SHARP OBSERVABILITY INEQUALITIES FOR HYPERBOLIC SYSTEMS WITH POTENTIALS

XIAOYU FU, ZHONGHUA LIAO AND QI LÜ*

Abstract. This paper is devoted to a sharp internal/boundary observability inequality for a hyperbolic system with a zero order potential. For this purpose, we first establish a new Carleman estimate for hyperbolic operator in H^1-norm. Based on this Carleman estimate and a modified auxiliary optimal control problem, we obtain Carleman estimate for hyperbolic operator in L^2-norm. Then, by virtue of a modified energy estimate and a delicate treatment of the observation region, we obtain an internal observability estimate with the observability constant of the order $\exp(C||q||_{L_\infty(Q;\mathbb{R}^{N\times N})}^2/3)$, with q the potential involved in the system. We also address the same problem for boundary observation. Compared with the related results in the literature, the main contributions of this paper are the observability constant is sharper, the waiting time T is shorter and the internal (or boundary) observation domain is smaller.

Mathematics Subject Classification. 93B05, 93B07, 93B27.

Received March 15, 2023. Accepted November 27, 2023.

1. Introduction

Let $n \geq 1$ and $N \geq 1$ be two integers, $T > 0$, Ω be a bounded domain of \mathbb{R}^n with C^2 boundary Γ. Put $Q = (-T, T) \times \Omega$ and $\Sigma = (-T, T) \times \Gamma$.

Let $(h^{jk}(\cdot))_{1 \leq j, k \leq n} \in C^2(\overline{\Omega}; \mathbb{R}^{n \times n})$ be such that

$$h^{jk}(x) = h^{kj}(x), \quad \forall x \in \overline{\Omega}, \quad j, k = 1, \ldots, n,$$

and that

$$\sum_{j, k=1}^n h^{jk}(x)\xi^j \xi^k \geq h_0|\xi|^2, \quad \forall (x, \xi) = (x, \xi^1, \cdots, \xi^n) \in \overline{\Omega} \times \mathbb{R}^n,$$

for some constant $h_0 > 0$.

Keywords and phrases: Observability estimate, hyperbolic equation, Carleman estimate.

School of Mathematics, Sichuan University, Chengdu 610064, PR China.

* Corresponding author: lu@scu.edu.cn.
Consider the following hyperbolic system:

\[
\begin{align*}
 w_{tt} - \sum_{j,k=1}^n (h^{jk}w_{x_j})_{x_k} &= qw \quad \text{in } Q, \\
 w &= 0 \quad \text{on } \Sigma, \\
 w(-T) &= w_0, \quad w_t(-T) = w_1 \quad \text{in } \Omega,
\end{align*}
\]

(1.3)

where \(w = (w_1, \ldots, w_N)^T \) is an \(\mathbb{R}^N \)-valued unknown, \(q \in L^\infty(-T, T; L^p(\Omega; \mathbb{R}^{N \times N})) \) for some \(p \in [n, \infty] \).

The first purpose of this paper is to study the internal observability problem of (1.3), by which we mean the following: given \(T > 0 \) and a sub-domain \(K \) of \(Q \), find (if possible) a constant \(C_1 = C_1(q, (h^{jk})_{n \times n}, T, K, \Omega) > 0 \) such that the corresponding solution \(w \) of (1.3) satisfies

\[
\|w_0\|_{L^2(\Omega)^N} + \|w_1\|_{H^{-1}(\Omega)^N} \leq C_1 \int_K |w|^2 \, dx \, dt, \quad \forall (w_0, w_1) \in L^2(\Omega)^N \times H^{-1}(\Omega)^N.
\]

(1.4)

The second purpose of this paper is to study the boundary observability problem of (1.3), by which we mean the following: given \(T > 0 \) and a sub-domain \(\mathcal{H} \) of \(\Sigma \), find (if possible) a constant \(C_2 = C_2(q, (h^{jk})_{n \times n}, T, \mathcal{H}, \Omega) > 0 \) such that the corresponding solution \(w \) of (1.3) satisfies

\[
\|w_0\|_{H^1_0(\Omega)^N} + \|w_1\|_{L^2(\Omega)^N} \leq C_2 \int_{\mathcal{H}} \left| \frac{\partial w}{\partial \nu} \right|^2 \, d\Gamma \, dt, \quad \forall (w_0, w_1) \in H^1_0(\Omega)^N \times L^2(\Omega)^N.
\]

(1.5)

Here \(\nu = \nu(x) = (\nu_1, \nu_2, \ldots, \nu_n) \) denotes the unit outward normal vector of \(\Omega \) at \(x \in \Gamma \).

The inequality (1.4) (resp. (1.5)) implies that the initial energy of solutions can be estimated by the energy localized in a subdomain \(K \) (resp. \(\mathcal{H} \)) with an explicit observability constant. It is well known that such kind of inequalities play a key role in the unique continuation, controllability, stabilization and inverse problems of hyperbolic equations (e.g., [1–10] and the rich references therein).

Remark 1.1. Clearly, whether the inequality (1.4) (resp. (1.5)) holds depends on the choice of the set \(K \) (resp. \(\mathcal{H} \)), the time \(T \) and the constant \(C_1 \) (resp. \(C_2 \)), which are called the observation domain, the observation time and the observability constant, respectively. In the literature, people aims to establish observability estimate when the observation domain is as small as possible, the observation time is as short as possible, and the observability constant is as small as possible.

From [1], we know that one must put some further assumption on \((h^{jk}(\cdot))_{1 \leq j, k \leq n} \), \(K \) (resp. \(\mathcal{H} \)) and \(T \), otherwise the inequality (1.4) (resp. (1.5)) may not hold. We first introduce the following condition on \((h^{jk}(\cdot))_{1 \leq j, k \leq n} \):

Condition 1.1. There exists a positive function \(\varphi(\cdot) \in C^2(\overline{\Omega}) \) satisfying the following:

(i) For some constant \(s_0 \geq 0 \), it holds

\[
\sum_{j, k=1}^n \sum_{j', k'=1}^n \left[2h^{jk'}(\varphi_{x_{j'}})_{x_{k'}} - h^{jk}_{x_{j'}} h^{j'k'}_{x_{j'}} \varphi_{x_{j'}} \right] \xi_j \xi_k \geq s_0 \sum_{j, k=1}^n h^{jk} \xi_j \xi_k, \quad \forall (x, \xi^1, \ldots, \xi^n) \in \overline{\Omega} \times \mathbb{R}^n.
\]

(1.6)

(ii) There is no critical point of function \(\varphi(\cdot) \) in \(\overline{\Omega} \), i.e.,

\[
\min_{x \in \overline{\Omega}} |\nabla \varphi(x)| > 0.
\]

(1.7)
Remark 1.2. Condition 1.1 is a kind of pseudo-convex condition for the function \(\varphi \) with respect to \((h_{jk}^{\cdot}(\cdot))_{1 \leq j, k \leq n} \), which is natural for establishing a Carleman estimate for (1.3) (see [11], Sect. 28.2). Condition 1.1 is not very restrictive, i.e., one can find many interesting examples with this property (e.g., [3, 12]). For instance, when \((h_{jk}^{\cdot}(\cdot))_{1 \leq j, k \leq n} = I_n \), and for any given \(x_0 \in \mathbb{R}^n \setminus \overline{\Omega} \), by choosing \(\varphi(x) = |x - x_0|^2 - c_0^2 \) (here \(c_0 \) is some constant satisfying \(|c_0| < \min_{x \in \Omega} |x - x_0| \)), we can see that Condition 1.1 holds with \(s_0 = 4 \).

Before sketching what \(\mathcal{K} \) and \(\mathcal{H} \) are, we need some preliminaries. For the function \(\varphi(\cdot) \) satisfying Condition 1.1, we put

\[
\Gamma_0 \triangleq \left\{ x \in \Gamma \mid \sum_{j,k=1}^{n} h_{jk} \varphi x_j \nu_k > 0 \right\} \quad (1.8)
\]

and \(\Sigma_0 \triangleq (-T, T) \times \Gamma_0 \).

Remark 1.3. It is easy to check that, if \(\varphi(\cdot) \in C^2(\overline{\Omega}) \) satisfies (1.6), then for any given constants \(a \geq 1 \) and \(b \in \mathbb{R} \), the function \(\hat{\varphi} = \hat{\varphi}(x) \triangleq a \varphi(x) + b \) still satisfies Condition 1.1 with \(s_0 \) replaced by \(as_0 \). Clearly, the scaling and translating of \(\varphi(x) \) do not change the set \(\Gamma_0 \). Hence, by scaling and translating, if necessary, we may assume without loss of generality that

\[
\left\{ \begin{array}{l}
(1.6) \text{ holds with } s_0 \geq 4, \\
\frac{1}{4} \sum_{j,k=1}^{n} h_{jk}(x) x_j \varphi x_j \varphi x_k \geq \varphi(x) > 0, \quad \forall x \in \overline{\Omega}.
\end{array} \right. \quad (1.10)
\]

For any \(\kappa > 0 \), we define

\[O_\kappa(\Gamma_0) \triangleq \{ x \in \mathbb{R}^n \mid |x - x'| < \kappa \text{ for some } x' \in \Gamma_0 \}. \]

Let \(\delta, \delta_0 \in \mathbb{R} \) and \(0 < \delta_0 < \delta \). Put

\[\omega \triangleq O_\delta(\Gamma_0) \cap \Omega, \quad \omega_0 \triangleq O_{\delta_0}(\Gamma_0) \cap \Omega, \quad Q_{\omega \setminus \omega_0} \triangleq (-T, T) \times (\omega \setminus \omega_0). \quad (1.11) \]

For any constant \(\delta_1 \in (0, 1/2) \), let

\[D \triangleq \{ (t, x) \in Q \mid \varphi(x) - t^2 > 0 \}. \quad (1.12) \]

Now we can give the definition of \(\mathcal{K} \) and \(\mathcal{H} \). Let

\[\mathcal{K} \triangleq \left\{ \{ -\delta_1 T, \delta_1 T \} \times \omega_0 \} \cup (Q_{\omega \setminus \omega_0} \cap D), \quad \mathcal{H} \triangleq \Sigma_0 \cap D. \quad (1.13) \]

In what follows, we shall denote by \(C_* = C_*((h_{jk}^{\cdot})_{n \times n}, T, \mathcal{K}, \Omega) \) and \(C^* = C^*((h_{jk}^{\cdot})_{n \times n}, T, \mathcal{H}, \Omega) \) generic positive constants, which may change from line to line.

In (1.13), we do not fix the observation time \(T \). Due to the finite speed of propagation for solutions to (1.3), we know that \(T \) should be large enough to guarantee the inequalities (1.4) and (1.5). Now we give a characterization of \(T \).
Set
\[R_0 \triangleq \min_{x \in \Omega} \sqrt{\varphi(x)}, \quad R_1 \triangleq \max_{x \in \Omega \setminus \omega} \sqrt{\varphi(x)}. \] (1.14)

As said in Remark 1.3, once there is a \(\varphi \) satisfying Condition 1.1, one can always do some affine transformation to get a new function \(\hat{\varphi} \) which fulfills both Condition 1.1 and (1.10). The Carleman estimate employing \(\varphi \) or \(\hat{\varphi} \) as a weight function may be different. This will lead to the observation time \(T \) in the observability (1.4)/(1.5) being different. In such case, we introduce the following notation:
\[T_* \triangleq \inf \{ R_1 \mid \varphi(\cdot) \text{ satisfies Condition 1.1 and (1.10)} \}. \] (1.15)

We have the following internal observability estimate for the system (1.3).

Theorem 1.4. Let \(T > T_* \) and \(K \) be given respectively by (1.13). Then for any \((w_0, w_1) \in L^2(\Omega)^N \times H^{-1}(\Omega)^N\), the corresponding weak solution \(w \in C([-T, T]; L^2(\Omega)^N) \cap C^1([-T, T]; H^{-1}(\Omega)^N)\) of the system (1.3) satisfies the internal observability estimate (1.4) with the constant \(C_1 \) replaced by \(C_*(r) \triangleq \exp \left[C_*(1 + r^{-\frac{1}{n-1}}) \right] \), where
\[r \triangleq \| q \|_{L^\infty(-T, T; L^p(\Omega; \mathbb{R}^{N \times N}))}. \] (1.16)

Remark 1.5. By [13], Theorem 1.2, we know that the exponent \(2/3 \) in the constant \(C_*(r) \) for the special case \(p = \infty \) is sharp in the sense that, when \(T \) is fixed, the observability constant has to grow, at least, at the order of \(\exp \left(\| q \|_{L^\infty(\Omega; \mathbb{R}^{N \times N})}^{\frac{3}{2}} \right) \) as \(q \|_{L^\infty(\Omega; \mathbb{R}^{N \times N})} \to \infty \).

Remark 1.6. If \(\varphi(\cdot) \in C^2(\overline{\Omega}) \) satisfies Condition 1.1 and (1.10), then it is easy to see that \(\hat{\varphi}(\cdot) \triangleq \varphi(\cdot) - c_0^2 \) (here \(c_0 \) is some constant satisfying \(c_0 < \min_{x \in \Omega} \sqrt{\varphi(x)} \)) still satisfies Condition 1.1 and (1.10). For such \(\hat{\varphi} \), the set \(\mathcal{D} \) defined in (1.12) and \(T_* \) in (1.15) become respectively
\[\mathcal{D} = \{(t, x) \in Q \mid \varphi(x) - t^2 > c_0^2 \}, \quad T_* = \left(\max_{x \in \Omega \setminus \omega} \varphi(x) - \min_{x \in \Omega} \varphi(x) \right)^{\frac{1}{2}}. \]

By Theorem 1.4, we know that (1.4) still holds for such \(\mathcal{D} \) and \(T_* \).

