ) + Lip(W ))(t− s). (3.13)

As observed in Remark 2.9 closed Wasserstein balls are sequentially compact with respect to the narrow
convergence, then thanks to (3.12) and (3.13) we can apply the refined version of Ascoli-Arzelà Theorem
(see [7], Prop. 3.3.1) to conclude that there exists a further, not relabeled, subsequence ρk and a limit curve
ρ : [0, T ]→ P2(Rd) that is 2-Wasserstein continuous on [0, T ] and such that

ρk(t) ⇀ ρ(t) narrowly for every t ∈ [0, T ].

We are left to check that the limiting curve ρ belongs to the space LipL,dW2
(0, T ;P2). As observed in Corol-

lary 2.7, the 2-Wasserstein distance is lower semi-continuous with respect to the narrow convergence and from
(3.13) we deduce

dW2
(ρ(s), ρ(t)) ≤ lim inf

k→∞
dW2

(ρk(s), ρk(t)) ≤ lim sup
k→∞

dW2
(ρk(s), ρk(t)) ≤ 6(M Lip(V ) + Lip(W ))(t− s)

thus concluding the proof.

We conclude this section with the proof of Theorem 2.2.

Proof of Theorem 2.2. Proposition 3.2 grants that the sequence ρk of piecewise constant interpolations of the
measures (ρki )k−1

i=0 narrowly converges pointwise in time to a curve ρ ∈ LipL,dW2
(0, T ;P2). We claim that ρ is a

weak measure solution of (1.3) in the sense of Definition 2.1. Since, by construction, ρk(0) = ρ0 for every k ∈ N,
we deduce that ρ(0) = ρ0. Moreover,

LipL,dW2
(0, T ;P2) ⊂ Cdn([0, T ];P2(Rd))

and ∂0W ∗ ρ(t) ∈ L∞(Rd) for every t ∈ [0, T ]. From the Lipschitz regularity of W we deduce that ∂0W ∗ ρ ∈
L∞((0, T );L∞(Rd)).

Therefore, to conclude, we are only left to show that ρ satisfies the weak formulation of the transport equation,
namely that for every φ ∈ C∞c ((0, T )× Rd) it holds∫ T

0

∫
Rd

(
∂φ

∂t
(t, x) + (∂0W ∗ ρ(t, x) +∇V ∗ ν(t, x)) · ∇φ(t, x)

)
dρ(t, x) = 0. (3.14)

For clarity we split the proof in four Steps.



OPTIMAL CONTROL PROBLEMS OF NONLOCAL INTERACTION EQUATIONS 17

Step 1. In this Step we show that the sequence ρk satisfies a suitable approximation of (3.14) pointwise
in time. This is the most classical part of the proof where, using the minimality condition in (JKO) and the
assumptions on the kernels, we show that for each i = 0 . . . k − 1, and for every ξ ∈ C∞c (Rd) the following
identity holds

0 =
1

τk

∫
Rd×Rd

(x− y) · ∇ξ(x)dγki (x, y)

+
1

2

∫
Rd×Rd

[∇W (x− y) · (∇ξ(x)−∇ξ(y))] dρki+1(x)dρki+1(y)

+

∫
Rd×Rd

(∇V (x− y) · (∇ξ(x))dρki+1(x)dν(τk(i+ 1), y), (3.15)

where γki is an optimal plan between ρki , ρ
k
i+1, i.e. γki ∈ Γo(ρ

k
i , ρ

k
i+1).

