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SMALL-TIME GLOBAL NULL CONTROLLABILITY OF

GENERALIZED BURGERS’ EQUATIONS

Rémi Robin*

Abstract. In this paper, we study the small-time global null controllability of the generalized Burgers’
equations yt + γ|y|γ−1yx − yxx = u(t) on the segment [0, 1]. The scalar control u(t) is uniform in space
and plays a role similar to the pressure in higher dimension. We set a right Dirichlet boundary condition
y(t, 1) = 0, and allow a left boundary control y(t, 0) = v(t). Under the assumption γ > 3/2 we prove
that the system is small-time globally null controllable. Our proof relies on the return method and a
careful analysis of the shape and dissipation of a boundary layer.
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1. Introduction

1.1. Description of the system

For a given T > 0, we are concerned with the following generalized Burgers’ equations on the segment [0, 1]:
yt + γ|y|γ−1yx − yxx = u(t) on (0, T )× (0, 1),
y(t, 0) = v(t) on (0, T ),
y(t, 1) = 0 on (0, T ),
y(0, x) = y0(x) on (0, 1),

(Eγ)

and 
yt + γ sign(y)|y|γ−1yx − yxx = u(t) on (0, T )× (0, 1),
y(t, 0) = v(t) on (0, T ),
y(t, 1) = 0 on (0, T ),
y(0, x) = y0(x) on (0, 1),

(Fγ)

where u(t) is an interior control which does not depend on space, and v(t) is a boundary control. We are
interested in the small-time global null controllability. That is, for any initial (possibly large) datum y0 and any
(possibly small) final time T , can we find some controls u and v such that the solution of equation (Eγ) or (Fγ)
is steered to 0 in time T?
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1.2. Motivation and existing results

The main motivation for studying systems (Eγ) and (Fγ) comes from controllability questions in fluid
mechanics, in both dimensions 2 and 3. Let us briefly recall some major results obtained during the last 30 yr.
Coron and Glass have respectively established the two-dimensional [11] and three-dimensional [24] controlla-
bility of the Euler system. As for the Navier–Stokes equation, the two-dimensional case in a manifold without
boundary has been tackled by Coron and Fursikov in [12]. Following the later result, Fursikov and Imanuvilov
proved a global exact controllability result in three dimensions in [23] with a control acting on the whole
boundary.

More recently, Coron, Marbach and Sueur proved in [15] the small-time global null controllability relying on
a control acting on part of the boundary and a Navier slip-with-friction condition elsewhere. This result was
extended to the case of smooth solutions by Liao, Sueur and Zhang in [34]. The same problem with Dirichlet
boundary condition, stated by Lions in [36], remains open and is considered to be a major challenge in the
field. Most of the difficulties come from the interaction of the inertial and viscous forces near the uncontrolled
boundary, which creates a difficult-to-control boundary layer. That question has motivated the study of several
models with simpler geometry in two and three dimensions, for example [9], [26], [27] and [33].

In this work, we consider the generalized Burgers’ equations (Eγ) and (Fγ). Those equations are a family
of one-dimensional non-linear evolution partial differential equations, whose solutions exhibit a boundary layer
behaviour near a Dirichlet boundary condition. From an historical point of view, the classical viscous Burgers’
equation (F2) has been introduced and studied by Burgers in [5]. Burgers’ equation naturally appears among
other fields in plasma physics, fluid dynamics and trafic flow. The generalized Burgers’ equations are a general-
isation of the classical Burgers’ equation remaining in the class of viscous conservation law. A general study of
these equations as well as the physical motivations behind them can be found for example in [17, 40, 41, 43, 44].

Let us now recall some major results concerning the controllability of Burgers’ equation. Fursikov and
Imanuvilov in [21] proved the small-time local exact controllability in the vicinity of the trajectories. Their
result relies on Carleman estimates, and only uses one boundary control. Its extension to generalized Burgers’
equations is straightforward (see Sect. 5).

Global controllability in finite time toward steady states with boundary controls was established in [22].
Some generalisations are available: let us cite for example the work of Léautaud who found an extension for a
wide class of viscous conservation laws in [31] and the work of Araújo et al. on Burgers-α systems [1]. Results
concerning the small-time global stabilization with an additional internal control were obtained recently in [16].

An obstruction to the small-time global null controllability with boundary controls was found in [28], while
an obstruction to small-time local null controllability with only a uniform in space internal control has been
proved in [39]. Hence, the use of the internal control u(t) together with a boundary control is necessary at least
for (F2). With the help of this new control and two boundary controls, Chapouly proved the small-time global
null controllability using results on the inviscid Burgers equation in [8].

Afterwards, Marbach extended the proof of the small-time global null controllability without the right bound-
ary control, i.e. in our setting described by equation (F2). A key feature of his proof is the Cole-Hopf transform
([10, 29]). This transformation reduces Burgers’ equation to the heat equation thanks to a change of variable.

In this paper, we generalize Marbach’s work to the generalized Burgers’ equations. To the best of our knowl-
edge, those equations do not have an equivalent transformation. As a consequence, deriving precise estimates
on the boundary layer is a more delicate task. We hope that this work will help to prepare the way for the
many challenging problems remaining in control of fluid mechanics equations. In this scope, some related open
problems are listed in Section (6.1).

1.3. Rigorous statement of our main result

We have to provide a reasonable definition for the solutions of equation (Eγ). Let us fix the final time T ∈ R+

and consider the following generalisation:
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yt + γ|y|γ−1yx − yxx = u(t) on (0, T )× (0, 1),
y(t, 0) = v(t) on (0, T ),
y(t, 1) = w(t) on (0, T ),
y(0, x) = y0(x) on (0, 1),

(Gγ)

where the scalar controls are u ∈ L∞(0, T ) and v, w ∈ H1/4(0, T ) ∩ L∞(0, T ). We also assume γ ≥ 1 and
y0 ∈ L∞(0, 1), then there exists a unique solution of (Gγ) in C0([0, T ];L2) ∩ L2(0, T ;H1) ∩ L∞((0, T )× (0, 1)).
Note that H1/4-regularity on time for the boundary controls is a natural assumption, as it corresponds to the
minimum regularity that ensures well posedness of the usual 1D heat equation in C0([0, T ];L2) ∩ L2(0, T ;H1)
[37], Chapter 4. We do not provide the proof of the well-posedness here, it is based on a priori energy estimates
and a fixed point argument (see [35]). For the interested reader, we mention that well-posedness in less regular
space is studied in [4, 32]. A similar existence statement can be stated for equation (Fγ) with three controls.