Remark 1.7. In the case \((h^{jk})_{n \times n} = I_n \), for any given \(x_0 \in \mathbb{R}^n \setminus \overline{\Omega} \), by choosing \(\varphi(x) = |x - x_0|^2 - c_0^2 \) (where \(c_0 \) is some constant satisfying \(c_0 < \min_{x \in \Omega} |x - x_0| \)), it is easy to see that \(\varphi(x) \) satisfies Condition 1.1 and (1.10). In this situation, we have
\[\mathcal{D} = \{(t, x) \in Q \mid |x - x_0|^2 - t^2 > c_0^2 \}, \quad T_* = \left(\max_{x \in \Omega \setminus \omega} |x - x_0|^2 - \min_{x \in \Omega} |x - x_0|^2 \right)^{\frac{1}{2}}. \] (1.17)

In case of the boundary observability estimate for system (1.3), we set
\[\begin{cases} R^1 \triangleq \max_{x \in \Omega} \sqrt{\varphi(x)}, \\ T^* \triangleq \inf \{ R^1 \mid \varphi(\cdot) \text{ satisfies Condition 1.1 and (1.10)} \}. \] (1.18)

We have the following result.
Theorem 1.8. Let $T > T^*$ and \mathcal{H} be given respectively by (1.13). Then for any $(w_0, w_1) \in (H^1_0(\Omega))^N \times L^2(\Omega)^N$, the corresponding weak solution $w \in C([-T, T]; L^2(\Omega)^N)$ is bounded and the observation domain \mathcal{H} of the system (1.3) satisfies the boundary observability estimate (1.5) with the constant C_2 replaced by $C_*(1 + r^{\frac{1}{p - n}}) \geq \exp \left[C_*(1 + r^{\frac{1}{p - n}}) \right]$, where r is given by (1.16).

Remark 1.9. In the case $(h^{jk})_{n \times n} = I_n$, for any given $x_0 \in \mathbb{R}^n \setminus \overline{\Omega}$, by choosing $\varphi(x) = |x - x_0|^2 - c_0^2$ (here c_0 is some constant satisfying $|c_0| < \min_{x \in \Omega} |x - x_0|$), it is easy to see that $\varphi(x)$ satisfies Condition 1.1 and (1.10). In this situation,

$$T^* = \left(\max_{x \in \Omega} |x - x_0|^2 - \min_{x \in \Omega} |x - x_0|^2 \right)^{\frac{1}{2}},$$

and

$$D = \{(t, x) \in \overline{\Omega} | |x - x_0|^2 - t^2 > c_0^2\}, \quad \mathcal{H} = \Sigma_0 \cap D.$$

Generally speaking, there are mainly four methods for establishing observability estimates for hyperbolic equations:

The first one is based on the Ingham type inequality (e.g., [14]). This method works well for a variety of 1-d problems in which the Fourier representation of solutions can be used (mainly when the coefficients are time-independent) and the gap condition holds. However, it seems that it does not work for wave equations with coefficients depending both on x and t, or with a lower order potential as the system (1.3).

The second one is the classical Rellich-type multiplier approach (e.g., [6]). It is used to treat wave equations with time independent lower order terms. However, it seems that it does not work for our problem since q is time dependent.

The third one is the microlocal analysis approach (e.g., [1]). It is useful to solve controllability problems for many kinds of PDEs such as wave equations, Schrödinger equations and plate equations. Further, it can give a sharp sufficient condition for the observability of hyperbolic equations when q is independent of t. However, this method does not give the explicit dependence of the observability constant on the potential q. Further, it is unknown how to use this approach to establish observability estimates for (1.3) when q depends on t.

The last one is the global Carleman estimate (e.g., [2, 3, 9, 10, 13, 15–18] and the rich references therein). It can be viewed as a more developed version of the classical Rellich-type multiplier approach. This approach has the advantage of being more flexible and allowing to address variable coefficients. Further, compared with the previous three methods, it is robust with respect to the lower order terms and allows to get explicit bounds on the observability constant in terms of the potentials entering in it. This is particularly important in the study of controllability problems for semilinear hyperbolic equations. Indeed, when dealing with controllability problems of semilinear equations by means of linearization and fixed point arguments, the key point is the explicit estimate of the observability constant by a suitable function of the norm of the potential (e.g., [15]).

Now let us recall recent works related to the observability estimate of (1.4) obtained by Carleman estimate in the literature and explain the novelty of our works in this paper.

In [3], Chapter 4, it was proved that the internal observability estimate (1.4) holds when

$$T \gg T^*, \quad \mathcal{K} = (-T, T) \times \mathcal{O}(\{x \in \Gamma | (x - x_0) \cdot \nu(x) \geq 0\})$$

and the observability constant $C_s(r) = \exp \left[C_s (1 + r^{\frac{1}{p - n}}) \right]$. Compared with Theorem 1.4, the observation time in [3], Chapter 4 is longer and the observation domain in [3], Chapter 4 is larger.
Figure 1. For the wave equation in one dimensional case, the red regions in (a) and (b) are the observation regions given in [3], Theorem 2.1 and [17], Theorem 1.2 (in the case of $q(\cdot) \in C^\infty(Q)$), respectively. The red region in (c) is our result stated in Theorem 1.4.

When $(h^{jk}(\cdot))_{n \times n} = I_n$ and $q(\cdot) \in C^\infty(Q)$, it was proved in [17] that the observability estimate (1.4) holds for

$$\begin{align*}
\{ T > \max_{x \in \Omega} |x - x_0|, \\
\mathcal{K} = [(-T, T) \times \partial \Omega \{(x \in \Gamma |(x - x_0) \cdot \nu(x) \geq 0)\}] \cap \{(t, x) \in \mathbb{R}^{1+n} | |x - x_0|^2 > t^2\},
\end{align*}$$

where $x_0 \in \mathbb{R}^n \setminus \overline{\Omega}$ and the observability constant is $Ce^{C\|q\|^{2/3}_{L^\infty(Q)}}$. The regularity condition in [17] is relaxed in [19] as $q(\cdot) \in L^\infty(Q)$. From Theorem 1.4, we see that our observation domain is a subset of the one in [17, 19]. Further, our observability constant is sharper, which is important in the study of controllability problems for hyperbolic equations. Indeed, by Theorem 1.4, one can show the exact controllability of semilinear hyperbolic equations in which the semilinear term increases as the function $s(\ln s)^3/2$. On the other hand, when the observability constant is $Ce^{C\|q\|^{2/3}_{L^\infty(Q)}}$, one can only handle the equation with the semilinear term increases as the function $s(\ln s)^1/2$.

We refer to Figure 1 for the changes of observation regions in one dimensional case, and Figure 2 for the changes of observation regions in multidimensional case.

When $(h^{jk}(\cdot))_{n \times n} = I_n$, Huang–Imanuvilov–Yamamoto [20] proves the observability estimate (1.4) holds for

$$\mathcal{H} = (-T, T) \times \{x \in \Gamma |(x - x_0) \cdot \nu(x) \geq 0\}, \quad T > \left(\max_{x \in \Omega} |x - x_0|^2 - \min_{x \in \Omega} |x - x_0|^2 \right)^{1/2}.$$
The observation time is the same as the one given in Theorem 1.8 and the observation domain is larger than the one given in Theorem 1.8. Further, the dependence of the observability constant on q is not provided in [20].

When $(h^j k(\cdot))_{n \times n} = I_n$, Shao [18] proves the observability estimate (1.4) holds for
\[
\mathcal{H} = \left\{ (\mathbf{T}, T) \times \{ x \in \Gamma | (x - x_0) \cdot \nu(x) \geq 0 \} \right\} \cap \left\{ (t, x) \in \mathbb{R}^{1+n} | |x - x_0|^2 > t^2 \right\}
\]
and give an observability constant in the same form of the one in Theorem 1.8. Nevertheless, compared with Theorem 1.8, the observation time in [18] is longer.

The rest of this paper is organized as follows. In Section 2, we prove a new Carleman estimate for hyperbolic operator in H^1-norm. In Section 3, we introduce an auxiliary optimal control problem which will play a key role in the proof of Carleman estimate for the hyperbolic operator in L^2-norm in Section 4. In Section 5, we give the proofs of our main results.

2. CARLEMAN ESTIMATE FOR THE HYPERBOLIC OPERATOR IN H^1-NORM

This section is devoted to proving Carleman estimates for the hyperbolic operators in H^1-norm on a domain bigger than Q.

Recall (1.11) for the definitions of ω and ω_0. Let $\hat{\delta}_1 \in (\delta_0, \delta)$. Set
\[
\omega_1 \overset{\Delta}{=} \mathcal{O}_{\hat{\delta}_1}(\Gamma_0) \cap \Omega. \tag{2.1}
\]
Choose a $\tilde{T} > 0$ satisfying
\[
\tilde{T} > \tilde{R}_1 \overset{\Delta}{=} \frac{1}{2} \max_{x \in \partial \Omega_1} \left(\sum_{j,k=1}^n h^{jk} \varphi_{x_j} \varphi_{x_k} \right)^{\frac{1}{2}}. \tag{2.2}
\]
Set
\[
\tilde{Q} \overset{\Delta}{=} (-\tilde{T}, \tilde{T}) \times \Omega, \quad \tilde{\Sigma} \overset{\Delta}{=} (-\tilde{T}, \tilde{T}) \times \Gamma. \tag{2.3}
\]
For some constant $\alpha \in (0, 1)$ (which will be given later) and parameters $\lambda, \mu > 0$, we choose the weight function θ as follows:
\[
\theta = e^\ell, \quad \ell = \lambda \phi(\sigma), \quad \phi(\sigma) = e^{\mu \sigma}, \quad \sigma = \varphi(x) - \alpha t^2. \tag{2.4}
\]

In the rest of this section, we will use $\tilde{C}_* = \tilde{C}_*(h^{jk})_{n \times n}, \tilde{T}, \Omega, \omega_1)$ and $\tilde{C}^* = \tilde{C}^*(h^{jk})_{n \times n}, \tilde{T}, \Omega, \Omega_0)$ to denote generic positive constants which may vary from line to line. We have the following Carleman estimate.

Theorem 2.1. Let $\tilde{T} > \tilde{R}_1$. Then there exist positive constants $\tilde{C}_* > 0$ and $\mu_0 > 0$ such that for all $\mu \geq \mu_0$, there exists a $\lambda_0 = \lambda_0(\mu) > 0$, so that for all $\lambda \geq \lambda_0$, and any $u \in H^1(\tilde{Q})$ with $u_{tt} - \sum_{j,k=1}^n (h^{jk} u_{x_j})_{x_k} \in L^2(\tilde{Q})$, $u|_{\tilde{\Sigma}} = 0$ and supp $u \subset [-\tilde{T}, \tilde{T}] \times (\partial \Omega \setminus \omega_1)$, it holds that
\[
\lambda \mu \int_{\tilde{Q}} \theta^2(|u_t|^2 + |\nabla u|^2 + \lambda^2 \mu^2 |u|^2) \, dx \, dt \leq \tilde{C}_* \int_{\tilde{Q}} \theta^2 \left| u_{tt} - \sum_{j,k=1}^n (h^{jk} u_{x_j})_{x_k} \right|^2 \, dx \, dt. \tag{2.5}
\]
In the case of boundary observability problems, we choose a \hat{T} satisfying

$$\hat{T} > \hat{T}^1 \triangleq \frac{1}{2} \max_{x \in \Omega} \left(\sum_{j,k=1}^n h_{jk} \phi_{x_j} \phi_{x_k} \right)^{\frac{1}{2}}. \tag{2.6}$$

Put

$$\hat{Q} \triangleq (-\hat{T}, \hat{T}) \times \Omega, \quad \hat{\Sigma} \triangleq (-\hat{T}, \hat{T}) \times \Gamma, \quad \hat{\Sigma}_0 \triangleq (-\hat{T}, \hat{T}) \times \Gamma_0. \tag{2.7}$$

We have the following boundary Carleman estimate.

Theorem 2.2. Let $\hat{T} > \hat{T}^1$. Then there exist positive constants $\tilde{C}^* > 0$ and $\mu_0 > 0$ such that for all $\mu \geq \mu_0$, there exists a $\lambda_0 = \lambda_0(\mu) > 0$ so that for all $\lambda \geq \lambda_0$, and any $u \in H^1(\hat{Q})$ with $u_{tt} - \sum_{j,k=1}^n (h_{jk} u_{x_j})_{x_k} \in L^2(\hat{Q})$ and $u|_{\hat{\Sigma}_0} = 0$, it holds that

$$\lambda \mu \int_{\hat{Q}} \theta^2 (|u_t|^2 + |\nabla u|^2 + \lambda^2 \mu^2 u^2) \, dx \, dt$$

$$\leq \tilde{C}^* \left[\int_{\hat{Q}} \theta^2 \left| u_{tt} - \sum_{j,k=1}^n (h_{jk} u_{x_j})_{x_k} \right|^2 \, dx \, dt + \lambda \mu \int_{\hat{\Sigma}_0} \theta \left| \frac{\partial u}{\partial \nu} \right|^2 \, d\Gamma \, dt \right]. \tag{2.8}$$

The proofs of Theorems 2.1 and 2.2 are based on the following weighted inequality.