Let ξ ∈ C∞c (Rd) and ε > 0 be arbitrary fixed. Recall that we constructed ρki+1 from ρki by the minimization
problem (JKO). In particular, if we consider µ to be a smooth perturbation of ρki+1 i.e. µ = T ε#ρ

k
i+1 where

T ε(x) = x+ ε∇ξ(x), by minimality we get

Φντk(ρki ; ρki+1) ≤ Φντk(ρki ;T ε#ρ
k
i+1)

where Φντk is the penalised energy functional introduced in (3.3). Expanding the functional Φντk we find

0 ≤ 1

2τk

[
d2
W2

(ρki , T
ε
#ρ

k
i+1)− d2

W2
(ρki , ρ

k
i+1)

]
+ Fν(τk(i+1))(T

ε
#ρ

k
i+1)−Fν(τk(i+1))(ρ

k
i+1). (3.16)

Recalling that γki ∈ Γo(ρ
k
i , ρ

k
i+1), we can estimate the terms in (3.16) containing the Wasserstein distance in

the following way

1

2τk

[
d2
W2

(ρki , T
ε
#ρ

k
i+1)− d2

W2
(ρki , ρ

k
i+1)

]
≤ 1

2τ

∫
Rd×Rd

|x− y|2d(T ε, Id)#γ
k
i (x, y)− 1

2τ

∫
Rd×Rd

|x− y|2dγki

=
1

2τk

∫
Rd×Rd

|T (x)− y|2dγki (x, y)− 1

2τk

∫
Rd×Rd

|x− y|2dγki (x, y)

=
1

2τk

∫
Rd×Rd

(|x+ ε∇ξ(x)− y|2 − |x− y|2)dγki (x, y).

(3.17)

Notice, that in the first inequality of (3.17) we used the competitor plan (T ε, Id)#γ
k
i ∈ Γ(µ, ρki ) where

(T ε, Id) : (x, y) 7→ (T ε(x), y). Indeed, since

π1 ◦ (T ε, Id)(x, y) = T ε(x) = T ε ◦ π1(x, y) and π2 ◦ (T ε, Id)(x, y) = y = π2(x, y),

we have

(π1)#(T ε, Id)#γ
k
i = (π1 ◦ (T ε, Id))#γ

k
i = (T ε ◦ π1)#γ

k
i = T ε# (π1)#γ

k
i︸ ︷︷ ︸

ρi+1

= µ,

and also

(π2)#(T ε, Id)#γ
k
i = (π2)#γ

k
i = ρki .
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Let us now discuss the terms in (3.16) involving the energy Fν(τk(i+1)). From the definition of T ε we can
directly compute

Fν(τk(i+1))(T
ε
#ρ

k
i+1)−Fν(τk(i+1))(ρ

k
i+1)

=
1

2

∫
Rd×Rd

[W (x− y + ε(∇ξ(x)−∇ξ(y))−W (x− y)] dρki+1(x)dρki+1(y)

+

∫
Rd×Rd

[V (x− y + ε∇ξ(x))− V (x− y)] dρki+1(x)dν(τk(i+ 1), y).

Gathering together the above identity, (3.17) and (3.16), we get

0 ≤ 1

2τk

∫
Rd×Rd

(|x− y + ε∇ξ(x)|2 − |x− y|2)dγki (x, y)

+
1

2

∫
Rd×Rd

[W (x− y + ε(∇ξ(x)−∇ξ(y))−W (x− y)] dρki+1(x)dρki+1(y)

+

∫
Rd×Rd

(V (x− y + ε∇ξ(x))− V (x− y))dρki+1(x)dν(τk(i+ 1), y)

(3.18)

In order to obtain (3.15), we need to divide (3.18) by ε and pass to the limit separately in the three terms of
the r.h.s. For more clarity, we denote

I :=
1

2τk

∫
Rd×Rd

(|x− y + ε∇ξ(x)|2 − |x− y|2)dγki (x, y),

II :=
1

2

∫
Rd×Rd

[W (x− y + ε(∇ξ(x)−∇ξ(y))−W (x− y)] dρki+1(x)dρki+1(y),

III :=

∫
Rd×Rd

(V (x− y + ε∇ξ(x))− V (x− y))dρki+1(x)dν(τk(i+ 1), y).