Let us now state our main contribution.

Theorem 1.1. Suppose γ > 3/2, y0 ∈ L∞(0, 1) and T > 0. Then, there exist u ∈ L∞(0, T ) and v ∈ H1/4(0, T )∩
L∞(0, T ) steering the solution y of (Eγ) to the null state in time T .

If moreover γ ≥ 2, then there exist u ∈ L∞(0, T ) and v ∈ H1/4(0, T ) ∩ L∞(0, T ) steering the solution y of
(Fγ) to the null state in time T .

We provide only the proof for equation (Eγ). Indeed, the adaptation of our proof for equation (Fγ) is
straightforward except for Section (4). In that section, our proof does not extend to 3/2 < γ ≤ 2; more details
are provided in Remark 4.2. The case (F2) follows from [38].

Some open questions concerning an extension of the result for smaller γ are discussed in Section (6.1).
The sketch of the proof is the following: to reach the null state in arbitrary small-time, we take advantage of

the return method introduced by Coron in [13] (see also [14]), and more specifically, the three-stages strategy
developed by Marbach in [38].

� Hyperbolic stage, first part: we introduce the steady state ϑ of (Eγ) with u = 0 and v = θ � 1:{
ϑxx = (ϑγ)x,
ϑ(0) = θ, ϑ(1) = 0.

(1.1)

Note that ϑ exhibits a boundary layer near the right endpoint. Using the hyperbolic nature of the equation
when it is governed by the non-linear term, we prove that we can stear the system to a neighborhood of
ϑ in small-time.

� Hyperbolic stage, second part: we use the pressure-like term to drive our system to a neighborhood of the
null state up to a boundary residue around x = 1.

� Passive stage: we do not apply any control and wait for the dissipation of the boundary residue in small-
time. The assumption γ > 3/2 is crucial for this stage.

� Parabolic stage: we provide a local exact controllability result around zero using a fixed point method.

The proof of Theorem 4.2 is then obtained by the combination of these stages resumed in Proposition 2.1 and
Lemmas 3.1, 4.1 and 5.1.

1.4. Preliminaries

1.4.1. Comparison principle

Let us recall the comparison principle for semi-linear parabolic equations. Let us suppose that y (resp. ỹ) is
a solution of equation (Gγ) with controls u, v, w (resp. ũ, ṽ, w̃) and initial condition y0 (resp. ỹ0), such that a.e.,

u ≤ ũ, v ≤ ṽ,
w ≤ w̃, y0 ≤ ỹ0.
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Then,

y ≤ ỹ.

We refer to [42]. One can also easily extend the proof given by Marbach in [38].

1.4.2. Study of the steady states

It is crucial in our proof to have a reasonable description of the steady states ϑ defined by equation (1.1).

Lemma 1.2. Let θ > 0, then equation (1.1) admits a unique solution. Besides,

ϑx = |ϑ|γ + ϑx(1) with − θγ − θ < ϑx(1) < −θγ (1.2)

and θ 7→ ϑx(1) is decreasing.

Proof. To prove the existence, let us consider the application F given as follows: for any (θ, C) ∈ R2, we associate
the (local) solution y of

y(0) = θ, yx = |y|γ + C. (1.3)

First, note that for any θ > 0, F(θ,−θγ) is a constant function. Besides, for any θ > 0, the function F(θ,−θγ−
θ) is strictly decreasing and bounded by below by −(θγ + θ)1/γ . Let us define

x∗ = inf{x ≥ 0 | F(θ,−θγ − θ)(x∗) ≥ 0}.

One easily gets that for x ∈ [0, x∗], F(θ,−θγ − θ)(x) < θ(1− x). Hence, F(θ,−θγ − θ)(1) < 0. As a consequence
0 belongs to the range of the continuous function [−θγ − θ,−θγ ] 3 C 7→ F(θ, C)(1). Thus, we can find C∗ ∈
[−θγ − θ,−θγ ] such that F(θ, C∗)(1) = 0 and x 7→ F(θ, C∗)(x) is a solution of equations (1.1) and (1.2) with
C∗ = F(θ, C∗)x(1). This concludes the proof of existence.

Note also that the function C 7→ F(θ, C)(1) is increasing. Thus, we proved the uniqueness of the solution of
equation (1.1).

Moreover, if one fix C ∈ R and consider θ1 < θ2, F(θ1, C) < F(θ2, C). Hence, θ 7→ ϑx(1) is decreasing.

It is also easy to check that the steady state ϑ is a non-negative, decreasing and concave function.

Remark 1.3.

� In the case of the usual Burgers’ equation,

ϑ(x) = θ̂ tanh(θ̂(1− x)), (1.4)

where θ̂ is the unique solution of θ̂ tanh(θ̂) = θ.
� For the linear case, i.e. with γ = 1 (which is not included in the assumption of Thm. 1.1), we have

ϑ(x) =
(e− ex)

e− 1
θ. (1.5)

For a general γ, we are not aware of an explicit expression for ϑ. If γ > 1, ϑ presents a boundary layer at the
right endpoint (see Eq. (1)) which is characterized in the next lemma.

Lemma 1.4. Let γ > 1 and ϑ the solution of equation (1.1). Then ϑ exhibits a boundary layer of size 1
θγ−1

around x = 1. More precisely, the following estimates hold:
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Figure 1. Steady states ϑ with θ = 2 and θ = 5 for different values of γ.

1. Let a ∈ (0, 1), then for all θ > 0,

ϑ(x) ≥ aθ, ∀x ∈ [0, 1− a

1− aγ
θ1−γ ]. (1.6)

2. Let ε > 0 and α < γ − 1, then there exists Cε,α > 0 such that

ϑ(x) ≥ θ − ε, ∀x ∈ [0, 1− Cε,αθ−α]. (1.7)

Proof. For x ∈ (0, 1], according to equation (1.2),

ϑx(x) = ϑ(x)γ + ϑx(1) ≤ ϑ(x)γ − θγ < 0.