Lemma 2.3. ([3], Cor. 4.1) Let $u \in C^2(\mathbb{R}^{1+n}; \mathbb{R})$, $\ell \in C^3(\mathbb{R}^{1+n}; \mathbb{R})$ and $\Psi \in C^1(\mathbb{R}^n; \mathbb{R})$. Set $\theta = e^\ell$ and $v = \theta u$. Then,

$$\theta^2 \left| u_{tt} - \sum_{j,k=1}^n (h_{jk} u_{x_j})_{x_k} \right|^2 + 2 \text{div} V + 2 M_t$$

$$\geq 2 \left[\ell_{tt} + \sum_{j,k=1}^n (h_{jk} \ell_{x_j})_{x_k} + \Psi \right] v_t^2 - 8 \sum_{j,k=1}^n h_{jk} \ell_{tx_j} v_{x_k} v_t$$

$$+ 2 \sum_{j,k=1}^n c_{j,k} v_{x_j} v_{x_k} - 2 \sum_{j,k=1}^n h_{jk} \Psi_{x_j} v v_{x_k} + B v^2, \tag{2.9}$$

where

$$A = \sum_{j,k=1}^n (h_{jk} \ell_{x_j} \ell_{x_k} - h_{j,k'} \ell_{x_j} \ell_{x_{k'}} - h_{j,k} \ell_{x_{j,k'}}) - \ell_t^2 + \ell_{tt} - \Psi,$$

$$c_{j,k} = \sum_{j',k'=1}^n \left[2 h^{j,k'} (h^{j,k} \ell_{x_j})_{x_{k'}} - (h^{j,k} h^{j,k'} \ell_{x_{j'}})_{x_k'} \right] + h_{jk} (\ell_{tt} - \Psi), \tag{2.10}$$

$$B = 2 \left[A \Psi - (A \ell_t)_t + \sum_{j,k=1}^n (Ah_{jk} \ell_{x_j})_{x_k} \right],$$
and

\[
V = [V^1, \ldots, V^k, \ldots, V^n],
\]

\[
V^k = 2 \sum_{j,j',k'=1}^n h^{jk} h^{j'k'} \ell_{x_j} v_{x_k} v_{x_{k'}} + \sum_{j=1}^n h^{jk} A \ell_{x_j} v^2 - \Psi v \sum_{j=1}^n h^{jk} v_{x_j}
- \sum_{j,j',k'=1}^n h^{jk} h^{j'k'} \ell_{x_j} v_{x_k} v_{x_{k'}} - 2 \ell_t v_t \sum_{j=1}^n h^{jk} v_{x_j} + \sum_{j=1}^n h^{jk} \ell_{x_j} v_{x_k}^2,
\]

(2.11)

\[M = \ell_t \left(v_t^2 + \sum_{j,k=1}^n h^{jk} v_{x_k} v_{x_k} \right) - 2 \sum_{j,k=1}^n h^{jk} \ell_{x_j} v_{x_k} v_t + \Psi v v_t - A \ell_t v^2.\]

Proof of Theorem 2.1. We divide the proof into several steps.

Step 1. By (2.4), it is easy to check that

\[
\ell_{x_j} = \lambda \mu \phi \varphi_{x_j}, \quad \ell_{x_j x_k} = \lambda \mu^2 \phi \varphi_{x_j} \varphi_{x_k} + \lambda \mu \phi \varphi_{x_j x_k}, \quad \Delta \ell = \lambda \mu \phi \Delta \varphi + \lambda \mu^2 \phi |\nabla \varphi|^2,
\]

(2.12)

and

\[
\ell_t = -2 \lambda \mu \phi \alpha t, \quad \ell_{tt} = 4 \lambda \mu^2 \phi \alpha^2 t^2 - 2 \lambda \mu \phi \alpha, \quad \ell_{tx_j} = -2 \lambda \mu^2 \phi \alpha t \varphi_{x_j}.
\]

(2.13)

In Lemma 2.3, we choose \(\Psi \) as

\[
\Psi = \ell_{tt} - \sum_{j,k=1}^n (h^{jk} \ell_{x_j}) x_k + 2(1 + \alpha) \lambda \mu \phi.
\]

(2.14)

Then, by (2.12)–(2.14), we have

\[
2 \left[\ell_{tt} + \sum_{j,k=1}^n (h^{jk} \ell_{x_j}) x_k + \Psi \right] v_t^2 - 8 \sum_{j,k=1}^n h^{jk} \ell_{tx_j} v_{x_k} v_t
= 2 \left[8 \lambda \mu^2 \phi \alpha^2 t^2 + (2 - 2 \alpha) \lambda \mu \phi \right] v_t^2 + 16 \lambda \mu^2 \phi \alpha t v_t \sum_{j,k=1}^n h^{jk} \varphi_{x_j} v_{x_k}
\geq 4(1 - \alpha) \lambda \mu \phi v_t^2 - 4 \lambda \mu^2 \phi \left(\sum_{j,k=1}^n h^{jk} \varphi_{x_j} v_{x_k} \right)^2.
\]

(2.15)

Next, recalling (2.10) for the definition of \(c^{jk} \), by (1.6), we have

\[
2 \sum_{j,k=1}^n c^{jk} v_{x_j} v_{x_k} = 2 \lambda \mu \phi \sum_{j,k=1}^n \left\{ \sum_{j',k'=1}^n \left[2h^{jk'} (h^{j'k'} \varphi_{x_{j'}}) x_{k'} - h^{jk} h^{j'k'} \varphi_{x_{j'}} \right] \right\} v_{x_j} v_{x_k}
+ 4 \lambda \mu^2 \phi \left(\sum_{j,k=1}^n h^{jk} \varphi_{x_j} v_{x_k} \right)^2 - 4(1 + \alpha) \lambda \mu \phi \sum_{j,k=1}^n h^{jk} v_{x_j} v_{x_k}
\geq 4 \lambda \mu^2 \phi \left(\sum_{j,k=1}^n h^{jk} \varphi_{x_j} v_{x_k} \right)^2 + 2(s_0 - 2 \alpha - 2) \lambda \mu \phi \sum_{j,k=1}^n h^{jk} v_{x_j} v_{x_k}.
\]

(2.16)
Combining (2.15) and (2.16), we have

\[\theta^2 \left| u_{tt} - \sum_{j,k=1}^n (h^{jk} u_{x_j})_{x_k} \right|^2 + M_t + 2 \text{div} V \geq 4(1 - \alpha)\lambda \mu \phi v_t^2 + 2(s_0 - 2\alpha - 2)\lambda \mu \phi \sum_{j,k=1}^n h^{jk} v_{x_j} v_{x_k} - 2 \sum_{j,k=1}^n h^{jk} \Psi_{x_j} v_{x_k} + B v^2. \] \tag{2.17}

Step 2. In the sequel, for \(k \in \mathbb{N} \), we denote by \(O(\lambda^k) \) a function of order \(\lambda^k \) for fixed \(\mu \) and large \(\lambda \). Recalling the definition of \(A \) in (2.10), we have

\[A = \sum_{j,k=1}^n (h^{jk} \ell_{x_j} \ell_{x_k} - h^{jk} \ell_{x_j x_k}) - \ell_t^2 - \ell_{tt} - \Psi \]

\[= \lambda^2 \mu^2 \phi^2 \left(\sum_{j,k=1}^n h^{jk} \varphi_{x_j} \varphi_{x_k} - 4\alpha^2 t^2 \right) + O(1). \tag{2.18} \]

From (2.10), (2.14) and (2.18), we have

\[B = 2 \left[A \Psi - A_t \ell_t - A_{tt} + \sum_{j,k=1}^n (Ah^{jk} \ell_{x_j})_{x_k} \right] \]

\[= 4(1 + \alpha)\lambda \mu \phi A + 4\lambda \mu \alpha \phi t A_t + 2 \sum_{j,k=1}^n h^{jk} \lambda \mu \phi \varphi_{x_j} A_{x_k}. \tag{2.19} \]

By (2.10) and (2.14), we get that

\[4\lambda \mu \alpha \phi t A_t + 2 \sum_{j,k=1}^n h^{jk} \lambda \mu \phi \varphi_{x_j} A_{x_k} \]

\[= -8\lambda^3 \mu^3 \phi^3 \alpha^2 t^2 \left[4\alpha + 2\mu \left(\sum_{j,k=1}^n h^{jk} \varphi_{x_j} \varphi_{x_k} - 4\alpha^2 t^2 \right) \right] \]

\[+ 2\lambda^3 \mu^3 \phi^3 \sum_{j,k=1}^n \left(h^{jk} \varphi_{x_j} \sum_{j',k'=1}^n \left(h^{j'k'} \varphi_{x_{j'}} \varphi_{x_{k'}} \right)_{x_k} \right) \]

\[+ 4\lambda^3 \mu^4 \phi^3 \left(\sum_{j,k=1}^n h^{jk} \varphi_{x_j} \varphi_{x_k} - 4\alpha^2 t^2 \right) \sum_{j,k=1}^n h^{jk} \varphi_{x_j} \varphi_{x_k} + O(\lambda^2). \tag{2.20} \]

Recalling that \(\varphi \) satisfy (1.6), and noting \(h^{j'k'} = h^{k'j'} \) for \(1 \leq j', k' \leq n \), it is easy to check that (see [15, inequality (11.6)] for details)

\[\sum_{j,k=1}^n h^{jk} \varphi_{x_j} \left(\sum_{j',k'=1}^n h^{j'k'} \varphi_{x_{j'}} \varphi_{x_{k'}} \right)_{x_k} \]

\[= \sum_{j,k,j',k'=1}^n \left[2h^{jk} (h^{j'k'} \varphi_{x_{j'}})_{x_{k'}} - h^{jk} h^{j'k'} \varphi_{x_{j'}} \varphi_{x_{k'}} \right] \varphi_{x_j} \varphi_{x_k} \geq s_0 \sum_{j,k=1}^n h^{jk} \varphi_{x_j} \varphi_{x_k}. \tag{2.21} \]
Combining (2.17) and (2.23), we have

\[B \geq 4\lambda^3 \mu^4 \phi^3 \left(\sum_{j,k=1}^{n} h^{jk} \varphi_{x_j} \varphi_{x_k} - 4\alpha^2 t^2 \right)^2 \]

\[+ 2\lambda^3 \mu^3 \phi^3 \left[[s_0 + 2(1 + \alpha)] \sum_{j,k=1}^{n} h^{jk} \varphi_{x_j} \varphi_{x_k} - [16\alpha^3 + 8(1 + \alpha)^2] t^2 \right] + O(\lambda^2) \]

\[\geq 2\lambda^3 \mu^3 \phi^3 [s_0 + 2 + 2\alpha - 4\alpha - 2(1 + \alpha)] \sum_{j,k=1}^{n} h^{jk} \varphi_{x_j} \varphi_{x_k} \]

\[+ 4\lambda^3 \mu^3 \phi^3 \left[\sqrt{\mu} \left(\sum_{j,k=1}^{n} h^{jk} \varphi_{x_j} \varphi_{x_k} - 4\alpha^2 t^2 \right) + \frac{1}{2\sqrt{\mu}} \left(3\alpha + 1 \right) \right]^2 \]

\[- \lambda^3 \mu^2 \phi^2 \left(2\alpha + (1 + \alpha) \right)^2 + O(\lambda^2) \]

\[\geq 2\lambda^3 \mu^3 \phi^3 (s_0 - 4\alpha) \sum_{j,k=1}^{n} h^{jk} \varphi_{x_j} \varphi_{x_k} - \lambda^3 \mu^2 \phi^3 \left(3\alpha + 1 \right)^2 + O(\lambda^2) \] (2.22)

By (2.22), noting that \(s_0 \geq 4 \) and \(\alpha < 1 \), we conclude that there exists a positive constant \(\mu_0 > 0 \) such that for all \(\mu \geq \mu_0 \), one can find constants \(c_0 > 0 \) and \(\lambda_1 > 0 \), so that for any \(\lambda \geq \lambda_1 \),

\[B \geq c_0 \lambda^3 \mu^3 \phi^3 \sum_{j,k=1}^{n} h^{jk} \varphi_{x_j} \varphi_{x_k}. \] (2.23)

Combining (2.17) and (2.23), we have

\[\theta^2 \left| u_{tt} - \sum_{j,k=1}^{n} (h^{jk} u_{x_j})_{x_k} \right|^2 + M_t + 2\text{div} V \]

\[\geq 4(1 - \alpha) \lambda \mu \phi v^2 + 2(s_0 - 2\alpha - 2)\lambda \mu \phi \sum_{j,k=1}^{n} h^{jk} v_{x_j} v_{x_k} \]

\[+ c_0 \lambda^3 \mu^3 \phi^3 \sum_{j,k=1}^{n} h^{jk} \varphi_{x_j} \varphi_{x_k} v^2 - 2 \sum_{j,k=1}^{n} h^{jk} \Psi_{x_j} v v_{x_k}. \] (2.24)