Let us start with I. Expanding the squares, for every x, y we have the following

∣∣∣∣ |x− y + ε∇ξ(x)|2 − |x− y|2

ε

∣∣∣∣ ≤ 2|x− y|‖∇ξ‖L∞ + ε‖∇ξ‖2L∞

and the latter is in L1(γki ) since ρki , ρ
k
i+1 ∈ P2(Rd). Then the limit as ε→ 0 is well defined and corresponds to

lim
ε↘0

1

2τk

∫
Rd×Rd

|x− y + ε∇ξ(x)|2 − |x− y|2

ε
dγki (x, y)

=
1

τk

∫
Rd×Rd

(x− y) · ∇ξ(x)dγki (x, y).

(3.19)

We can deal with term III similarly as done before for I. Indeed, since V ∈ C1(Rd), we get

∣∣∣∣V (x− y + ε∇ξ(x))− V (x− y)

ε

∣∣∣∣ ≤ 2 Lip(V )‖∇ξ‖L∞(Rd)
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and the latter is in L1(ρki+1 ⊗ ν(τk(i+ 1))) since ρki+1 ⊗ ν(τk(i+ 1)) is a finite measure. Then

lim
ε↘0

∫
Rd×Rd

V (x− y + ε∇ξ(x))− V (x− y)

ε
dρki+1(x)dν(τk(i+ 1), y)

=

∫
Rd×Rd

∇V (x− y) · ∇ξ(x)dρki+1(x)dν(τk(i+ 1), y).

(3.20)

For what concerns term II, it is immediate to prove the following pointwise convergence

W (x− y + ε(∇ξ(x)−∇ξ(y)))−W (x− y)

ε
→ ∇W (x− y) · (∇ξ(x)−∇ξ(y))),

everywhere in Rd × Rd. Since

∣∣∣∣W (x− y + ε(∇ξ(x)−∇ξ(y)))−W (x− y)

ε

∣∣∣∣ ≤ 2 Lip(W )‖∇ξ‖L∞(Rd),

and the r.h.s. is in L1(ρki+1 ⊗ ρki+1), we obtain

lim
ε↘0

∫
Rd×Rd

W (x− y + ε(∇ξ(x)−∇ξ(y)))−W (x− y)

ε
dρki+1(x)dρki+1(y)

=

∫
Rd×Rd

∇W (x− y) · (∇ξ(x)−∇ξ(y)))dρki+1(x)dρki+1(y).

(3.21)

Dividing (3.18) by ε > 0 and taking the limit as ε↘ 0, from (3.19), (3.20) and (3.21) we obtain that

0 ≤ 1

τk

∫
Rd×Rd

(x− y) · ∇ξ(x)dγki (x, y)

+
1

2

∫
Rd×Rd

[∇W (x− y) · (∇ξ(x)−∇ξ(y))] dρki+1(x)dρki+1(y)

+

∫
Rd×Rd

(∇V (x− y) · (∇ξ(x))dρki+1(x)dν(τk(i+ 1), y),

and repeating the same argument with ε < 0 this time sending ε↗ 0, we obtain the reverse inequality which
implies (3.15).

Step 2. In this Step we show that the sequence ρk satisfies the approximation of (3.14) for test functions
which are piecewise constant in the time variable. More precisely, we will show that for every ξ ∈ C∞c (Rd) and

θk(t) =

k−1∑
i=0

θ(iτk)1[τki,τk(i+1)) for some values {θ(iτk)}i=0...k−1, (3.22)
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the following inequalities hold

∫
Rd

ξ(x)θk(t)dρk(t, x)−
∫
Rd

ξ(x)θk(s)dρk(s, x)

≤
i−1∑
h=j

1

2
‖θ‖L∞‖D2ξ‖L∞d2

W2
(ρkh+1, ρ

k
h) +O(τk)

+
1

2

∫ t

s

∫
Rd×Rd

θk(q)∇W (x− y) · (∇ξ(x)−∇ξ(y))dρk(q, x)⊗ ρk(q, y)

+

∫ t

s

∫
Rd×Rd

θk(q)∇V (x− y) · ∇ξ(x)dρk(q, x)⊗ νk(q, y)