Thus, for any x∗ ∈ (0, 1),

∫ 1

x∗

−ϑx(x)dx

θγ − ϑγ(x)
≥ 1− x∗.

By the change of variable formula with z = ϑ(x),

∫ ϑ(x∗)

0

dz

θγ − zγ
≥ 1− x∗. (1.8)

To prove the first point, let x∗ ∈ (0, 1) be the unique solution to the equation ϑ(x∗) = aθ. Injecting into equation
(1.8), we get

aθ
1

θγ(1− aγ)
≥
∫ ϑ(x∗)

0

dz

θγ − zγ
≥ 1− x∗.
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Thus,

x∗ ≥ 1− a

1− aγ
θ1−γ .

For the second point, let x∗ ∈ (0, 1) be the unique solution to the equation ϑ(x∗) = θ − ε. Let us use (1.8)
again, and apply the change of variable s = z

θ ,

∫ ϑ(x∗)

0

dz

θγ − zγ
= θ1−γ

∫ 1−ε/θ

0

ds

1− sγ
.

For γ > 1, we have 1
1−s >

1
1−sγ . Thus,

−θ1−γ ln(
ε

θ
) > 1− x∗.

Using −θ1−γ ln( εθ ) = o(θ−α), for a given couple (α, ε), there exists Cε,α such that

x∗ ≥ 1− Cε,αθ−α.

2. Hyperbolic stage, first part: toward a neighborhood of a
steady state

2.1. The control strategy

The goal of this section is to prove the following proposition.

Proposition 2.1. For a given y0 ∈ L∞(0, 1), η > 0 and T > 0, one can find θ0 > 0 such that the following
holds: for any θ ≥ θ0, there exist u, v ∈ L∞(0, T ) × (L∞(0, T ) ∩H1/4(0, T )) such that the solution y of (Eγ)
satisfies

ϑ(x) ≤ y(T, x), (2.1)

and

y(T, x) ≤ θ + η. (2.2)

For the proof of Proposition 2.1, we use the following controls on [0, T ]

u(t) =

{
θ+2‖y0‖L∞

T ′ for t ≤ T ′,
0 for t > T ′,

(2.3)

and

v(t) =


(θ+‖y0‖L∞ )t

T ′ for t ≤ T ′,
θ +

‖y0‖L∞ (T2 −t)
T
2 −T ′

for T ′ < t ≤ T/2,
θ for t > T/2,

(2.4)
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where T ′ < T
2 will be chosen small enough later. We denote y the solution of (Eγ) associated with these controls.

We prove separately the lower bound (2.1) and the upper bound (2.2).

Remark 2.2. In what follows, we use C for a constant which is independent of θ and may be different from
one line to the next.

2.2. Lower bound

The idea to handle the lower bound is to use a very small time T ′. Let us introduce

v(t) =
(θ + 2‖y0‖L∞)t

T ′
− ‖y0‖L∞ ≤ v(t) for all t ≤ T ′, (2.5)

and set

T ′0 =
T ′‖y0‖L∞

(θ + 2‖y0‖L∞)
. (2.6)

Leading to, ∀t ≤ T ′0, v(t) ≤ 0.
We define the following subsolution y of y on (0, T ′0):


y
t

+ γ|y|γ−1yx − yxx = u(t) on (0, T ′0)× (0, 1),

y(t, 0) = v(t) on (0, T ′0),
y(t, 1) = v(t) on (0, T ′0),
y(0, x) = −‖y0‖L∞ on (0, 1).

(2.7)

We easily check that y(t) = v(t) for all t ≤ T ′0, which means in particular that y(T ′0) = 0.

Let us now study the solution ylin of the following heat equation on the semi-infinite space domain (−∞, 1)
with Dirichlet boundary condition on x = 1:


ylin
t
− ylin

xx
= u(t) on (T ′0, T

′)× (−∞, 1),

limx→−∞ ylin(t, x) = v(t) on (T ′0, T
′),

ylin(t, 0) = 0 on (T ′0, T
′),

ylin(T ′0, x) = 0 on (−∞, 1).

(2.8)

Using the usual representation formula, we introduce erf(z) = 2√
π

∫ z
0
e−x

2

dx, and compute

ylin(t, x1) =

∫ t

T ′0

1√
4π(t− s)

∫ 1

−∞
(e
−(x1−x2)2

4(t−s) − e
−(x1+x2−2)2

4(t−s) )u(s)dx2ds

=

∫ t

T ′0

u(s) erf(
1− x1√
t− s

)ds.

=

∫ t

T ′0

θ + 2‖y0‖L∞
T ′

erf(
1− x1√
t− s

)ds. (2.9)

Note that for t ∈ [T ′0, T
′],

ylin
x

(t, x) ≤ 0, and 0 ≤ ylin(t, x) ≤ v(t). (2.10)
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Besides, using that erf is an increasing function,

(θ + ‖y0‖L∞) erf(
1− x√
T ′

) ≤ ylin(T ′, x). (2.11)

As ϑ is a concave function, it lies below its tangent at x = 0 and x = 1:

ϑ(x) ≤ min [θ, ϑx(1)(x− 1)] , x ∈ [0, 1]. (2.12)

Using that limz→∞ erf(z) = 1, one can prove that for T ′ small enough,

min [θ, ϑx(1)(x− 1)] ≤ (θ + ‖y0‖L∞) erf(
1− x√
T ′

), x ∈ [0, 1]. (2.13)

Combining the last three inequalities, we have for T ′ small enough that

ϑ(x) ≤ ylin(T ′, x), for all x ∈ [0, 1]. (2.14)

Going back to the non-linear equation, we extend y to (T ′0, T
′) by


y
t

+ (yγ)x − yxx = u(t) on (T ′0, T
′)× (0, 1),

y(t, 0) = ylin(t, 0) on (T ′0, T
′),

y(t, 1) = 0 on (T ′0, T
′),

y(T ′0, x) = 0 on (0, 1).