Step 3. Noting that \(\text{supp} u \subset [-\tilde{T}, \tilde{T}] \times (\Omega \setminus \omega_1) \), by (2.11), we have

\[\int_{\tilde{\Sigma}} V \cdot \nu(x) \, dx \, dt \]

\[= \lambda\mu \int_{\tilde{\Gamma}} \left(\sum_{j,k=1}^{n} h^{jk} \nu^j \nu^k \right) \left(\sum_{j',k'=1}^{n} h^{j'k'} \phi_{x_j'} \nu_{x_k'} \right) \left| \frac{\partial v}{\partial \nu} \right|^2 \, d\Gamma \, dt \]

\[\leq \lambda\mu \int_{-\tilde{T}}^{\tilde{T}} \int_{\omega} \left(\sum_{j,k=1}^{n} h^{jk} \nu^j \nu^k \right) \left(\sum_{j',k'=1}^{n} h^{j'k'} \phi_{x_j'} \nu_{x_k'} \right) \left| \frac{\partial v}{\partial \nu} \right|^2 \, d\Gamma \, dt \]

\[= 0. \] (2.25)
Recalling (2.14) for the definition of Ψ, we get

$$-2 \sum_{j,k=1}^{n} h^{jk} \Psi_{x_j,v x_k} \geq - \sum_{j,k=1}^{n} h^{jk} v_{x_j} v_{x_k} + O(\lambda^2) v^2. \tag{2.26}$$

Noting that $\tilde{T} > \tilde{R}_1$, then in (2.4), we choose $\alpha \in (\tilde{R}_1/\tilde{T}, 1)$. Then we obtain that

$$M(-\tilde{T}, x) = 2\lambda \mu \phi \alpha \tilde{T} \left(v_t^2 + \sum_{j,k=1}^{n} h^{jk} v_{x_j} v_{x_k} \right) - 2\lambda \mu \phi \sum_{j,k=1}^{n} h^{jk} \phi_{x_j,v x_k} v_t$$

$$+ \left[4\lambda \mu \phi \alpha^2 \tilde{T}^2 - \sum_{j,k=1}^{n} (h^{jk} \lambda \mu \phi) \phi_{x_j,v x_k} + 2\lambda \mu \phi \right] v v_t$$

$$-2\lambda^3 \mu^3 \phi^3 \alpha \tilde{T} \left(\sum_{j,k=1}^{n} h^{jk} \phi_{x_j,v x_k} - 4\alpha^2 \tilde{T}^2 \right) v^2 + O(\lambda^2) v^2 \tag{2.27}$$

$$\geq \lambda \mu \phi \left[2\alpha \tilde{T} - \left(\sum_{j,k=1}^{n} h^{jk} \phi_{x_j,v x_k} \right) \right] \left(v_t^2 + \sum_{j,k=1}^{n} h^{jk} v_{x_j} v_{x_k} \right)$$

$$+ O(\lambda^2) v^2 - v_t^2 + \lambda^3 \mu^3 \phi^3 \alpha \tilde{T} \left(4\alpha^2 \tilde{T}^2 - \sum_{j,k=1}^{n} h^{jk} \phi_{x_j,v x_k} \right) v^2.$$

By (2.27), one can find $\lambda_2 > 0$ such that for any $\lambda > \lambda_2$,

$$M(-\tilde{T}, x) \geq 0. \tag{2.28}$$

Similarly, one can find $\lambda_3 > 0$ such that for any $\lambda > \lambda_3$,

$$M(\tilde{T}, x) \leq 0. \tag{2.29}$$

Recalling that $u = \theta^{-1} v$, we get that

$$\theta^2 u_t^2 = \theta^2 (\theta^{-1} v_t - \theta^{-1} \ell_t v) \leq 2v_t^2 + C_\lambda \mu^2 \phi^2 v^2, \tag{2.30}$$

and

$$\theta^2 |\nabla u|^2 = \theta^2 \left| \theta^{-1} \nabla v - \theta^{-1} \nabla \ell v \right|^2 \leq 2|\nabla v|^2 + C \lambda^2 \mu^2 \phi^2 v^2. \tag{2.31}$$

Finally, integrate (2.24) on Q, by (2.26)–(2.31), one can find $\mu_0 > 0$ such that for all $\mu \geq \mu_0$, there exists $\lambda_0 \triangleq \max\{\lambda_1, \lambda_2, \lambda_3\} > 0$, so that for any $\lambda \geq \lambda_0$, the inequality (2.5) holds. \qed

Proof of Theorem 2.2. Noting that $\tilde{T} > \tilde{R}_1$, we can choose α in (2.4) such that $\alpha \in (\tilde{R}_1/\tilde{T}, 1)$.
Recalling (2.11) for the definition of V, noting that $u|_{\Sigma} = 0$ and $v = \theta u$, by (1.8) and (1.13), we have

$$
\int_{\Sigma} V \cdot \nu(x) dx dt = \lambda \mu \int_{\Sigma} \phi \left(\sum_{j,k=1}^{n} h_{jk}^{\nu_j^{\nu_k}} \right) \left(\sum_{j',k'=1}^{n} h_{j'k'}^{\phi_{j'}} \nu^{k'} \right) \left| \frac{\partial v}{\partial \nu} \right|^2 d\Gamma dt
\leq \lambda \mu \int_{\Sigma_a} \theta^2 \left| \frac{\partial u}{\partial \nu} \right|^2 d\Gamma dt.
$$

(2.32)

Then, similar to the proof of Theorem 2.1, integrating (2.24) on Q, proceeding exactly the same analysis as (2.26), (2.28)–(2.29) and (2.32), we can get the desired inequality (2.8). This completes the proof of Theorem 2.2.

\[\square\]

3. An auxiliary optimal control problem

To obtain Carleman estimate for the hyperbolic operator in $L^2(\tilde{Q})$, we follow the idea in [16] to introduce an auxiliary optimal control problem. We choose $\rho^K \equiv \rho^K(x) \in C^2(\bar{\Omega})$ such that $\min_{x \in \Omega} \rho^K(x) = 1$ and that

$$
\rho^K(x) = \begin{cases}
1, & x \in \omega_1, \\
K, & \text{dist}(x, \omega_1) \geq \frac{1}{\ln K},
\end{cases}
$$

(3.1)

where ω_1 is given in (2.1).

Let $z \in C([-\tilde{T}, \tilde{T}], L^2(\Omega))$ satisfy the following hyperbolic equation:

$$
\begin{aligned}
&z_{tt} - \sum_{j,k=1}^{n} (h_{jk}^{z_{x_j}z_{x_k}}) = F \\
&z = 0 \\
&z(-\tilde{T}, \cdot) = z(\tilde{T}, \cdot) = 0 \\
&\text{supp } z(t, x) \subset [-\tilde{T}, \tilde{T}] \times (\Omega \setminus \omega_1),
\end{aligned}
$$

(3.2)

where $F \in H^{-1}(\tilde{Q})$. Set $\tau = \frac{2\tilde{T}}{m}(m \geq 3)$ and

$$
z_j^m = z_{m}^j(x) = z(-\tilde{T} + j \tau, x), \quad \phi_j^m = \phi_{m}^j(x) = \phi(-\tilde{T} + j \tau, x), \quad j = 0, 1, \cdots, m.
$$

(3.3)

Let $\{(w_j^m, r_{1m}^j, r_{2m}^j)\}_{j=0}^{m} \in (H^1_0(\Omega) \times (L^2(\Omega))^2)^{m+1}$ solve the following system:

$$
\begin{aligned}
&w_{j+1}^m - 2w_j^m + w_{j-1}^m - \sum_{j_1, j_2=1}^{n} \partial_{x_{j_1}x_{j_2}}(h_{j_1j_2}^{\phi_{j_1}^m})w_j^m \\
&= \frac{r_{1m}^j - r_{1m}^0 + \lambda_{e}^{m} e^{2\lambda_{phi}^m} + r_{1m}^j}{\tau} \\
&w_{j}^0 = 0, \quad (0 \leq j \leq m) \\
w_{j}^m = w_{m}^m = r_0^m = r_{m}^m = 0, \quad r_{1m}^0 = r_{1m}^m \\
on \Gamma,
\end{aligned}
$$

(3.4)

Here $(r_{1m}^j, r_{2m}^j) \in L^2(\Omega)^2$ can be regarded as controls. The set of admissible sequences for (3.4) is defined as

$$
\mathcal{A}_{ad} \triangleq \left\{(w_j^m, r_{1m}^j, r_{2m}^j)_{j=0}^{m} \in (H^1_0(\Omega) \times L^2(\Omega))^2)^{m+1} \mid \{(w_j^m, r_{1m}^j, r_{2m}^j)\}_{j=0}^{m} \text{ fulfills (3.4),} \right\}
$$

(3.5)

\sup \{(w_j^m, r_{1m}^j, r_{2m}^j)_{j=0}^{m} \subset \Omega \setminus \omega_1 \}. }
Clearly $\mathcal{A}_{ad} \neq \emptyset$ since $\{(0, 0, -\lambda z_m e^{2\lambda \phi_m})\}_{j=0}^m \in \mathcal{A}_{ad}$.

Next, we introduce a cost functional

$$J \left(\left\{(w_m^j, r_m^j, \tilde{r}_m^j)_{j=0}^m \right\} \right) = \frac{\tau}{2} \int_{\Omega} \rho |r_m^j|^2 e^{-2\lambda\phi_m} dx + \frac{\tau}{2} \sum_{j=1}^{m-1} \int_{\Omega} |w_m^j|^2 e^{-2\lambda\phi_m} dx + \frac{\tau}{2} \sum_{j=1}^{m-1} \left(\int_{\Omega} \rho |r_m^j|^2 e^{-2\lambda\phi_m} dx + K \int_{\Omega} |\tilde{r}_m^j|^2 dx \right)$$

(3.6)

and consider the following optimal control problem:

Problem (OP): Find a $\{(w_m^j, r_m^j, \tilde{r}_m^j)_{j=0}^m \} \in \mathcal{A}_{ad}$, such that

$$J \left(\left\{(w_m^j, r_m^j, \tilde{r}_m^j)_{j=0}^m \right\} \right) = \inf \left\{ \left\{ (w_m^j, r_m^j, \tilde{r}_m^j)_{j=0}^m \right\} : \left\{ (w_m^j, r_m^j, \tilde{r}_m^j)_{j=0}^m \right\} \in \mathcal{A}_{ad} \right\}.$$

(3.7)

For any $\{(w_m^j, r_m^j, \tilde{r}_m^j)_{j=0}^m \} \in \mathcal{A}_{ad}$, by the standard regularity results for elliptic equations, one has that $w_m^j \in H^2(\Omega) \cap H_0^1(\Omega)$ for $j = 0, \cdots, m$. Moreover, we have the following technical result:

Proposition 3.1. For any $K > 1$ and $m \geq 3$, Problem (OP) admits a unique solution $\{(w_m^j, r_m^j, \tilde{r}_m^j)_{j=0}^m \} \in \mathcal{A}_{ad}$ (which depends on K). Furthermore, for

$$p_m^j = p_m^j(x) = K \tilde{r}_m^j(x), \quad 0 \leq j \leq m,$$

one has

$$\left\{ \begin{array}{l}
\hat{w}_m^0 = \hat{w}_m^m = \hat{p}_m^0 = \hat{p}_m^m = 0 \quad \text{in } \Omega, \\
\hat{w}_m^j, \hat{p}_m^j \in H^2(\Omega) \cap H_0^1(\Omega), \quad 1 \leq j \leq m - 1,
\end{array} \right.$$

(3.8)

and the following optimality conditions hold:

$$\frac{p_m^j - p_m^{j-1}}{\tau} + \rho K \lambda \phi_m e^{-2\lambda\phi_m} = 0 \quad \text{in } \Omega, \quad 1 \leq j \leq m,$$

(3.9)

and

$$\left\{ \begin{array}{l}
\frac{p_m^{j+1} - 2p_m^j + p_m^{j-1}}{\tau^2} - \sum_{j_1, j_2=1}^{m} \partial_{x_{j_1}} (h^{j_1 j_2} \partial_{x_{j_2}} p_m^j) + \hat{w}_m^j e^{-2\lambda\phi_m} = 0 \quad \text{in } \Omega, \\
p_m^j = 0 \quad \text{on } \Gamma,
\end{array} \right. \quad 1 \leq j \leq m - 1.$$

(3.10)

Moreover, there is a constant $C = C(K, \lambda, z) > 0$, independent of m, such that

$$\tau \sum_{j=1}^{m-1} \int_{\Omega} \left(|\hat{w}_m^j|^2 + |\hat{r}_m^j|^2 + |\tilde{r}_m^j|^2 \right) dx + \tau \int_{\Omega} |\tilde{r}_1^m|^2 dx \leq C,$$

(3.11)

and that

$$\tau \sum_{j=0}^{m-1} \int_{\Omega} \left[\frac{(\hat{w}_m^j - \hat{w}_m^{j+1})^2}{\tau^2} + \frac{(\hat{r}_m^j - \hat{r}_m^{j+1})^2}{\tau^2} + \frac{(\tilde{r}_m^j - \tilde{r}_m^{j+1})^2}{\tau^2} \right] dx \leq C,$$

(3.12)
and that
\[\tau \sum_{j=1}^{m-1} \int_{\Omega} \left(|\nabla \tilde{w}_m^j|^2 + |\nabla \tilde{r}_m^j|^2 \right) dx \leq C. \] (3.13)

The proof of Proposition 3.1 is similar to [16], pp. 190–199 and [15], Proposition 6.1, we give it in the appendix.

4. CARLEMAN ESTIMATE FOR THE HYPERBOLIC OPERATOR IN \(L^2(Q) \)

Based on Proposition 3.1, we have the following Carleman estimate for the hyperbolic operator in \(L^2 \)-norm.