+

i−1∑
h=j

(θ(τk(h+ 1))− θ(τkh))

∫
Rd

ξ(x)dρkh(x)

(3.23)

and ∫
Rd

ξ(x)θk(t)dρk(t, x)−
∫
Rd

ξ(x)θk(s)dρk(s, x)

≥−
i−1∑
h=j

1

2
‖θ‖L∞‖D2ξ‖L∞d2

W2
(ρkh+1, ρ

k
h) +O(τk)

+
1

2

∫ t

s

∫
Rd×Rd

θk(q)∇W (x− y) · (∇ξ(x)−∇ξ(y))dρk(q, x)⊗ ρk(q, y)

+

∫ t

s

∫
Rd×Rd

θk(q)∇V (x− y) · ∇ξ(x)dρk(q, x)⊗ νk(q, y)

+

i−1∑
h=j

(θ(τk(h+ 1))− θ(τkh))

∫
Rd

ξ(x)dρkh(x)

(3.24)

for every s ≤ t in [0, T ], where s ∈ [τki, τk(i + 1)) and t ∈ [τkj, τk(j + 1)) for some i ≤ j, and νk : [0, T ] →
MR

M (Rd) corresponds to the piecewise constant interpolation of ν defined as

νk(t) :=

k−1∑
i=0

ν(τk(i+ 1))1[τki,τk(i+1))(t).

We only prove (3.23), since (3.24) follows from a similar argument. Let θk(t) and ξ ∈ C∞c (Rd be arbitrary
fixed and let i ∈ {0, . . . k − 1}. Multiplying (3.15) by θ(τk(i+ 1)) we obtain

0 =θ(τk(i+ 1))

∫
Rd×Rd

(x− y) · ∇ξ(x)dγki (x, y)

+
τk
2
θ(τk(i+ 1))

∫
Rd×Rd

∇W (x− y) · (∇ξ(x)−∇ξ(y))dρki+1(x)dρki+1(y)

+τkθ(τk(i+ 1))

∫
Rd×Rd

∇V (x− y) · ∇ξ(x)dρki+1(x)dν(τ(i+ 1), y).

(3.25)
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From a second order Taylor expansion on ξ we deduce

θ(τk(i+ 1))

∫
Rd×Rd

(ξ(y)− ξ(x) + (x− y) · ∇ξ(x)) dγi(x, y)

= θ(τk(i+ 1))

∫
Rd×Rd

1

2
(x− y)TD2ξ(x̄)(x− y)dγki (x, y),

for a proper x̄ in Rd. Thus∣∣∣∣θ(τk(i+ 1))

(∫
Rd

ξ(x)dρki+1(x)−
∫
Rd

ξ(x)dρki (x) +

∫
Rd×Rd

(x− y) · ∇ξ(x)dγki (x, y)

)∣∣∣∣
≤1

2
‖θ‖L∞‖D2ξ‖L∞d2

W2
(ρki+1, ρ

k
i ).

(3.26)

By applying the above inequality to (3.25) we get

θ(τk(i+ 1))

(∫
Rd

ξ(x)dρki+1(x)−
∫
Rd

ξ(x)dρki (x)

)
≤1

2
‖θ‖L∞‖D2ξ‖L∞d2

W2
(ρki+1, ρ

k
i )

+
τk
2
θ(τk(i+ 1))

∫
Rd×Rd

∇W (x− y) · (∇ξ(x)−∇ξ(y))dρki+1(x)dρki+1(y)

+θ(τk(i+ 1))

∫
Rd×Rd

∇V (x− y) · ∇ξ(x)dρki+1(x)dν(τk(i+ 1), y).