(2.15)

Note that y is non-negative on (T ′0, T
′)× (0, 1). We consider δ = y − ylin, which is solution of

δt − δxx = −((ylin + δ)γ)x on (T ′0, T
′)× (0, 1),

δ(t, 0) = 0 on (T ′0, T
′),

δ(t, 1) = 0 on (T ′0, T
′),

δ(T ′0, x) = 0 on (0, 1).

(2.16)

Let us prove that δ ≥ 0 thanks to an energy estimate. We multiply equation (2.16) by w = min(δ, 0), the negative
part of δ, and we integrate in space to get

1

2

d

dt
‖w(t)‖2L2 + ‖wx(t)‖2L2 = −

∫ 1

0

w((ylin + w)γ)x

= −
∫ 1

0

w((ylin + w)γ − (ylin)γ + (ylin)γ)x

= −
∫ 1

0

γwylin
x

(ylin)γ−1 +

∫ 1

0

wx((ylin + w)γ − (ylin)γ).

The first term of the last line is non-positive, hence using Cauchy-Schwarz and Young inequality, we obtain

1

2

d

dt
‖w(t)‖2L2 + ‖wx(t)‖2L2 ≤ ‖wx(t)‖L2‖(ylin + w)γ − (ylin)γ‖L2

≤ 1

2
‖wx(t)‖2L2 +

γ2

2
(θ + ‖y0‖L∞)2(γ−1)‖w(t)‖2L2 .
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By applying Gronwall inequality, we get

‖w(t)‖2L2 ≤ ‖w(T ′0)‖2L2eγ
2(θ+‖y0‖L∞ )2(γ−1)(t−T ′0), (2.17)

which implies w = 0.
Hence, we proved that for T ′ small enough, y(T ′) ≥ ϑ. Besides, ϑ is a subsolution for the controls defined in

equations (2.3) and (2.4) on (T ′, T ). As a consequence, for all t ≥ T ′, y(t, x) ≥ ϑ(x), which concludes the proof
of the lower bound (2.1) of Proposition 2.1.

2.3. Upper bound

We set

v̄(t) =

{
‖y0‖L∞ + (θ+2‖y0‖L∞ )t

T ′ ≥ v(t) for t ≤ T ′,
v(t) for t > T ′.

(2.18)

Let us consider the supersolution ȳ of y on (0, T )1


ȳt + (ȳγ)x − ȳxx = u(t) on (0, T )× (0, 1),
ȳ(t, 0) = v̄(t) on (0, T ),
ȳ(t, 1) = v̄(t) on (0, T ),
ȳ(0, x) = ‖y0‖∞ on (0, 1).

(2.19)

Note that ∀t ∈ [0, T ′], ȳ(t) = v̄(t). Using the comparison principle, we obtain

θ ≤ ȳ(t) ≤ θ + 3‖y0‖L∞ for all t ≥ T ′. (2.20)

Let us now denote by δ(t, x) the solution of
δt + γθγ−1δx − δxx = −

(
(θ + δ)γ − θγ − γθγ−1δ

)
x

on (T2 , T )× (0, 1),

δ(t, 0) = 0 on (T2 , T ),
δ(t, 1) = 0 on (T2 , T ),
δ(T2 , x) = 3‖y0‖L∞ on (0, 1).

(2.21)

Using the comparison principle, we observe that, for t ∈ [T2 , T ], δ(t, x) ≥ ȳ(t, x)− θ. To study the evolution of
δ, we introduce the weight

A(x) = e
γ
2 θ
γ−1(1−x). (2.22)

Thus,

Ax = −γ
2
θγ−1A. (2.23)

We multiply the first line of (2.21) by Aδ and we integrate on space. The terms of the left-hand side are∫ 1

0

δtAδdx =
1

2

d

dt
‖δ‖2L2(Adx), (2.24)

1As v̄ is not in H1/4(0, T ), we formally define ȳ on both time intervals (0, T ′) and (T ′, T ).



10 RÉMI ROBIN

∫ 1

0

γθγ−1δxAδdx =

∫ 1

0

(
γθγ−1

)2
δ2A, (2.25)

−
∫ 1

0

δxxAδdx =

∫ 1

0

(δx)2Adx−
∫ 1

0

γ

2
θγ−1δδxAdx. (2.26)

Hence, the left-hand side of equation (2.21) becomes

1

2

d

dt
‖δ‖2L2(Adx) +

γ2θ2(γ−1)

2
‖δ‖2L2(Adx) + ‖δx‖2L2(Adx). (2.27)

We multiply the right-hand side of equation (2.21) by Aδ and integrate in space to get

−
∫ 1

0

Aδ
(
(θ + δ)γ − γθγ−1δ

)
x

=

∫ 1

0

Axδ
(
(θ + δ)γ − θγ − γθγ−1δ

)
(2.28)

+

∫ 1

0

Aδx
(
(θ + δ)γ − θγ − γθγ−1δ

)
. (2.29)

As z 7→ zγ is convex, (θ + δ)γ − θγ − γθγ−1δ ≥ 0. As a consequence, the right-hand side integral in line (2.28)
is non-positive. Besides,

∫ 1

0

Aδx
(
(θ + δ)γ − θγ − γθγ−1δ

)
≤ 1

2
‖δx‖2L2(Adx) +

1

2
‖(θ + δ)γ − θγ − γθγ−1δ‖2L2(Adx). (2.30)

Let us estimate the second term of the right-hand side. For γ ≥ 2, we can use the fact that the second derivative
of z 7→ zγ is increasing to get

(θ + δ)γ − θγ − γθγ−1δ ≤ δ2

2
γ(γ − 1)(θ + 3‖y0‖L∞)γ−2. (2.31)

Whereas, for γ ≤ 2, we get

(θ + δ)γ − θγ − γθγ−1δ ≤ δ2

2
γ(γ − 1)θγ−2. (2.32)

Combining equations (2.27) and (2.30) to (2.32), we obtain the weighted energy estimate

1

2

d

dt
‖δ(t)‖2L2(Adx) +

1

2
‖δx‖2L2(Adx) +

γ2θ2(γ−1)

2
‖δ(t)‖2L2(Adx) ≤ γ

2(γ − 1)2θ̃2(γ−2)‖δ(t)‖2L∞‖δ(t)‖2L2(Adx),

(2.33)

where

θ̃ =

{
θ if 3/2 < γ < 2,
θ + 3‖y0‖L∞ if γ ≥ 2.