Theorem 4.1. Let \(\tilde{q} \in L^\infty(-\bar{T}, \tilde{T}; L^p(\Omega; \mathbb{R}^{N \times N})) \) with \(p \in [n, \infty] \) and \(\tilde{q}|_Q = q \). Assume that Condition 1.1 and (1.10) hold. Set \(\mu = \mu_0 \) as given in Theorem 2.1. Then there exists a constant \(\lambda^* > 0 \), such that for all \(\bar{T} > \bar{T}_1 \), \(\lambda \geq \lambda^* \), any \(\tilde{z} = (\tilde{z}_1, \ldots, \tilde{z}_N) \in C([-\bar{T}, \bar{T}]; L^2(\Omega)^N) \) with \(\tilde{z}_j \) satisfying (3.2) \((j = 1, \ldots, N) \), it holds

\[\lambda \|\tilde{z}\|^2_{L^2(\tilde{Q})^N} \leq C_\star \left[\left\| \theta \left[\tilde{z}_{tt} - \sum_{j,k=1}^n \frac{\partial}{\partial t} \chi_{j,k}(x) \nabla \tilde{z}_j \right] - \tilde{q} \right\|^2_{H^{-1}(\tilde{Q})^N} + \frac{1}{\lambda^{2(1-n/p)}} \|\tilde{q}\|^2_{L^2(-\bar{T}, \tilde{T}; H^{n/r}(\Omega)^N)} \right]. \] (4.1)

Proof of Theorem 4.1. We divide the proof into four steps.

Step 1. First of all, recall the functions \(\{(\tilde{w}_m^j, \tilde{r}_m^j, \tilde{r}_1^j)\}_{j=0}^m \) in Proposition 3.1. Put

\[
\begin{aligned}
\tilde{w}^m(t,x) &= \frac{1}{\tau} \sum_{j=0}^{m-1} \left\{ (t-j\tau)\tilde{w}^{j+1}_m(x) - (t-(j+1)\tau)\tilde{w}^j_m(x) \right\} \chi_{(j\tau,(j+1)\tau)}(t), \\
\tilde{r}^0_1(t,x) &= \tilde{r}^0_1(x) \chi_{(0)}(t) + \frac{1}{\tau} \sum_{j=0}^{m-1} \left\{ (t-j\tau)\tilde{r}^{j+1}_{1m}(x) - (t-(j+1)\tau)\tilde{r}^j_{1m}(x) \right\} \chi_{(j\tau,(j+1)\tau)}(t), \\
\tilde{r}^m(t,x) &= \frac{1}{\tau} \sum_{j=0}^{m-1} \left\{ (t-j\tau)\tilde{r}^{j+1}_{2m}(x) - (t-(j+1)\tau)\tilde{r}^j_{2m}(x) \right\} \chi_{(j\tau,(j+1)\tau)}(t).
\end{aligned}
\] (4.2)

By (3.11), (3.12) and (3.13), one can find a subsequence of \(\{(\tilde{w}^m, \tilde{r}^m, \tilde{r}_1^m)\}_{m=1}^\infty \), which converges weakly to some \((\tilde{w}, \tilde{r}, \tilde{r}_1) \in \left[H^1_0(-\bar{T}, T; L^2(\Omega)) \right]^2 \times H^1(-\bar{T}, T; L^2(\Omega)) \), as \(m \to \infty \).

For a \(z \in C([-\bar{T}, \bar{T}]; L^2(\Omega)) \) satisfying (3.2), by (3.4), Proposition 3.1, and by putting \(\tilde{p} \overset{\Delta}{=} K \tilde{r} \) and standard energy estimates, we know that \(\tilde{w}, \tilde{p} \in C([-\bar{T}, \bar{T}]; H^1_0(\Omega)) \cap C^1([-\bar{T}, \bar{T}]; L^2(\Omega)) \), and

\[
\begin{aligned}
\tilde{w}_{tt} - \sum_{j,k=1}^n (\lambda^{1/2} \tilde{w}_{x_j} \cdot \nabla \tilde{w}_{x_k})_{x_k} &= \tilde{r}_{1t} + \lambda \theta^2 \tilde{z} + \tilde{r} \quad \text{in } \tilde{Q}, \\
\tilde{p}_{tt} - \sum_{j,k=1}^n (\lambda^{1/2} \tilde{p}_{x_j} \cdot \nabla \tilde{p}_{x_k})_{x_k} + \tilde{p}_{x_j} \tilde{p}_{x_k} &= 0 \quad \text{in } \tilde{Q}, \\
\tilde{p} &= \tilde{w} = 0 \quad \text{on } \tilde{\Sigma}, \\
\tilde{p}(-\bar{T}) &= \tilde{p}(\bar{T}) = \tilde{w}(-\bar{T}) = \tilde{w}(\bar{T}) = 0 \quad \text{in } \Omega, \\
\tilde{p}_t + \rho \theta^2 \tilde{r}_{1t} &= 0 \quad \text{in } \tilde{Q}.
\end{aligned}
\] (4.3)
By (4.3) and standard energy estimates again, one finds that \(\tilde{\rho}_t \in C([-\bar{T}, \bar{T}]; H^1_0(\Omega)) \cap C^1([-\bar{T}, \bar{T}]; L^2(\Omega)) \) solves

\[
\begin{aligned}
\tilde{p}_{ttt} - \sum_{j,k=1}^n (h^{jk} \partial_x \tilde{p}_{tx_j}) & + (\theta^2 \tilde{w})_t = 0 \quad \text{in } \bar{Q}, \\
\tilde{p}_t & = 0 \quad \text{on } \Sigma, \\
\tilde{p}_{tt} + \frac{\rho K}{\lambda} \theta^2 \left(\frac{\tilde{r}_{1,t}}{\lambda} - 2 \phi_t \tilde{r}_1 \right) & = 0 \quad \text{in } \bar{Q}.
\end{aligned}
\tag{4.4}
\]

Apply Theorem 2.1 to \(\tilde{p} \) in (4.3) and \(\tilde{p}_t \) in (4.4), respectively. Noting that supp \(\tilde{p} \subset [-\bar{T}, \bar{T}] \times (\overline{\Omega} \setminus \omega_1) \) and supp \(\tilde{p}_t \subset [-\bar{T}, \bar{T}] \times (\overline{\Omega} \setminus \omega_1) \), we know that there is a \(\lambda_0 > 0 \), for any \(\lambda \geq \lambda_0 \), it holds

\[
\lambda \int_Q \theta^2 (\lambda^2 \tilde{p}_t^2 + \tilde{p}_t^2 + |\nabla \tilde{p}|^2) \, dx \, dt \leq \bar{C}_* \int_Q \theta^{-2} \tilde{w}^2 \, dx \, dt
\tag{4.5}
\]

and

\[
\lambda \int_Q \theta^2 (\lambda^2 \tilde{p}_t + \tilde{p}_t^2 + |\nabla \tilde{p}_t|^2) \, dx \, dt \leq \bar{C}_* \int_Q \theta^{-2} (\tilde{w}_t^2 + \lambda^2 \tilde{w}^2) \, dx \, dt.
\tag{4.6}
\]

Step 2. By (4.3), it is easy to see that

\[
- \int_Q \tilde{r}_{1,t} \tilde{p} \, dx \, dt = \int_Q \tilde{r}_1 \tilde{p} \, dx \, dt = - \int_Q \theta^{-2} \rho K \frac{\tilde{r}_1^2}{\lambda^2} \, dx \, dt.
\tag{4.7}
\]

From (4.3) and (4.7), recalling that \(\tilde{p} = K \tilde{r} \), one gets that

\[
0 = \left(\tilde{w}_{tt} - \sum_{j,k=1}^n \partial_x (h^{jk} \partial_x \tilde{w} - \tilde{r}_{1,t} - \lambda \theta^2 z - \tilde{r}, \tilde{p}) \right) \in L^2(\bar{Q})
\tag{4.8}
\]

This, together with (4.5), implies that

\[
\int_Q \theta^{-2} \tilde{w}_t^2 \, dx \, dt + \int_Q \theta^{-2} \rho K \frac{\tilde{r}_1^2}{\lambda^2} \, dx \, dt + K \int_Q \tilde{r}_t^2 \, dx \, dt \leq \frac{\bar{C}_*}{\lambda} \int_Q \theta^2 z^2 \, dx \, dt.
\tag{4.9}
\]

Step 3. Using (4.3) and (4.4) again, and noting that \(\tilde{p}_{tt}(0, \cdot) = \tilde{p}_{tt}(T, \cdot) = 0 \) in \(\Omega \), we get

\[
0 = \left(\tilde{w}_{tt} - \sum_{j,k=1}^n \partial_x (h^{jk} \partial_x \tilde{w} - \tilde{r}_{1,t} - \lambda \theta^2 z - \tilde{r}, \tilde{p}_{tt}) \right) \in L^2(\bar{Q})
\tag{4.10}
\]

Clearly, recalling (2.4) for \(\theta, \phi \), it is easy to see that

\[
(\theta^{-2})_t = 2\theta^{-2}(-\lambda \phi_{tt} + 2\lambda^2 \phi_t^2).
\tag{4.11}
\]
Then, using integration by parts, we have

$$\int_Q \tilde{w}(\theta^2 \tilde{w})_{tt} \, dx dt = \int_Q \left[\theta^{-2} \tilde{w}_t^2 - (\theta^{-2})_{tt} \tilde{w}_t^2 \right] \, dx dt$$

$$= \int_Q \theta^{-2} \left(\tilde{w}_t^2 + \lambda \phi_{tt} \tilde{w}^2 - 2\lambda^2 \phi_t^2 \tilde{w}^2 \right) \, dx dt. \quad (4.12)$$

Further, by (4.4), we have

$$\int_Q \tilde{r}_{1,t} \tilde{p}_{tt} \, dx dt = \int_Q \theta^{-2} \tilde{r}_{1,t} \tilde{p}^K \left(\frac{\tilde{r}_{1,t}}{\lambda} - 2 \phi_t \tilde{r}_1 \right) \, dx dt. \quad (4.13)$$

Moreover, by \(\tilde{p} \overset{\Delta}{=} K \tilde{r} \) and integration by parts, one gets

$$\int_Q \tilde{r}_{tt} \tilde{p}_{tt} \, dx dt = K \int_Q \tilde{r}_{tt}^2 \, dx dt. \quad (4.14)$$

Combining (4.10)–(4.14), we end up with

$$\int_Q \theta^{-2} \tilde{p}^K \left(\frac{\tilde{r}_{1,t}^2}{\lambda^2} - \frac{2}{\lambda} \phi_t \tilde{r}_1 \tilde{r}_{1,t} \right) \, dx dt + K \int_Q \tilde{r}_{tt}^2 \, dx dt \quad (4.15)$$

$$+ \int_Q \theta^{-2} \left(\tilde{w}_t^2 + \lambda \phi_{tt} \tilde{w}^2 - 2\lambda^2 \phi_t^2 \tilde{w}^2 \right) \, dx dt = \lambda \int_Q \theta^2 z \tilde{p}_{tt} \, dx dt.$$

Now, by (4.15) + \(\tilde{C}_* \lambda^2 \times (4.9) \)(with a sufficiently large \(\tilde{C}_* > 0 \)), using the Cauchy–Schwartz inequality and noting (4.6), we obtain that

$$\int_Q \theta^{-2} \left(\tilde{w}_t^2 + \lambda^2 \tilde{w}^2 \right) \, dx dt + \int_Q \theta^{-2} \tilde{p}^K \left(\frac{\tilde{r}_{1,t}^2}{\lambda^2} + \tilde{r}_{tt}^2 \right) \, dx dt \leq \tilde{C}_* \lambda \int_Q \theta^2 z \tilde{p}_{tt} \, dx dt. \quad (4.16)$$

Step 4. It follows from (4.3) that

$$\left(\tilde{r}_{1,t} + \lambda z \theta^2 + \tilde{r}_t, \theta^{-2} \tilde{w} \right)_{L^2(Q)} = \left(\tilde{w}_{tt} - \sum_{j,k=1}^n \partial_{x_j} (h^{jk} \tilde{w}_{x_k}), \theta^{-2} \tilde{w} \right)_{L^2(Q)}$$

$$= -\int_Q \left[\tilde{w}_t (\theta^{-2} \tilde{w})_t \, dx dt - \sum_{j,k=1}^n h^{jk} (\theta^{-2} \tilde{w})_{x_j} \tilde{w}_{x_k} \right] \, dx dt \quad (4.17)$$

$$= -\int_Q \theta^{-2} (\tilde{w}_t^2 + \lambda \phi_{tt} \tilde{w}^2 - 2\lambda^2 \phi_t^2 \tilde{w}^2) \, dx dt + \sum_{j,k=1}^n \int_Q \theta^{-2} h^{jk} \tilde{w}_{x_j} \tilde{w}_{x_k} \, dx dt \quad (4.18)$$

$$- 2\lambda \int_Q \theta^{-2} \tilde{w} \sum_{j,k=1}^n h^{jk} \tilde{w}_{x_j} \phi_{x_k} \, dx dt. \quad (4.19)$$