(3.27)

Let now s ≤ t, where s ∈ [τki, τk(i+ 1)) and t ∈ [τkj, τk(j + 1)) for some i ≤ j, then by a telescopic sum we can
compute ∫

Rd

ξ(x)θk(t)dρk(t, x)−
∫
Rd

ξ(x)θk(s)dρk(s, x)

= θ(jτk)

∫
Rd

ξ(x)dρkj (x)− θ(iτk)

∫
Rd

ξ(x)dρki (x)

=

j−1∑
h=i

θ((h+ 1)τk)

(∫
Rd

ξ(x)dρkh+1(x)−
∫
Rd

ξ(x)dρh(x)

)

+

j−1∑
h=i

(θ((h+ 1)τk)− θ(hτk))

∫
Rd

ξ(x)dρkh(x),

and thanks to (3.27) we further deduce that∫
Rd

ξ(x)θk(t)dρk(t, x)−
∫
Rd

ξ(x)θk(s)dρk(s, x)

≤1

2

j−1∑
h=i

‖θ‖L∞‖D2ξ‖L∞d2
W2

(ρkh+1, ρ
k
h)

+
τk
2

j−1∑
h=i

θ(τk(h+ 1))

∫
Rd×Rd

∇W (x− y) · (∇ξ(x)−∇ξ(y))dρkh+1(x)dρkh+1(y)
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+τk

j−1∑
h=i

θ(τk(h+ 1))

∫
Rd×Rd

∇V (x− y) · ∇ξ(x)dρkh+1(x)dνk(τk(h+ 1), y)

+

j−1∑
h=i

(θ(τk(h+ 1))− θ(τkh))

∫
Rd

ξ(x)dρkh(x).

Finally, recalling the piecewise constant structure of θk and νk and the fact that t− s = (j − i)τk +O(τk), it is
immediate to deduce (3.23) from the above inequality. Note that (3.24) easily follows from a similar argument
but applying the reverse inequality of (3.26) in (3.27).

Step 3. In this Step we consider a generic test function θ ∈ C∞c (0, T ), its corresponding piecewise constant
approximation θk(t) defined in (3.22) and we pass to the limit in (3.23) when k → ∞, or, equivalently, when
τk → 0. For clarity, we analyse separately each term involved in (3.23)-(3.24).

The convergence

lim
k→∞

θk(t)

∫
Rd

ξ(x)dρk(t, x) = θ(t)

∫
Rd

ξ(x)dρ(t, x)

is a straightforward consequence of the narrow convergence ρk ⇀ ρ and the fact that |θk(q) − θ(q)| ≤
‖θ′‖L∞(Rd)τk. The convergence

lim
k→∞

1

2

j−1∑
h=i

‖θ‖L∞([0,T ])‖D2ξ‖L∞(Rd)d
2
W2

(ρkh+1, ρ
k
h) +O(τk) = 0

is granted by Proposition 3.2, indeed

lim sup
k→∞

j−1∑
h=i

d2
W2

(ρkh+1, ρ
k
h) = lim sup

k→∞

j−1∑
h=i

d2
W2

(ρk(hτk), ρk((h+ 1)τk)) ≤
j−1∑
h=i

L2τ2
k ≤ L2τk.

In order to show that

lim
k→∞

1

2

∫ t

s

∫
Rd×Rd

θk(q)∇W (x− y) · (∇ξ(x)−∇ξ(y))dρk(q, x)⊗ ρk(q, y)

=
1

2

∫ t

s

∫
Rd×Rd

θ(q)∇W (x− y) · (∇ξ(x)−∇ξ(y))dρ(q, x)⊗ ρ(q, y)

is enough to notice that it is instead equivalent to

lim
k→∞

1

2

∫ t

s

∫
Rd×Rd

(θk(q)− θ(q))∇W (x− y) · (∇ξ(x)−∇ξ(y))dρk(q, x)⊗ ρk(q, y)

+
1

2

∫ t

s

∫
Rd×Rd

θ(q)∇W (x− y) · (∇ξ(x)−∇ξ(y))d(ρk ⊗ ρk − ρ⊗ ρ) = 0,

and the latter follows by applying Lemma 2.4 and recalling that |θk(q)− θ(q)| ≤ ‖θ′‖L∞(Rd)τk and ∇W (x− y) ·
(∇ξ(x)−∇ξ(y)) is continuous and bounded. By a similar argument as the one above

lim
k→∞

∫ t

s

∫
Rd×Rd

θk(q)∇V (x− y) · ∇ξ(x)dρk(q, x)⊗ νk(q, y)
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=