(2.34)

We obtain a L∞ norm estimate for δ with equation (2.20)

‖δ(t)‖2L∞ ≤ 9‖y0‖2L∞ . (2.35)
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Hence, there exists θ0 (depending on ‖y0‖L∞ and γ) which together with equation (2.33) implies that for any
θ ≥ θ0

1

2

d

dt
‖δ(t)‖2L2(Adx) +

1

2
‖δx‖2L2(Adx) ≤ −

γ2θ2(γ−1)

4
‖δ(t)‖2L2(Adx). (2.36)

Using the expression of A (2.22), we estimate the initial condition

‖δ(T
2

)‖2L2(Adx) ≤ ‖δ(
T

2
)2A‖L∞ ≤ 9‖y0‖2L∞e

γ
2 θ
γ−1

. (2.37)

Gronwall inequality applied to equation (2.36) and (2.37) gives

‖δ(t)‖2L2(Adx) ≤ 9‖y0‖2L∞e
γ
2 θ
γ−1

e−
γ2θ2(γ−1)

2 (t−T ′). (2.38)

Integrating equation (2.36) on ( 3T
4 , T ), we get

‖δx‖2L2( 3T
4 ,T ;L2(Adx))

≤ ‖δ(3T/4)‖L2(Adx)

≤ 9‖y0‖2L∞e
γ
2 θ
γ−1

e−
γ2θ2(γ−1)

2 (T/4) θ→∞−−−→ 0. (2.39)

Hence, there exists t∗ ∈ [ 3T
4 , T ] such that

‖δ(t∗)‖2H1 ≤ C‖δx(t∗)‖2L2(Adx) ≤
4C

T
‖δx‖2L2( 3T

4 ,T ;L2(Adx))
. (2.40)

Using a classical parabolic estimate on the heat equation (see Appendix A), we get

‖δ(T )‖H1
0
≤ ‖δ(t∗)‖H1

0
+ ‖
(
(θ + δ)γ − θγ

)
x
‖2L2(t∗,T ;L2(dx)) (2.41)

≤ 4C

T
‖δx‖2L2( 3T

4 ,T ;L2(Adx))
+ γ2(θ + 3‖y0‖L∞)2(γ−1)‖δ‖2L2(t∗,T ;H1

0 ). (2.42)

Thanks to the exponential decrease in θ of equation (2.39), we obtain that

‖δ(T )‖H1
0

θ→∞−−−→ 0, (2.43)

which proves equation (2.2) and conclude the proof of Proposition 2.1.

3. Hyperbolic stage, second part: toward a neighborhood of
zero up to a boundary layer

Thanks to the previous part, we reduced our problem to the case where the initial condition y0 satisfies for
some θ, η > 0,

ϑ(x) ≤ y0(x) ≤ θ + η. (3.1)

In this section we prove that we can steer the solution of the system (Eγ) to a small neighborhood of the null
state up to a boundary residue near the right endpoint.
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Lemma 3.1. Let T > 0 and θ > 0. There exists T ′ ≤ T , u, v ∈ L∞(0, T ′)× (L∞(0, T ′)∩H1/4(0, T ′)) such that
for any y0 satisfying equation (3.1), we have

ϑ(x)− θ − η < y(T ′, x) < η. (3.2)

Proof. Let us consider the controls u(t) = − θ
T ′ and v(t) = θ(1 − t

T ′ ) on [0, T ′] for some T ′ ≤ T which will be
chosen later. We denote by y the corresponding solution of equation (Eγ) with any initial condition satisfying
equation (3.1). Then, we define a subsolution y and a supersolution ȳ by


y
t

+ γ|y|γ−1y
x
− y

xx
= u(t) on (0, T ′)× (0, 1),

y(t, 0) = v(t) on (0, T ′),

y(t, 1) = − θt
T ′ on (0, T ′),

y(0, x) = ϑ on (0, 1),

(3.3)

and 
ȳt + γ|ȳ|γ−1ȳx − ȳxx = u(t) on (0, T ′)× (0, 1),
ȳ(t, 0) = v(t) + η on (0, T ′),
ȳ(t, 1) = v(t) + η on (0, T ′),
ȳ(0, x) = θ + η on (0, 1).

(3.4)

We easily check that ȳ(t) = v(t) + η, thus ȳ(T ′) = η. This concludes the proof of the upper bound.
Let us now focus on the subsolution. We define δ(t, x) = y(t, x)− ϑ(x) + θt

T ′ . Then, δ is solution of


δt − δxx = (ϑγ)x − γ|ϑ− θt

T ′ + δ|γ−1(ϑ− θt
T ′ + δ)x on (0, T ′)× (0, 1),

δ(t, 0) = 0 on (0, T ′),
δ(t, 1) = 0 on (0, T ′),
δ(0, x) = 0 on (0, 1).

(3.5)

First, note that we have the bound

‖(ϑγ)x‖H−1 ≤ C(θ, γ)

and notice that

‖
(
γ|ϑ− θt

T ′
+ δ|γ−1(ϑ− θt

T ′
+ δ)x

)
‖H−1 = ‖

(∣∣∣∣ϑ− θt

T ′
+ δ(t)

∣∣∣∣γ)
x

‖H−1 .