This, together with (1.2), yields

$$\int_Q \theta^{-2} |\nabla \tilde{w}|^2 \, dx dt \quad (4.20)$$
Combining (4.9), (4.16) and (4.21), choosing the constant K in (3.1) be such that
\[K \geq \bar{C}_s e^{2\lambda \max_{(t,x)\in[-\bar{T},\bar{T}]\times\Omega} \phi(t,x)} \]
and noting that $\rho^K(x) \geq 1$ in Ω, we deduce that
\[\int_{\bar{Q}} \theta^{-2}(|\nabla \tilde{w}|^2 + \tilde{w}_t^2 + \lambda^2 \tilde{w}^2) \, dx\, dt + \int_{\bar{Q}} \theta^{-2} \rho^K \left(\frac{\tilde{r}_1^2}{\lambda^2} + \tilde{r}_1^2 \right) \, dx\, dt \leq \bar{C}_s \lambda \int_{\bar{Q}} \theta^2 \tilde{z}^2 \, dx\, dt. \] (4.23)

Recall that $(\tilde{w}, \tilde{r}_1, \tilde{r})$ depends on K. Now we denote it by $(\tilde{w}^K, \tilde{r}_1^K, \tilde{r}^K)$ to emphasize this dependence. Fix λ and let $K \to \infty$. Since $\rho^K(x) \to \infty$ for any $x \not\in \omega$, as $K \to \infty$, it follows from (4.9) and (4.23) that there exists a subsequence of $\{((\tilde{w}^K, \tilde{r}_1^K, \tilde{r}^K))\}_{K=1}^\infty$, which converges weakly to some $(\tilde{w}, 0, 0)$ in $H^1_0(-T, T; L^2(\Omega)) \cap L^2(-T, T; H^1_0(\Omega)) \times H^1(-T, T; L^2(\Omega))$. By (4.3), we deduce that \tilde{w} satisfies
\[
\begin{cases}
\tilde{w}_{tt} - \sum_{j,k=1}^n (h^{jk} \tilde{w}_x)_x = \lambda \tilde{z} \theta^2 & \text{in } \tilde{Q}, \\
\tilde{w} = 0 & \text{on } \tilde{\Sigma}, \\
\tilde{w}(-T, t) = \tilde{w}(T, t) = 0 & \text{in } \Omega.
\end{cases}
\] (4.24)

Use (4.23) again, we get that
\[
\|\theta^{-1} \tilde{w}\|_{H^1_0(\tilde{Q})}^2 + \lambda^2 \|\theta^{-1} \tilde{w}\|_{L^2(\tilde{Q})}^2 \leq \bar{C}_s \lambda \int_{\tilde{Q}} \theta^2 \tilde{z}^2 \, dx\, dt.
\] (4.25)

Recalling $\tilde{z} = (\tilde{z}_1, \ldots, \tilde{z}_N) \in C([-T, T]; L^2(\Omega)^N)$, put $z = \tilde{z}_j$, $j = 1, \ldots, N$ and set $\tilde{z} = \tilde{z}_j$, $(j = 1, \ldots, N)$ respectively. Noting that $\tilde{q} = \tilde{q}(t, x) \in L^\infty(-T, T; L^p(\Omega; \mathbb{R}^{N\times N}))$ is a matrix, we denote it by $(\tilde{q}^{jk})_{N \times N}$, a straightforward calculation shows that
\[
\lambda \int_{\tilde{Q}} \theta^2 \tilde{z}^2 \, dx\, dt = \int_{\tilde{Q}} \tilde{z}_{j'} \left[\partial_t^2 \tilde{w}_{j'} - \sum_{j,k=1}^n \partial_{x_k} (h^{jk} \partial_x \tilde{z}_{j'}) \right] \, dx\, dt
\]
\[
= \left\langle \partial_t^2 \tilde{z}_{j'} - \sum_{j,k=1}^n \partial_{x_k} (h^{jk} \partial_x \tilde{z}_{j'}) \tilde{z}_{j'} \right|_{H^{-1}(\tilde{Q})} \right. + \sum_{j'=1}^N \left(\tilde{q}^{j'k'} \tilde{z}_{j'} \tilde{w}_{k'} \right)_{L^2(\tilde{Q})}
\]
\[
\leq \left\| \theta \left[\partial_t^2 \tilde{z}_{j'} - \sum_{j,k=1}^n \partial_{x_k} (h^{jk} \partial_x \tilde{z}_{j'}) \tilde{z}_{j'} \right] \right\|_{H^{-1}(\tilde{Q})} + \sum_{j'=1}^N \left\| \tilde{q}^{j'k'} \tilde{z}_{j'} \tilde{w}_{k'} \right\|_{L^2(\tilde{Q})}
\]
[4.26]
By Young’s inequality, we have

\[
\lambda^2(1-n/p)\|\theta^{-1}\hat{\psi}^j\|_{L^2(-\tilde{T},\tilde{T};H_{0}^{\infty}(\Omega))}^2 \\
\leq \tilde{C}_\ast\lambda^2(1-n/p)\|\theta^{-1}\tilde{\psi}^j\|_{L^2(-\tilde{T},\tilde{T};H_{0}^{1}(\Omega))}^{2n/p} \|\theta^{-1}\hat{\psi}^j\|_{L^2(\tilde{Q})}^{2(1-n/p)} \\
\leq \tilde{C}_\ast\left(\|\theta^{-1}\tilde{\psi}^j\|_{L^2(-\tilde{T},\tilde{T};H_{0}^{1}(\Omega))}^2 + \lambda^2\|\theta^{-1}\hat{\psi}^j\|_{L^2(\tilde{Q})}^2\right).
\]

Combining with (4.25), (4.26) and (4.27), we obtain the desired estimate (4.1). This completes the proof of Theorem 4.1.

\hfill \Box

5. Proofs of Theorem 1.4 and Theorem 1.8

In this section, we give the proofs of Theorems 1.4 and 1.8. To begin with, we define the energy of the system (1.3) with \((w_0, w_1) \in L^2(\Omega)^N \times H^{-1}(\Omega)^N\) as following:

\[
E(t) \triangleq \frac{1}{2}\|w(t, \cdot)\|_{L^2(\Omega)^N}^2 + \|w_t(t, \cdot)\|_{H^{-1}(\Omega)^N}^2.
\]

(5.1)

We recall the following known energy estimate (see [13], inequalities (2.43) and (2.44) for example).

Lemma 5.1. For any \(-T < T_0 < S_0 < T_0' < T\) and \(w(\cdot) \in C([-T, T]; L^2(\Omega)^N) \cap C^1([-T, T]; H^{-1}(\Omega)^N)\) satisfying (1.3), we have

\[
E(t) \leq C_\ast e^{C_\ast r \frac{1}{2}-\frac{n}{p}} E(s), \quad \forall t, s \in [-T, T],
\]

(5.2)

and

\[
\int_{S_0}^{S_0'} E(t)dt \leq C_\ast (1 + r) \int_{T_0}^{T_0'} \int_{\Omega} |w|^2 dxdt,
\]

(5.3)

where \(r\) is defined by (1.16).

Proof of Theorem 1.4. First, we introduce some notations:

\[
\begin{cases}
T_i = -\varepsilon_i T, & T_i' = \varepsilon_i T, \\
Q_i = (T_i, T_i') \times \Omega, & Q_i' = (T_i, T_i') \times \omega_1,
\end{cases}
\]

(5.4)

\[
0 < \varepsilon_0 < \varepsilon_1 < 1
\]

will be given later.

Let \(\omega_1\) be given in (2.1) sufficiently close to \(\omega\) such that

\[
\tilde{T} > T > \max_{x \in \overline{\Omega \setminus \omega_1}} \sqrt{\varphi(x)}.
\]

(5.5)

Set

\[
Q(b) \triangleq \{(t, x) \in (-T, T) \times (\Omega \setminus \omega_1) | \sigma(t, x) > b^2\}.
\]

(5.6)
Recalling (1.14) for the definition of R_0, by (1.10), we see that $R_0 > 0$. Hence, we can choose a sufficiently small $c \in (0, R_0)$ and an $\alpha \in (0, 1)$ which is close to 1 such that

\[
\min_{x \in \Omega} \varphi(x) > c^2,
\]

and

\[
1 - \frac{c^2}{T^2} < \alpha < 1.
\]

On one hand, if $t = 0$, we have

\[
\sigma(0, x) = \varphi(x) > c^2, \quad \forall x \in \Omega.
\]

On the other hand, for any $x \in Q(c)$, we have

\[
\varphi(x) - t^2 > c^2 + (\alpha - 1)T^2 > 0.
\]

Combining (5.5), (5.9) and (5.10), we can take $\epsilon_0 > 0$ sufficiently small and $\epsilon_1 \in (0, 1)$ sufficiently close to 1 such that

\[
Q_0 \setminus Q'_0 \subset Q(c) \subset \mathcal{D}' \subset Q_1 \setminus Q'_1,
\]

where

\[
\mathcal{D}' \triangleq \{(t, x) \in Q \setminus [(−T, T) \times \omega_1] \mid \varphi(x) - t^2 > 0\}.
\]

Now, we choose $\varepsilon > 0$ small enough such that

\[
Q_0 \setminus Q'_0 \subset Q(c + 3\varepsilon) \subset Q(c + 2\varepsilon) \subset Q(c + \varepsilon) \subset Q(c) \subset \mathcal{D}' \subset Q_1 \setminus Q'_1.
\]

Let us choose a cut-off function $\chi_1 \in C_0^{\infty}(\tilde{Q})$ (recall (2.3) for the definition of \tilde{Q}) such that

\[
\chi_1(t, x) = \begin{cases}
1, & (t, x) \in Q(c + 2\varepsilon) \setminus [(−T, T) \times \omega_2], \\
0, & (t, x) \in \tilde{Q} \setminus Q(c + \varepsilon),
\end{cases}
\]

where $\omega_2 \overset{\Delta}{=} \mathcal{O}_{\tilde{\delta}_2}(\Gamma_0)$ with $\tilde{\delta}_2 \in (\tilde{\delta}_1, \delta)$. Set $y(t, s) = \chi_1(t, x)w(t, x)$ (recall that w solves (1.3)). Then we have $y \in C([−\tilde{T}, \tilde{T}]; L^2(\Omega)^N)$ and $y(−\tilde{T}, \cdot) = y(\tilde{T}, \cdot) = 0$ in Ω. By (5.14), we know that supp $y \subset [T_1, T'_1] \times (\tilde{\Omega} \setminus \omega_1)$. Applying Theorem 4.1 to y, noting that $\frac{\partial}{\partial Q} q = q$, we get

\[
\begin{align*}
\frac{\lambda \theta^2 |w|^2}{\int_{Q(c + 2\varepsilon) \setminus [(−T, T) \times \omega_2]}} dxdy & \\
\leq & \int_{Q_1} \frac{\lambda \theta^2 |\chi_1 w|^2}{dxdy} \\
\leq & C_* \left(\left\| \left(\chi_1 w \right)_H - \sum_{j,k=1}^n \partial_{x_j} \left[h_{jk} \left(\chi_1 w \right)_x \right] - q \chi_1 w \right\|_{H^{-1}(Q) \cap H^0(\Omega)^N}^2 \right) + \frac{1}{\lambda^{2(1-n/p)}} \left\| \theta \chi_1 w \right\|_{L^2(−T, T; H^{-n/p}(\Omega)^N)}^2
\end{align*}
\]
From (1.3), we obtain that

\[\left\| \theta \left((\chi_1 w)_{tt} - \sum_{j,k=1}^{n} \partial_{x_j} \left[h^{jk}(\chi_1 w)_{x_k} \right] - q \chi_1 w \right) \right\|_{H^{-1}(Q)^N} \]

\[= \left\| \theta \left[2 \chi_1 w_{tt} + w \chi_1,tt - \sum_{j,k=1}^{n} \partial_{x_j} \left(h^{jk} \chi_1 w_{x_k} \right) - \sum_{j,k=1}^{n} h^{jk} \chi_1 w_{x_k} \right] \right\|_{H^{-1}(Q)^N} \]

\[= \sup_{|g|_{H^1(Q)^N} = 1} \left\{ \theta \left[2 \chi_1 w_t + \chi_1,tt - \sum_{j,k=1}^{n} \partial_{x_j} \left(h^{jk} \chi_1 w \right) - \sum_{j,k=1}^{n} h^{jk} \chi_1 w_{x_k} \right] \right\} \]

\[\leq C_* e^{\lambda_0^2 (c+2\varepsilon)^2} \|w\|_{L^2(Q_1 \setminus Q(c+2\varepsilon))^N}^2 + C_* \|\theta w\|_{L^2((T_1,T') \times \omega_2) \cap Q(c+2\varepsilon))^N}. \]

It follows from the Sobolev embedding theorem that

\[\|\theta q \chi_1 w\|_{L^2(-T,T;H^{-n/p}(\Omega)^N)} \leq \|\theta q \chi_1 w\|_{L^2(-T,T;L^{2p/(p-2)}(\Omega)^N)} \leq C_* r \|\theta \chi_1 w\|_{L^2(Q)^N}. \]

On the other hand, by taking \(\lambda \geq (C_* r)^{\frac{1}{n-2-n/p}} \) (\(C_* \) may vary from line to line), we have

\[\frac{C_* r}{\lambda_1 - n/p} \|\theta \chi_1 w\|_{L^2(Q)^N} \leq \lambda^\frac{2}{\lambda} \|\theta \chi_1 w\|_{L^2(Q)^N}. \]

Combining (5.15)–(5.18), taking \(\lambda \geq C_* r^{\frac{1}{n-2-n/p}} \), we get that

\[\int_{Q_1 \setminus Q(c+2\varepsilon)} \lambda^2 |w|^2 \, dx \, dt \]

\[\leq C_* e^{2\lambda_0^2 (c+2\varepsilon)^2} \|w\|_{L^2(Q_1 \setminus Q(c+2\varepsilon))^N}^2 + C_* \|\theta w\|_{L^2((T_1,T') \times \omega_2) \cap Q(c+2\varepsilon))^N}^2. \]