∫ t

s

∫
Rd×Rd

θ(q)∇V (x− y) · ∇ξ(x)dρ(q, x)⊗ ν(q, y),

holds recalling that ∇V is continuous by assumption, moreover Lemma 2.10 and Lemma 2.4 ensure that ρk ⊗
νk ⇀ ρ⊗ ν narrowly. We are left to show that

lim
k→∞

j−1∑
h=i

(θ(τk(h+ 1))− θ(τkh))

∫
Rd

ξ(x)dρkh(x) =

∫ t

s

θ′(q)

∫
Rd

ξ(x)dρ(q, x)dq

By first order expansion, we can find some ηh ∈ (τkh, τk(h+ 1)) such that

θ(τk(h+ 1))− θ(τkh)) =θ′(τkh)τk + θ′′(ηh)
τ2
k

2
.

In particular

∣∣∣∣∣
j−1∑
h=i

(θ(τk(h+ 1))− θ(τkh))

∫
Rd

ξ(x)dρkh(x)−
j−1∑
h=i

τkθ
′(τkh)

∫
Rd

ξ(x)dρkh(x)

∣∣∣∣∣
≤

j−1∑
h=i

‖θ′′‖L∞(Rd)

τ2
k

2
‖ξ‖L∞(Rd) ≤

τk
2
‖θ‖L∞(Rd)‖ξ‖L∞(Rd),

(3.28)

and

j−1∑
h=i

τkθ
′(τkh)

∫
Rd

ξ(x)dρkh(x)

=

j−1∑
h=i

[∫ τk(h+1)

τkh

(θ′(τkh)− θ′(q))dq +

∫ τk(h+1)

τkh

θ′(q)dq

]∫
Rd

ξ(x)dρkh(x)

≤τk‖θ′′‖L∞(Rd)‖ξ‖L∞(Rd) +

∫ τkj

τki

θ′(q)

∫
Rd

ξ(x)dρk(q, x)dq.

(3.29)

Then we conclude passing to the limit as k → ∞ in (3.28), (3.29) and recalling that τki → s, τkj → t and
θ′ξ ∈ Cb((0, T )× Rd).

Summarizing, passing to the limit as k →∞ in (3.23)-(3.24), we obtain the following identity

∫
Rd

ξ(x)θ(t)dρ(t, x)−
∫
Rd

ξ(x)θ(s)dρ(s, x)

=
1

2

∫ t

s

∫
Rd×Rd

θ(q)∇W (x− y) · (∇ξ(x)−∇ξ(y))dρ(q, x)⊗ ρ(q, y)

+

∫ t

s

∫
Rd×Rd

θ(q)∇V (x− y) · ∇ξ(x)dρ(q, x)⊗ ν(q, y)

+

∫ t

s

∫
Rd

θ′(q)ξ(x)dρ(q, x).

(3.30)
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Step 4. In this Step we finally prove that ρ satisfies (3.14) for every φ ∈ C∞c ((0, T ) × Rd). This will come
as a straightforward consequence of (3.30). Indeed, by a density argument a test function φ ∈ C∞c ((0, T )×Rd)
can be approximated by θ ∈ C∞c (0, T ) and ξ ∈ C∞c (Rd), applying (3.30) with t = T and s = 0 we deduce

∫
Rd

ξ(x)θ(T )dρ(T, x)−
∫
Rd

ξ(x)θ(0)dρ(0, x)−
∫ T

0

∫
Rd

θ′(q)ξ(x)dρ(q, x)

=

∫ t

s

θ(q)
d

dq

[∫
Rd

ξ(x)dρ(q, x)

]
dq = −

∫ T

0

θ′(q)

[∫
Rd

ξ(x)dρ(q, x)

]
dq.