We can estimate this H−1(0, 1) norm as follows:

‖
(∣∣∣∣ϑ− θt

T ′
+ δ(t)

∣∣∣∣γ)
x

‖H−1 = ‖
(∣∣∣∣ϑ− θt

T ′
+ δ(t)

∣∣∣∣γ)
x

−
(∣∣∣∣ϑ− θt

T ′

∣∣∣∣γ)
x

+

(∣∣∣∣ϑ− θt

T ′

∣∣∣∣γ)
x

‖H−1

≤ ‖
(∣∣∣∣ϑ− θt

T ′
+ δ(t)

∣∣∣∣γ)− (∣∣∣∣ϑ− θt

T ′

∣∣∣∣γ) ‖L2 + C(θ, γ)

≤ C(θ, γ)‖δ(t)‖L2 + C(θ, γ).
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Thus, applying a regularity estimate for the heat equation reproduced in Appendix A,

‖δ(t)‖2L2 + ‖δ‖2L2(0,t;H1
0 ) ≤

∫ t

0

C(θ, γ)(‖δ(s)‖2L2 + 1)ds. (3.6)

Thanks to Gronwall inequality,

‖δ(t)‖2L2 ≤ C(θ, γ)teC(θ,γ)t. (3.7)

After an integration in time, we obtain

‖δ‖2L2(0,t;H1
0 ) ≤

1

C(θ, γ)

(
eC(θ,γ)t(C(θ, γ)t− 1) + 1

)
= Ot→0(t2). (3.8)

Now, using that there exists a constant C(θ, γ) such that

‖(|ϑ+
θt

T
+ δ(t)|γ)x‖L2 ≤ C(θ, γ)‖δ(t)‖H1 + C(θ, γ), (3.9)

together with Appendix A again, we get

‖δ(t)‖2H1
0
≤ C(θ, γ)‖δ‖2L2(0,t;H1

0 ) + C(θ, γ)t. (3.10)

As those estimates are uniform in T ′, we have

‖δ(T ′)‖2H1
0

= OT ′→0(T ′). (3.11)

This implies that there exists T ′ < T such that

‖δ(T ′)‖L∞ < η. (3.12)

This concludes the proof of Lemma 3.1.

4. Passive stage: dissipation of the boundary residue

In this stage, we start with an initial condition satisfying

ϑ(x)− θ − η < y(T ′, x) < η, x ∈ [0, 1] (4.1)

and we prove the dissipation of the residue ϑ(x)− θ.

Proposition 4.1. For a given T > 0, there exist some constants C(T ) > 0 and θ0 > 0 such that for every
θ ≥ θ0, every η > 0 in a neighborhood of zero and every initial condition y0 satisfying equation (4.1), the
solution of equation (Eγ) with null controls satisfies

−C(T )η ≤ y(T ) ≤ η, y(T ) ∈ H1
0 (0, 1). (4.2)

The upper bound is just a consequence of the comparison principle. Let us thus focus on the lower bound. If
γ is smaller, the boundary layer is larger and the time needed for the dissipation increases. Figure 2 illustrates
this phenomenon.



14 RÉMI ROBIN

Figure 2. Simulation of the dissipation of the boundary layer residue for different values γ.

In order to estimate the size of the boundary layer, we use the second point of Lemma 1.4. That is, for
1
2 < α < γ − 1, there exists C̃ such that

−2η − θ1x≥1−C̃θ−α ≤ ϑ(x)− θ − η. (4.3)

We also set ε1 = γ − 1− α > 0 as we will need later to take α close enough to γ − 1.
We introduce the following subsolution:

y
t

+ γ|y|γ−1y
x
− y

xx
= 0 on (0, T )× (0, 1),

y(t, 0) = 0 on (0, T ),
y(t, 1) = 0 on (0, T ),
y(0, x) = −2η − θ1x≥1−C̃θ−α on (0, 1).

(4.4)

Note that y is a non-positive solution. Besides

‖y(0)‖L1 = 2η + C̃θ2−γ+ε1 . (4.5)

From this point, we separate the proof for γ > 2 (which is valid for Eq. (Eγ) and can easily be extended to Eq.
(Fγ)) and the proof for equation (Eγ) which works up to γ > 3/2.
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Proof of Proposition 4.1 when γ > 2. In this case, thanks to equation (4.5), we have

lim
θ→∞

‖y(0)‖L1 = 2η. (4.6)

We use a smoothing result by Carlen and Loss [6], Theorem 1 for strictly convex conservation laws to deduce

‖y(t)‖L∞ ≤
‖y(0)‖L1

√
4πt

. (4.7)

As a consequence, there exists θ0 such that, for any θ ≥ θ0,

‖y(T )‖L∞ ≤
3η√
4πT

, (4.8)

which concludes the proof for γ > 2.

Proof of Proposition 4.1 when γ > 3/2 (only valid for Eq. (Eγ)). If γ ≤ 2, and for any p ≥ 1, the
estimate given by equation (4.3) does not allow us to bound the Lp norm of the initial condition when θ →∞.
In other words, the size of the initial condition to dissipate grows (in every Lp norm) with θ. Nevertheless,
the smoothing property of equation (4.7) that we used to handle the case γ > 2 did not exploit the initial
localisation near the boundary.

Our strategy to handle lower γ is to consider the moment (x− 1)y. For that, we multiply equation (4.4) by
(x− 1) and integrate on space to get

d

dt

∫ 1

0

(x− 1)y(t, x)dx+

∫ 1

0

|y(t, x)|γdx− y
x
(0) = 0. (4.9)

Note that
∫ 1

0
(x− 1)y(t, x)dx and −y

x
(0) are both non-negative as y ≤ 0. Besides,

∫ 1

0

(x− 1)(−2η1x≥0 − θ1x≥1−C̃θ−α)dx =
C̃2θ1−2α

2
+ η. (4.10)

We integrate equation (4.9) on (0, T2 ) and use equation (4.10) to get the estimate

‖y‖γ
Lγ((0,T2 )×(0,1))

≤ C̃2θ1−2α

2
+ η. (4.11)

Note that, as we assumed γ > 3/2, θ1−2α goes to 0 as θ goes to ∞.
Using equation (4.11), there exists C such that for θ large enough, there exist t∗ ∈ (0, T2 ) satisfying

‖y(t∗)‖L1(0,1) < Cη. (4.12)

We cannot use the smoothing result from Carlen and Loss as it requires the flux function to be strongly convex
(hence γ ≥ 2), but a similar result (without an explicit expression for the constant) is available in [18], Lemma
3.1 or [3], Lemma 4.2. Finally, we get

‖y(T )‖L∞ ≤
C√
T − t∗

‖y(t∗)‖L1 ≤ C ′η. (4.13)
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This concludes the proof of Proposition 4.1.