Adding \(\int_{(T_0,T') \times \omega_2} \theta^2 |w|^2 \, dx \, dt \) to each side of (5.19), recalling the definition of \(K \), we have

\[\frac{\lambda e^{2\lambda_0^2 (c+3\varepsilon)^2}}{2} \int_Q |w|^2 \, dx \, dt \leq C_* e^{2\lambda_0^2 (c+2\varepsilon)^2} \int_{Q_1 \setminus Q(c+2\varepsilon)} |w|^2 \, dx \, dt + C_* e^{C_* \lambda} \int_K |w|^2 \, dx \, dt. \]

By Lemma 5.1, we get

\[\int_{Q_1 \setminus Q(c+2\varepsilon)} |w|^2 \, dx \, dt \leq C_* E(-T) e^{C_* r^{\frac{1}{n-2-n/p}}}, \]
and

\[\int_{Q_0} |w|^2 \, dx \, dt \geq \frac{1}{C_* (1 + r)} E(-T) e^{-C_* r \frac{1}{\alpha - n/p}}. \quad (5.22) \]

Taking \(\lambda \) large enough such that

\[\begin{cases}
\frac{1}{2} \lambda \left(e^{\mu_0 (c + 3 \varepsilon)^2} - e^{\mu_0 (c + 2 \varepsilon)^2} \right) \geq 2 C_* r \frac{1}{\alpha - n/p}, \\
\lambda \frac{1}{C_* (1 + r)} - 1 > 0.
\end{cases} \quad (5.23) \]

Hence,

\[\lambda \frac{1}{C_* (1 + r)} e^{\lambda \mu_0 (c + 3 \varepsilon)^2} - C_* r \frac{1}{\alpha - n/p} - \lambda e^{\mu_0 (c + 2 \varepsilon)^2} > 0. \quad (5.24) \]

Finally, by (5.19) and taking \(\lambda \geq C_* \left(1 + r \frac{1}{\alpha - n/p} \right) \), we have

\[E(-T) \leq C_* e^{C_* \lambda |w|^2_{L^2 (K \cap \Omega)}}, \]

which yields (1.4).

Before giving the proof of Theorem 1.8, we introduce the following modified energy estimate of the system (1.3) with \((w_0, w_1) \in H_0^1 (\Omega)^N \times L^2 (\Omega)^N \) (see [13], inequalities (2.50) for example).

Lemma 5.2. For any \(w(\cdot) \in C([\tau, T]; H_0^1 (\Omega)^N) \cap C^1 ([\tau, T]; L^2 (\Omega)^N) \) satisfy (1.3), we have

\[\| (w(t), w_t(t)) \|_{H_0^1 (\Omega)^N \times L^2 (\Omega)^N} \leq C_* e^{C_* r \frac{1}{\alpha - n/p}} \| (w(s), w_t(s)) \|_{H_0^1 (\Omega)^N \times L^2 (\Omega)^N}, \quad \forall t, s \in [-T, T], \quad (5.25) \]

where \(r \) is defined in (1.16).

Proof of Theorem 1.8. First, we introduce the following notations:

\[T_i = -\varepsilon_i T, \quad T_i' = \varepsilon_i T, \quad Q_i = (T_i, T_i') \times \Omega, \]

where \(0 < \varepsilon_0 < \varepsilon_1 < 1 \) (which will be given later).

Set

\[Q(b) \overset{\Delta}{=} \{(t, x) \in (-\infty, +\infty) \times \Omega \mid \sigma(t, x) > b^2 \}. \]

Let \(R_0 \) be given by (1.14). From (1.10), we know that there is a sufficiently small \(c \in (0, R_0) \) and an \(\alpha \in (0, 1) \), close to 1, such that (5.7) and (5.8) hold. Recalling (1.18) for the definition of \(R^1 \), by (1.10), for any \(T > R^1 \), we know that

\[\varphi(x) < T^2, \quad \forall x \in \Omega. \quad (5.26) \]

By (5.9) and (5.26), we can take an \(\varepsilon_0 > 0 \) sufficiently small and an \(\varepsilon_1 \in (0, 1) \) sufficiently close to 1 such that

\[Q_0 \subset Q(c) \subset D \subset Q_1. \quad (5.27) \]
Now, we choose $\varepsilon > 0$ small enough such that
\begin{equation}
Q_0 \subset Q(c + 3\varepsilon) \subset Q(c + 2\varepsilon) \subset Q(c + \varepsilon) \subset Q(c) \subset \mathcal{D} \subset Q_1.
\end{equation}
(5.28)

Recall (2.7) for the definition of \hat{Q}. Let $\eta \in C_0^\infty(\hat{Q})$ satisfying
\begin{equation}
\eta(t, x) = \begin{cases} 1, & (t, x) \in Q(c + 2\varepsilon), \\ 0, & (t, x) \in \hat{Q} \setminus Q(c + \varepsilon). \end{cases}
\end{equation}
(5.29)

Set $u = \eta w$. By Theorem 2.2, we have
\begin{align*}
\lambda \mu \int_Q \theta^2 \left[|(\eta w)_t|^2 + |\nabla (\eta w)|^2 + \lambda^2 \mu^2 \eta^2 |w|^2 \right] \, dx \, dt \\
\leq C^* \int_Q \theta^2 \eta^2 \left| w_{tt} - \sum_{j,k=1}^n \left(h^{jk}w_{x_j} \right)_{x_k} \right|^2 \, dx \, dt + C^* \lambda \mu \int_{\Sigma_0} \theta^2 \left| \frac{\partial \eta w}{\partial \nu} \right|^2 \, d\Gamma \, dt \\
+ C^* \int_Q \theta^2 \left| 2\eta w_t + \eta_{tt} w - 2 \sum_{j,k=1}^n h^{jk} \eta_{x_j} w_{x_k} - w \sum_{j,k=1}^n (h^{jk} \eta_{x_j})_{x_k} \right|^2 \, dx \, dt.
\end{align*}
(5.30)

Recalling (1.16) for the definition of r, by the Sobolev embedding theorem, we have
\begin{equation}
\|\theta \eta w\|_{L^2(\mathbb{R}^N)} \leq r \|\theta \eta w\|_{L^2(-T,T;L^s(\Omega))^N}, \quad 1/s + 1/p = 1/2
\end{equation}
(5.31)

\begin{equation}
\|\eta w\|_{L^2(-T,T;H^1_0(\Omega))^N} \leq r \|\theta \eta w\|_{L^2(-T,T;H^1_0(\Omega))^N} \leq \|\theta \eta w\|_{L^2(\mathbb{R}^N)}.
\end{equation}
(5.32)

Hence, for any $\delta_2 > 0$, by Young’s inequality,
\begin{equation}
\|\eta w\|_{L^2(\mathbb{R}^N)} \leq \delta_2 \lambda \|\theta \eta w\|_{L^2(-T,T;H^1_0(\Omega))^N} + C_{\delta_2} \eta^{2p/(p-n)} \lambda^{-n/(p-n)} \|\theta \eta w\|_{L^2(\mathbb{R}^N)},
\end{equation}
(5.33)

where C_{δ_2} is a positive constant depending on ε. Consequently, for $\lambda \geq (C^*)^{\frac{1}{p-n}}$, we have
\begin{equation}
(C^*)^{2p/(p-n)} \lambda^{-n/(p-n)} \|\theta \eta w\|_{L^2(\mathbb{R}^N)} \leq \lambda^2 \|\theta \eta w\|_{L^2(\mathbb{R}^N)}.
\end{equation}
(5.34)

Keeping in mind that $\eta \equiv 0$ outside \mathcal{D} and C^* represents a generic constant, combining (5.30) and (5.32), and taking $\lambda \geq C^* r^{3/2-n/p}$, we have
\begin{align*}
\lambda \mu \int_{Q_0} \left(|w_t|^2 + |\nabla w|^2 + \lambda^2 \mu^2 |w|^2 \right) \, dx \, dt \\
\leq C^* \int_{Q_1 \setminus Q(c+2\varepsilon)} |w|^2 \, dx \, dt + C^* \lambda \mu \int_{\Sigma_0 \cap \mathcal{D}} \theta^2 \left| \frac{\partial w}{\partial \nu} \right|^2 \, d\Gamma \, dt.
\end{align*}
(5.35)

Set $\mu = \mu_0$. By (5.25), we have
\begin{equation}
\|w\|_{L^2(\mathbb{R}^N)} \leq C^* \eta^{1/(p-n)} \|\eta w\|_{L^2(\mathbb{R}^N)} \leq C^* \eta^{1/(p-n)} \|\eta w\|_{H^1_0(\Omega)^N \times L^2(\Omega)^N}
\end{equation}
(5.36)
and
\[\int_{Q_t} \left(|w|^2 + |\nabla w|^2 + |w|^2 \right) dx dt \geq C^* e^{-C^* r \frac{1}{s-\eta_p}} \|(w_0, w_1)\|_{(H^1_0(\Omega))^N \times L^2(\Omega)^N}. \] (5.36)

Taking \(\lambda > 0 \) large enough such that \(\frac{1}{2} \lambda \left(e^{\mu_0(c+3\epsilon)} - e^{\mu_0(c+2\epsilon)^2} \right) \geq 2C^* r \frac{1}{s-\eta_p} \). Hence
\[\lambda e^{\mu_0(c+3\epsilon)^2} - e^{\mu_0(c+2\epsilon)^2} + \lambda e^{\mu_0(c+2\epsilon)^2} > 0. \] (5.37)

Finally, by (1.13), (5.34) and taking \(\lambda \geq C^* (1 + r \frac{1}{s-2-\eta_p}) \), we have
\[\|w_0\|_{H^1_0(\Omega)^N} + \|w_1\|_{L^2(\Omega)^N} \leq C^* e^{C^* \lambda} \\left\| \frac{\partial w}{\partial \nu} \right\|_{L^2(\mathcal{H})^N}, \] (5.38)

which yields (1.5).

\[\square \]

Appendix A. Appendix: Proof of Proposition 3.1

Before giving the proof of Proposition 3.1, we first recall the following known result.

Proposition A.1. ([15], Prop. 3.5) For any \(\tau > 0, m = 2, 3, \ldots \), and \(q_m, w_j^m \in \mathcal{C}, j = 0, 1, \ldots, m \), with \(q_m^0 = q_m^m = 0 \), one has
\[-\sum_{j=1}^{m-1} q_j^m (w_j^{m+1} - w_j^{m-1}) \tau^2 = \sum_{j=0}^{m-1} (q_j^m - q_{j-1}^m) (w_j^{m+1} - w_j^m) \tau \]
\[= \sum_{j=1}^{m} (q_j^m - q_{j-1}^m) (w_j^{m} - w_{j-1}^{m}) \tau. \] (A.1)

Proof of Proposition 3.1. Clearly, the functional \(J \) is weakly lower semi-continuous, strictly convex, and coercive in \((L^2(\Omega))^3m+3 \). By the coercivity of \(J \), we know there exist a bounded minimizing sequence \(\{w_{j_k}^m, r_{j_k}^m, r_{j_k}^{j_k} \}_{k=1}^{+\infty} \) of \(J(\cdot) \) in \(\mathcal{A}_{ad} \). Hence, there exist a sub-sequence, also denote by \(\{w_{j_k}^m, r_{j_k}^m, r_{j_k}^{j_k} \}_{k=1}^{+\infty} \) for simplicity of notations, satisfying
\[\{w_{j_k}^m, r_{j_k}^m, r_{j_k}^{j_k} \}_{j_k=0}^{m} \text{ converges weakly to } \{\hat{w}_j^m, \hat{r}_j^m, \hat{r}_j^{j_k} \}_{j=0}^{m} \text{ in } (L^2(\Omega))^{3m+3}. \]

On the other hand, by the regularity theory for elliptic equations, we have \(\{w_{j_k}^m, r_{j_k}^m, r_{j_k}^{j_k} \}_{j=0}^{k=1} \) is also bounded in \((H^1_0(\Omega) \times L^2(\Omega)^2)^m+1 \). Thus, it has a convergent sub-sequence. Consequently, \(\{\hat{w}_j^m, \hat{r}_j^m, \hat{r}_j^{j_k} \}_{j=0}^{m} \in (H^1_0(\Omega) \times L^2(\Omega)^2)^m+1. \)

Meanwhile, by Mazur’s Lemma, there exist a convex combination
\[\sum_{k=1}^{N_l} \lambda_k \{w_{j_k}^m, r_{j_k}^m, r_{j_k}^{j_k} \}_{j_k=0}^{m} \text{ converges strongly to } \{\hat{w}_j^m, \hat{r}_j^m, \hat{r}_j^{j_k} \}_{j=0}^{m} \text{ in } (L^2(\Omega))^{3m+3} \text{ as } l \to +\infty, \]
where \(\lambda_k, N_l \geq 0, k = 1, \ldots, N_l \), and \(\sum_{k=1}^{N_l} \lambda_k = 1 \). Then we find \(\text{supp } \{\hat{w}_j^m, \hat{r}_j^m, \hat{r}_j^{j_k} \}_{j=0}^{m} \subset \subset \Omega \setminus \omega_1 \).
Further, it follows from the weak lower semi-continuity of $\mathcal{J}(\cdot)$ that \(\{\hat{w}_m^j, \hat{r}_1^j, \hat{r}_m^j\}_{j=0}^m\) is a solution of Problem (OP). The uniqueness follows from the strict convexity of $\mathcal{J}(\cdot)$.