Moreover, for every q ∈ [0, T ] we have∫
Rd×Rd

∇V (x− y) · ∇ξ(x)dρ(q, x)⊗ ν(q, y) =

∫
Rd

∇V ∗ ν(q, x)∇ξ(x)dρ(q, x)

and, being W symmetric, also

1

2

∫
Rd×Rd

∇W (x− y) · (∇ξ(x)−∇ξ(y))dρ(q, x)⊗ ρ(q, y) =

∫
Rd

∂0W ∗ ρ(q, x) · ∇ξ(x)dρ(q, x),

thus (3.14) follows.

4. Optimal control problem

This section is devoted to the proof of Theorem 2.3. We will show that problem (2.4) admits a solution in
the class

A = LipL′,d∗(0, T ;MR
M ) × LipL,dW2

(0, T ;P2),

whenever W,V are as in (Self), (Cross), and in the larger class

A′ = LipL′,d∗(0, T ;MR
M ) × Cdn(0, T ;P2),

in case V is also λ′-convex for some λ′ ≤ 0.

Proof of Theorem 2.3. Let us first assume thatW,V are as in (Self), (Cross) respectively. Then the minimization
problem (2.4) can be formulated in the following equivalent way

inf
A

(
J (ν, ρ) + χB(ν, ρ)

)
where

B := A ∩ {(ν, ρ) : ρ is a weak measure solution of (1.3) with ν and initial datum ρ(0) = ρ0},

and χB is the standard characteristic function of the set B, i.e.

χB(ν, ρ) =

{
0 if (ν, ρ) ∈ B
+∞ otherwise.
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Without loss of generality, we can assume that
(
(νk, ρk)

)
k
⊂ A is a minimizing sequence for J +χB satisfying

J (νk, ρk) + χB(νk, ρk) < +∞ and lim
k→∞

(
J (νk, ρk) + χB(νk, ρk)

)
= inf

A

(
J (ν, ρ) + χB(ν, ρ)

)
.

In particular, for every k ∈ N the curve ρk is a weak measure solution of (1.3) with νk and initial datum ρ0 in
the sense of Definition 2.1.

We show that the two sequences (ρk)k and (νk)k independently enjoy good compactness properties with
respect to the narrow convergence of measures.

Let us first focus on the compactness of (ρk)k. By definition we have that (ρk)k ⊂ LipL,dW2
(0, T ;P2) and

hence ρk(t) ∈ BdW2
(ρ0, LT ) for every k ∈ N and t ∈ [0, T ]. Then, arguing as in the proof of Proposition 3.2,

we can apply Ascoli-Arzelà Theorem to deduce the existence of a 2-Wasserstein continuous curve ρ : [0, T ] →
P2(Rd) and a not relabeled subsequence ρk such that dn(ρk(t), ρ(t))→ 0 for every t ∈ [0, T ]. Moreover, recalling
that Wasserstein distances are lower semi-continous with respect to the narrow convergence of measures, it is
immediate to observe that ρ ∈ LipL,dW2

(0, T ;P2).

The compactness of (νk)k follows also by a standard application of Ascoli-Arzelà Theorem. Indeed, with
respect to the weak-∗ topology, for each t ∈ [0, T ] the sequence (νk(t))k is relatively compact in MR

M (Rd)
(which is itself compact in M(Rd) thanks to Banach-Alaoglu Theorem). Moreover, (νk)k is equi-Lipschitz
(with constant L′) on [0, T ]. Therefore, there exists a limit measure ν : [0, T ]→MR

M (Rd) that is L′-Lipschitz
continuous with respect to the weak-∗ topology and such that, up to subsequences, d∗(νk(t), ν(t)) → 0 for
every t ∈ [0, T ]. Moreover, since spt(νk(t)) ⊂ B(0, R), the sequence (νk(t))k is tight and hence, by Prokhorov’s
Theorem, we infer that dn(νk(t), ν(t))→ 0 for every t ∈ [0, T ].