Remark 4.2. Note that if one considers equation (Fγ), the non-linearity is preceeded by a minus sign in
equation (4.4). Hence, equation (4.9) becomes

d

dt

∫ 1

0

(x− 1)y(t, x)dx =

∫ 1

0

|y(t, x)|γdx+ y
x
(0). (4.14)

As a consequence, the evolution of the moment
∫ 1

0
(x − 1)y(t, x)dx is subject to a competition between the

non-linear term
∫ 1

0
|y(t, x)|γdx induced by the transport and the dissipation y

x
(0) < 0 due to the left Dirichlet

boundary condition. This prevents us to use tackle the case of equation (Fγ) for 3/2 < γ ≤ 2.

Note also that for γ < 3/2, the moment
∫ 1

0
(x− 1)y(t, x)dx, which is initially roughly of size θ3−2γ , is large.

If one neglects the dissipation due to the left boundary (i.e. consider the equation on the left semi-infinite
domain), this moment is increasing in time. Thus, the author conjectures that one does not observe a short time
dissipation for equation (Fγ) in the case γ < 3/2 and that the method developed in this paper in not suited to
tackle this equation under a critical γc ∈ [3/2, 2].

5. Parabolic stage: local null exact controllability

The local null exact controllability of semi-linear parabolic equations has been established for a wide variety
of cases. For completeness, we provide a sketch of proof based on [19], Lemma 2.

Lemma 5.1. There exists C∗ > 0 such that for every y0 ∈ H1
0 satisfying ‖y0‖L∞ < 1

2γ and ‖y0‖L2 ≤
1

2γT e
−C∗/T , there exists a control v ∈ H1/4(0, T )∩L∞(0, T ) such that the solution of equation (Eγ) with controls

u = 0 and v satisfies y(T ) = 0.

Sketch of the proof. First, we transform the boundary control problem into an internal control one. Namely,
we consider the wider space domain [−1, 1] and a domain of the internal control ω ⊂ (−1, 0) with non-empty
interior. We denote Q = (0, T )× [−1, 1]. Let w be an internal control acting on (0, T )× ω. We are interested in
the local null exact controllability of

yt + γ|y|γ−1yx − yxx = w(t, x)1(0,T )×ω on Q,
y(t, 0) = 0 on (0, T ),
y(t, 1) = 0 on (0, T ),
y(0, x) = ỹ0(x) on (−1, 1),

(5.1)

where ỹ0 ∈ H1
0 (0, 1) is the extension of y0 by 0 on (−1, 1).

We set s ∈ (0, 1) and introduce the closed convex set

K = {z ∈ Hs(Q) | ‖z‖L∞(Q) ≤ 1/γ} (5.2)

and the following set of admissible controls

A0 = {w ∈ L∞((0, T )× ω) | ‖w‖L∞(Q) ≤ ‖y0‖L2eC
∗/T }, (5.3)

where C∗ will be defined later. Let us define ϕ for z ∈ K by

ϕ(z) = γ|z|γ−1 (5.4)
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Note that ‖ϕ(z)‖L∞ ≤ 1. Let A : Hs(Q) → Hs(Q) be the set-value mapping associating with z ∈ Hs(Q) the
set of solutions y of the linear equation

yt + ϕ(z)yx − yxx = w(t, x) on (0, T )× (−1, 1),
y(t, 0) = 0 on (0, T ),
y(t, 1) = 0 on (0, T ),
y(0, x) = ỹ0(x) on (−1, 1),

(5.5)

with w ∈ A0 and satisfying y(T ) = 0.
According to [19, 20], there exists C∗ > 0 such that for any function ϕ(z) with ‖ϕ(z)‖L∞ ≤ 1, there exists

w ∈ A0 steering the solution of equation (5.5) to zero, i.e., A(z) is not empty.
Let us now assume that y0 satisfies the assumption of Lemma 5.1 with C∗. We want to check that A satisfies

the hypotheses of Kakutani’s fixed point theorem ([25], Chap. 2).
Using [30], Chapter 3, the solutions y of equation (5.5) belong to

X = L2(0, T ;H2(−1, 1)) ∩H1(0, T ;L2(−1, 1))

and thus to H1(Q). Moreover, the maximum principle implies

‖y‖L∞(Q) ≤ ‖y0‖L∞(Q) + T‖w‖L∞(Q) ≤ 1/γ. (5.6)

Hence, A maps K into K and, for any z ∈ K, A(z) is a non-empty convex compact subset of Hs(Q).
Let us now check that A is upper hemicontinuous on K. In pursuite of this goal, we set µ ∈ (Hs(Q))′. We

have to check that

z 7→ sup
y∈A(z)

〈µ, y〉 (5.7)

is upper semi-continuous.
Let (zn)n ∈ KN be a converging sequence toward z∞ in Hs(Q). Let us first observe that ϕ : K → L2(Q) is

continuous. Indeed, for γ ≥ 2 we use the uniform boundedness of K

‖ϕ(za)− ϕ(zb)‖L2(Q) ≤ C(γ)‖za − zb‖L2(Q).

On the other-hand, for 1 < γ < 2, x 7→ xγ−1 is γ − 1 Hölder continuous. As a consequence, it is also the case
for ϕ:

|ϕ(za)− ϕ(zb)‖L2(Q) ≤ C(γ)‖(za − zb)γ−1‖L2(Q) ≤ C(γ)(2T )
2−γ
2 ‖za − zb‖γ−1

L2(Q).

Hence, ϕ(zn)→ ϕ(z∞) in L2(Q).
By compactness of A(zn), there exists yn ∈ A(zn) such that

sup
y∈A(zn)

〈µ, y〉 = 〈µ, yn〉. (5.8)

Using energy estimates ([30], Chap. 3), (yn)n is uniformly bounded in X. Thanks to Aubin-Lions Lemma [2],
up to a subsequence, there exists y∞ ∈ X such that

yn,t ⇀ y∞,t weakly L2(Q), (5.9)
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yn → y∞

 weakly in L2(0, T ;H2(−1, 1)),
strongly in L2(0, T ;H1

0 (−1, 1)),
in C0(0, T ;L2(−1, 1)).