The rest of the proof is divided into four steps.

Step 1. Fix \(w_{0m}^j \in H^2(\Omega) \cap H_0^1(\Omega), \ w_{1m}^j \in L^2(\Omega)\) with \(w_{0m}^0 = w_{0m}^m = 0\) and \(w_{1m}^0 = w_{1m}^m\) such that

\[
\text{supp}\{(w_{0m}^j, w_{1m}^j)\}_{j=0}^m \subset \Omega \setminus \omega.
\]

For \((\kappa_0, \kappa_1) \in \mathbb{R}^2\), we have

\[
\{(\hat{w}_m^j + \kappa_0 w_{0m}^j, \hat{r}_1^j + \kappa_1 w_{1m}^j, \hat{r}_m^j)\}_{j=0}^m \in \mathcal{A}_{\text{ad}},
\]

where

\[
\begin{cases}
\hat{r}_m^j = \frac{\hat{w}_m^j + 2w_{0m}^j}{\tau} - \sum_{j_1, j_2=1}^n \partial_{x_{j_2}} (h^{j_1j_2} \partial_{x_{j_2}} \hat{w}_m^j) - \frac{\hat{r}_1^j - \hat{r}_m^j}{\tau} - \lambda \gamma_m e^{2\lambda \phi_m} \\
\quad + \kappa_0 \left[\frac{w_{0m}^j - 2w_{0m}^j + w_{0m}^{j-1}}{\tau^2} - \sum_{j_1, j_2=1}^n \partial_{x_{j_2}} (h^{j_1j_2} \partial_{x_{j_2}} w_{0m}^j) \right] \\
\quad - \kappa_1 \frac{\hat{r}_1^j - \hat{r}_m^j}{\tau} \\
\end{cases}
\]

and

\[
\begin{cases}
\hat{r}_m^0 = r_m^0 = 0, \\
\end{cases}
\]

Define a function in \(\mathbb{R}^2\) by

\[
g(\kappa_0, \kappa_1) = \mathcal{J}(\{(\hat{w}_m^j + \kappa_0 w_{0m}^j, \hat{r}_1^j + \kappa_1 w_{1m}^j, \hat{r}_m^j)\}_{j=0}^m).
\]

Obviously \(g(\kappa_0, \kappa_1)\) has a minimum at \((0, 0)\). Hence, taking derivative of (A.5) with respect to \(\kappa_0\) and \(\kappa_1\), we get that

\[
-K \sum_{j=1}^{m-1} \int_{\Omega} \hat{r}_m^j \frac{w_{1m}^{j+1} - w_{1m}^j}{\tau} dx + \sum_{j=1}^m \int_{\Omega} \rho \hat{r}_m^j \frac{w_{1m}^j e^{-2\lambda \phi_m}}{\lambda^2} dx = 0,
\]

and

\[
\sum_{j=1}^{m-1} \int_{\Omega} \left[K \gamma_m \left(\frac{w_{0m}^j - 2w_{0m}^j + w_{0m}^{j-1}}{\tau^2} - \sum_{j_1, j_2=1}^n \partial_{x_{j_2}} (h^{j_1j_2} \partial_{x_{j_2}} w_{0m}^j) \right) + \hat{w}_m^j w_{0m}^j e^{-2\lambda \phi_m} \right] dx = 0.
\]

By the regularity property of solutions to elliptic equations, we have \(\hat{w}_m^j, \hat{r}_m^j \in H^2(\Omega) \cap H_0^1(\Omega)\) and (3.8)–(3.10) hold.

Step 2. Replacing \(\{w_{0m}^j\}_{j=0}^m\) by \(\{\hat{w}_m^j\}_{j=0}^m\) in (A.6) and recalling that \(p_m^j = K \hat{r}_m^j\), we have

\[
0 = \sum_{j=1}^{m-1} \int_{\Omega} \left[\frac{\hat{w}_m^j - 2\hat{w}_m^j + \hat{w}_m^{j-1}}{\tau^2} - \sum_{j_1, j_2=1}^n \partial_{x_{j_2}} (h^{j_1j_2} \partial_{x_{j_2}} \hat{w}_m^j) - \frac{\hat{r}_1^j - \hat{r}_m^j}{\tau} - \lambda \gamma_m e^{2\lambda \phi_m} - \hat{r}_m^j \right] p_m^j dx
\]

\[
= - \sum_{j=1}^{m-1} \int_{\Omega} |\hat{w}_m^j|^2 e^{-2\lambda \phi_m} dx + \sum_{j=1}^m \int_{\Omega} \frac{p_m^j - p_m^{j-1}}{\tau} \hat{r}_m^j dx - \sum_{j=1}^{m-1} \int_{\Omega} \left(\lambda \gamma_m e^{2\lambda \phi_m} + \hat{r}_m^j \right) p_m^j dx
\]

(A.7)
For each term in (A.9), by (A.1), we do some calculations as follows:

\[
\frac{m-1}{\sum_{j=1}^{m-1} \left(\int_{\Omega} |\tilde{w}_m^{j}|^2 e^{-2\lambda_\phi^{j}} \, dx + \int_{\Omega} \rho K |\tilde{t}_1^{j}|^2 \frac{\lambda^2}{\lambda^2} e^{-2\lambda_\phi^{j}} \, dx + K \int_{\Omega} |\tilde{t}_1^{j}|^2 \, dx \right) - \int_{\Omega} \rho K |\tilde{t}_1^{j}|^2 \frac{\lambda^2}{\lambda^2} e^{-2\lambda_\phi^{j}} \, dx - \lambda \sum_{j=1}^{m-1} \int_{\Omega} z_m^j e^{2\lambda_\phi^{j}} p^j_m \, dx.}
\]

Thus, there is a constant \(C = C(K, \lambda) > 0 \), independent of \(m \), such that

\[
\sum_{j=1}^{m-1} \left(\int_{\Omega} |\tilde{w}_m^{j}|^2 e^{-2\lambda_\phi^{j}} \, dx + \int_{\Omega} \rho K |\tilde{t}_1^{j}|^2 \frac{\lambda^2}{\lambda^2} e^{-2\lambda_\phi^{j}} \, dx + K \int_{\Omega} |\tilde{t}_1^{j}|^2 \, dx \right) + \int_{\Omega} \rho K |\tilde{t}_1^{j}|^2 \frac{\lambda^2}{\lambda^2} e^{-2\lambda_\phi^{j}} \, dx \leq C \sum_{j=1}^{m-1} \int_{\Omega} |z_m^j|^2 e^{4\lambda_\phi^{j}} \, dx,
\]

which yields (3.11).

Step 3. Recalling (3.4) and replacing \(\{u_{j0m}\}_{j=0}^{m} \) by \(\{\tilde{w}_m^{j}\}_{j=0}^{m} \) in (A.6), we have

\[
0 = \sum_{j=1}^{m-1} \int_{\Omega} \left[\frac{\tilde{w}_m^{j+1} - \tilde{w}_m^{j}}{\tau^2} + \omega_j^{j+1} \frac{\int_{\tau^{j+1}}^{\tau^{j}} \rho \int_{\tau^{j+1}}^{\tau^{j+1}} \lambda_\phi^{j+1} e^{-2\lambda_\phi^{j+1}} \, dx + \tilde{t}_1^{j} \frac{p^{j+1} - 2p^{j} + p^{j-1}}{\tau^2} \right] \, dx
\]

For each term in (A.9), by (A.1), we do some calculations as follows:

\[
- \sum_{j=1}^{m-1} \int_{\Omega} \left(\frac{\tilde{w}_m^{j+1} - \tilde{w}_m^{j}}{\tau^2} \frac{\tilde{w}_m^{j+1} e^{-2\lambda_\phi^{j+1}} - 2\tilde{w}_m^{j} e^{-2\lambda_\phi^{j}} + \tilde{w}_m^{j+1} e^{-2\lambda_\phi^{j+1}} + \tilde{w}_m^{j-1} e^{-2\lambda_\phi^{j-1}}}{\tau^2} \right) \, dx
\]

and

\[
- \sum_{j=1}^{m-1} \int_{\Omega} \left(\frac{\tilde{t}_1^{j+1} - \tilde{t}_1^{j}}{\tau^2} + \omega_j^{j+1} \frac{\int_{\tau^{j+1}}^{\tau^{j+1}} \lambda_\phi^{j+1} e^{-2\lambda_\phi^{j+1}} \, dx + \tilde{t}_1^{j} \frac{p^{j+1} - 2p^{j} + p^{j-1}}{\tau^2} \right) \, dx
\]
Together with (1.2), (3.11), (3.12), recalling that

\[C \leq \Omega = j \sum_{j=0}^{\infty} \tau^j \]

Replacing \(\theta = m \), we know that there is a constant

\[\lambda \sum_{j=1}^{m-1} \int_{\Omega} \frac{\rho K}{\lambda^2} \left(\frac{\hat{r}_{1m}^{j+1} - \hat{r}_{1m}^j}{\tau} \right)^2 e^{-2\lambda\phi_m^j} + \frac{\rho K}{\lambda^2} \left(\frac{\hat{r}_{1m}^{j+1} - \hat{r}_{1m}^j}{\tau} \right)^2 e^{-2\lambda\phi_m^j} + K \left(\frac{\hat{r}_{1m}^{j+1} - \hat{r}_{1m}^j}{\tau} \right)^2 \right) \]

(A.11)

Combining (A.9)–(A.11), we have

\[\sum_{j=0}^{m-1} \int_{\Omega} \left[\left(\hat{w}_{m}^{j+1} - \hat{w}_{m}^j \right)^2 e^{-2\lambda\phi_m^j} \right. \]

(A.12)

By (A.12), we know that there is a constant \(C(K, \lambda) > 0 \), independent of \(m \), such that

\[\sum_{j=0}^{m-1} \int_{\Omega} \left[\left(\hat{w}_{m}^{j+1} - \hat{w}_{m}^j \right)^2 e^{-2\lambda\phi_m^j} + \frac{\rho K}{\lambda^2} \left(\frac{\hat{r}_{1m}^{j+1} - \hat{r}_{1m}^j}{\tau} \right)^2 e^{-2\lambda\phi_m^j} + K \left(\frac{\hat{r}_{1m}^{j+1} - \hat{r}_{1m}^j}{\tau} \right)^2 \right] \]

(A.13)

Combining (A.13) and (3.11), we get (3.12).

Step 4. Replacing \(\{w_{0m}^j\}_{j=0}^m \) by \(\{p_{0m}^j\}_{j=0}^m \) in (A.6) and recalling that \(p_{m}^j = K \hat{r}_{1m}^j \), we have

\[0 = -\sum_{j=1}^{m-1} \int_{\Omega} \left\{ \frac{\rho K}{\lambda^2} \left(\frac{\hat{r}_{1m}^{j+1} - \hat{r}_{1m}^j}{\tau} \right)^2 e^{-2\lambda\phi_m^j} + \frac{\rho K}{\lambda^2} \left(\frac{\hat{r}_{1m}^{j+1} - \hat{r}_{1m}^j}{\tau} \right)^2 e^{-2\lambda\phi_m^j} + K \left(\frac{\hat{r}_{1m}^{j+1} - \hat{r}_{1m}^j}{\tau} \right)^2 \right\} \]

(A.14)

Together with (1.2), (3.11), (3.12), recalling that \(p_{m}^j = K \hat{r}_{1m}^j \), we yield

\[\tau \sum_{j=1}^{m-1} \int_{\Omega} \left(\nabla \hat{r}_{1m}^j \right)^2 \leq C \]

(A.15)
Then, multiply equation (3.4) by \(\{ \tilde{w}_m^j \}_{j=0}^m \) and sum up, we get

\[
0 = - \sum_{j=1}^{m-1} \int_\Omega \left[\frac{\tilde{w}_m^{j-1} + 2\tilde{w}_m^j + \tilde{w}_m^{j+1}}{\tau^2} - \sum_{j_1, j_2=1}^n \partial_{x_{j_2}} \left(h^{j_1 j_2} \partial_{x_{j_2}} \tilde{w}_m^j \right) - \tilde{r}_1^j \frac{\tilde{r}_1^j}{1m} - \tilde{r}_1^m - \frac{\lambda z_m^i e^{2\lambda \phi_m^i}}{\tau} \right] \tilde{w}_m^j \, dx \\
= \sum_{j=1}^m \int_\Omega \left(\frac{\tilde{w}_m^j - w_m^{j-1}}{\tau^2} \right) \, dx + \sum_{j=1}^{m-1} \int_\Omega \sum_{j_1, j_2=1}^n h^{j_1 j_2} \partial_{x_{j_1}} \tilde{w}_m^j \partial_{x_{j_2}} \tilde{w}_m^j \, dx \\
+ \sum_{j=1}^{m-1} \int_\Omega \left(\frac{\tilde{r}_1^j \tilde{r}_1^j}{1m} - \frac{\tilde{r}_1^m}{1m} + \lambda z_m^i e^{2\lambda \phi_m^i} + \tilde{r}_1^j \right) \tilde{w}_m^j \, dx.
\]

(A.16)

Together with (1.2), (3.11), (3.12), (A.15), we yield (3.13).

Acknowledgements. This work is partially supported by the NSF of China under grants 12025105, 11971333 and 11931011, by the Science Development Project of Sichuan University under grant 2020SCUNL201, and by New Cornerstone Investigator Program.

REFERENCES