Since J + χB is pointwise (in time) lower semi-continuous with respect to dn, to conclude that (2.4) admits
solution in A, we are left to show that ρ is a weak measure solution (1.3) with ν and initial datum ρ0 in the
sense of Definition 2.1.

Since, by construction, any ρk is a weak measure solution of (1.3) with νk and initial datum ρ0, we only need
to check that for every φ ∈ C∞c ((0, T )× Rd) it holds

lim
k→∞

∫ T

0

∫
Rd

(
∂φ

∂t
(t, x) + (∂0W ∗ ρk(t, x) +∇V ∗ νk(t, x)) · ∇φ(t, x)

)
dρk(t, x)

=

∫ T

0

∫
Rd

(
∂φ

∂t
(t, x) + (∂0W ∗ ρ(t, x) +∇V ∗ ν(t, x)) · ∇φ(t, x)

)
dρ(t, x).

The convergence of term involving the time derivative and the one involving ∇V is immediate thanks to the
regularity of ∂φ

∂t and ∇V and the claim of Proposition 2.4, which ensures that dn(νk(t)⊗ ρk(t))→ 0 for every
t ∈ [0, T ] on the product space Rd × Rd.

On the other hand, as already observed in the proof of Theorem 2.2, the symmetry of W and the definition
of ∂0W imply that

∫
Rd

∂0W ∗ ρk(t, x) · ∇φ(t, x)dρk(t, x)

=
1

2

∫
Rd

∫
Rd

∇W (x− y) ·
(
∇φ(t, x)−∇φ(t, y)

)
dρk(t, x)ρk(t, y),

pointwise in t, and the latter converges to the desired term by applying again Proposition 2.4 to the product
ρk(t)⊗ ρk(t).
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Let us now assume that V is λ′-convex for some λ′ ≤ 0 and consider a minimizing sequence (νk, ρk) for
J + χB in the set A′. Once again, without loss of generality we can assume that J (νk, ρk) + χB(νk, ρk) <∞
for every k ∈ N, thus ρk is a weak measure solution of (1.3) with νk and initial datum ρ0.

We will see that for each k, ρk is absolutely continuous with respect to the 2-Wasserstein distance. Indeed,
thanks to Theorem 8.3.1 [7] and the fact that ρk is a weak measure solution, we only need to show that
‖v(t)‖L2(ρk(t),Rd) ∈ L1(0, T ), where v(t) is the velocity field of the continuity equation (1.3). The global Lipschitz
bound on W and V then automatically implies that

‖v(t)‖2L2(ρk(t),Rd) ≤ 2(Lip(W ) +MLip(V ))2 <∞,

thus providing the desired absolute continuity.
We are then in position to apply Proposition 2.12 and deduce that ρk is the unique weak measure solution of

(1.3) with νk and initial datum ρ0. As a consequence, it must coincide with the one provided by Theorem 2.2 in
the space LipL,dW2

(0, T ;P2). We then deduce that (ρk)k ⊂ LipL,dW2
(0, T ;P2) and we conclude by the previous

part of the proof.

5. Conclusions and perspectives

We studied existence of solutions for optimal control problems associated to nonlocal transport equations,
used in the modelling of the behaviour of a population of individuals influenced by the presence of control
agents. The results are proved for a class of mildly singular potentials in a gradient flow formulation for the
target transport equation. A natural extension to the present paper will be disclosed dealing with essentially
singular potentials as Coulomb or Lennard-Jones type ones. However, for the study of such potentials we expect
to adopt different techniques from the one used above, since, up to the authors’ knowledge, the hypotheses on
the kernels in (Self), (Cross) are minimal in the Optimal Transport framework. Moreover, another interesting
aspect lies in the numerical discretization of (1.2). Among the others we expect that this task could be performed
on one hand using the combination of the two variational formulations (the J.K.O.-scheme and the optimisation
problem for the cost functional), on the other hand through a deterministic reconstructions of the densities
starting from (1.1). We leave these topics for future works.
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