(5.10)

As ‖ϕ(zn)‖L∞(Q) ≤ 1, up to subsequence, there exists g ∈ L∞(Q) such that we have the weak star convergence

ϕ(zn)
∗
⇀ g. By uniqueness of the limit in the sense of distribution, g = ϕ(z∞). Thus, ϕ(zn)yn,x ⇀ ϕ(z∞)y∞,x

in L2(Q).
As a consequence, y∞ is solution of equation (5.5) with ϕ(z∞) as coefficient. This shows that y∞ ∈ A(z∞),

i.e.,

lim sup
n→∞

sup
y∈A(zn)

〈µ, y〉 ≤ sup
y∈A(z∞)

〈µ, y〉. (5.11)

Hence, by Kakutani’s fixed point theorem, there exists ẑ ∈ K such that ẑ ∈ A(ẑ).
Let us now take the trace of ẑ on (0, T ) × {0}. As ẑ ∈ X, by [37], Theorem 2.1, ẑ(·, 0) ∈ H3/4(0, T ). This

ensures that the restriction of ẑ to (0, T ) × (0, 1) is an admissible trajectory of the system (Eγ) and proves
Lemma 5.1.

6. Conclusion and open problems

6.1. A few open problems

Let us now present some open problems in one space dimension related to this work. Does the small-time
global null controllability hold for smaller γ? Our entire control strategy is based on using the hyperbolicity
of the evolution equation to dissipate the initial condition at the cost of a boundary layer. Then, we need this
boundary layer to dissipate in short time. Nevertheless, the smallest γ is, the less localisation of the boundary
layer around the boundary we get. In particular, the steady state ϑ in the case γ = 1 (given in Eq. (1.5)) does
not exhibit a boundary layer. Hence, for equation (Eγ), can we extend this method for any γ > 1 or is there a
threshold? Similarly, what can we say for equation (Fγ)? As mentioned in Remark 4.2, the author conjectures
that there exists a threshold above 3/2. Nevertheless, having a threshold in this method does not imply that
small-time global null controllability does not hold, but suggests that using other control strategies might be
necessary. For example, one could try to use highly oscillating controls to ensure a better preparation of the
boundary residue inspired by [15].

We can also ask if the small-time global null controllability holds for more general flux functions (f(u)x
instead of (|u|γ)x). The extension of our proof to strictly convex viscous conservation laws should be possible.
For more general functions, a precise study of the solutions of equation (1.1) would be necessary.

Another interesting direction would be to consider a dispersive model like the Korteweg–De Vries equation.
With the help of two boundary controls and a uniform in space internal control, Chapouly proved in [7] that
the small-time global null controllability holds. To the best of the author knowledge, whether the small-time
global null controllability holds without the use of the right Dirichlet boundary control (and possibly with the
help of a right control on the derivative) remains an open question.

Appendix A. Parabolic regularity estimates for the heat
equation

We recall here a well-known result on the regularity of the heat equation reproduced for example in [31],
Appendix 4.1.

Let Hm = D((−∆)m/2), m ≥ 0, be the domain of the fractional Dirichlet Laplacian on L2(0, 1), and H−m
the dual of Hm with pivot space L2(0, 1). In particular H1 = H1

0 (0, 1), H0 = L2(0, 1) and H−1 = H−1(0, 1). Let
y be a classical solution of
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yt − yxx = f(t, x) on (0, T )× (0, 1),
y(t, 0) = 0 on (0, T ),
y(t, 1) = 0 on (0, T ),
y(0, ·) = y0 on (0, 1),

(A.1)

with m ∈ R, u0 ∈ Hm(0, 1) and f ∈ L2(0, T ;Hm−1(0, 1)). Then,

y ∈ C0(0, T ;Hm(0, 1)) ∩ L2(0, T ;Hm+1(0, 1)) ∩H1(0, T ;Hm−1(0, 1)), (A.2)

and, for t ≤ T ,

‖y(t)‖2Hm +

∫ t

0

‖y(s)‖2Hm+1ds+

∫ t

0

‖yt(s)‖2Hm−1ds = ‖y0‖2Hm +

∫ t

0

‖f(s)‖2Hm−1ds. (A.3)
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[1] R.K.C. Araújo, E. Fernández-Cara and D.A. Souza, On the uniform controllability for a family of non-viscous and viscous

Burgers-α systems. ESAIM: Control Optim. Calculus Variations 27 (2021) 78.
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997–1004.

[44] X. Sun and M.J. Ward, Metastability for a generalized Burgers equation with applications to propagating flame fronts. Eur.
J. Appl. Math. 10 (1999) 27–53.

Please help to maintain this journal in open access!

This journal is currently published in open access under the Subscribe to Open model
(S2O). We are thankful to our subscribers and supporters for making it possible to publish
this journal in open access in the current year, free of charge for authors and readers.

Check with your library that it subscribes to the journal, or consider making a personal
donation to the S2O programme by contacting subscribers@edpsciences.org.

More information, including a list of supporters and financial transparency reports,
is available at https://edpsciences.org/en/subscribe-to-open-s2o.

mailto:subscribers@edpsciences.org
https://edpsciences.org/en/subscribe-to-open-s2o

	Small-time global null controllability of generalized Burgers' equations
	1 Introduction
	1.1 Description of the system
	1.2 Motivation and existing results
	1.3 Rigorous statement of our main result
	1.4 Preliminaries
	1.4.1 Comparison principle
	1.4.2 Study of the steady states


	2 Hyperbolic stage, first part: toward a neighborhood of a steady state
	2.1 The control strategy
	2.2 Lower bound
	2.3 Upper bound

	3 Hyperbolic stage, second part: toward a neighborhood of zero up to a boundary layer
	4 Passive stage: dissipation of the boundary residue
	5 Parabolic stage: local null exact controllability
	6 Conclusion and open problems
	6.1 A few open problems

	Appendix A Parabolic regularity estimates for the heat equation

	References

