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THE TWIN BLOW-UP METHOD FOR HAMILTON–JACOBI

EQUATIONS IN HIGHER DIMENSION

Nicolas Forcadel1, Cyril Imbert2,* and Régis Monneau3,4

Abstract. In this paper, we show how to extend the twin blow-up method recently developped
by the authors (Comptes Rendus. Math., 2024), in order to obtain a new comparison principle for an
evolution coercive Hamilton–Jacobi equation posed in a domain of an Euclidian space of any dimension
and supplemented with a boundary condition. The method allows dealing with the case where tangential
variables and the variable corresponding to the normal gradient of the solution are strongly coupled
at the boundary. We elaborate on a method introduced by Lions and Souganidis (Atti Accad. Naz.
Lincei, 2017). Their argument relies on a single blow-up procedure after rescaling the semi-solutions
to be compared while two simultaneous blow-ups are performed in this work, one for each variable of
the classical doubling variable technique. A one-sided Lipschitz estimate satisfied by a combination of
the two blow-up limits plays a key role.
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1. Introduction

This work is concerned with strong uniqueness (comparison principle) of viscosity solutions to a Hamilton–
Jacobi equation of evolution type of the form,

ut +H(X,Du) = 0 on (0, T )× Ω (1.1)

where X := (t, x), supplemented with the (desired) boundary condition

ut + F (X,Du) = 0 on (0, T )× ∂Ω (1.2)

and the initial condition

u(0, ·) = u0 on {0} × Ω.

The spatial domain Ω is a subset of the Euclidian space of dimension d ≥ 1. We will first see how to deal with
a half-space and we will then consider the case of a C1 bounded domain.
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4 CERMICS - Centre d’Enseignement et de Recherche en Mathématiques et Calcul,Scientifique, 6 et 8 avenue Blaise Pascal,
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It is known that the desired boundary condition (1.2) can be lost. In the convex case, this can happen when
characteristics reach ∂Ω. For this reason, (1.2) has to be imposed in a weak sense. In the viscosity solution
framework, the weak sense means that either the desired boundary condition is satisfied or the PDE is satisfied
on the boundary. More precisely, subsolutions and supersolutions of (1.1) are assumed to satisfy at the boundary
the following inequalities,{

ut +min(F,H)(X,Du) ≤ 0 on (0, T )× ∂Ω (subsolutions),
ut +max(F,H)(X,Du) ≥ 0 on (0, T )× ∂Ω (supersolutions).

(1.3)

We present in the introduction the comparison principle for (1.1), (1.2), (1.3) with Ω = Rd−1 × (0,+∞). In
order to present the structure conditions imposed to the Hamiltonian H and the nonlinearity F associated with
the boundary condition in that case, we set x = (x′, xd) ∈ Rd−1 × [0,+∞) and p = (p′, pd) ∈ Rd−1 × R for the
variable for the gradient. In particular, p′ corresponds to the space tangential gradient of the solutions and pd
to the normal gradient. In the following assumption, ω, ωL denote moduli of continuity. For H, we assume

i) (Continuity and bound)
H : [0, T ]× Ω× Rd → R is continuous
the map X 7→ H(X, 0) is bounded.

ii) (Uniform continuity in the gradient)
For any L > 0, we have for all X ∈ [0, T ]× Ω and p, q ∈ [−L,L]d

|H(X, p)−H(X, q)| ≤ ωL(|p− q|).

iii) (Continuity in the tangential variables)
For X = (t, x′, xd) and Y = (s, y′, xd) with t, s ∈ [0, T ] and x′, y′ ∈ Rd−1 and xd ≥ 0

H(Y, p)−H(X, p) ≤ ω(|Y −X| (1 + |p′|+max {0, H(X, p)})).

iv) (Uniform normal coercivity)
For any L > 0, we have

lim
|pd|→+∞

inf{H(X, p′, pd) : X ∈ [0, T ]× Ω, p′ ∈ [−L,L]d−1} = +∞.

(1.4)

and similarly for F , we consider

i) (Continuity, bound and monotonicity)
F : [0, T ]× ∂Ω× Rd → R is continuous,
the map X 7→ F (X, 0) is bounded,
the map pd 7→ F (X, p′, pd) is nonincreasing.

ii) (Uniform continuity in the gradient)
For any L > 0, we have for all X ∈ [0, T ]× ∂Ω and p, q ∈ [−L,L]d

|F (X, p)− F (X, q)| ≤ ωL(|p− q|).

iii) (Continuity in the tangential variables)
for all X,Y ∈ [0, T ]× ∂Ω and p ∈ Rd,
F (Y, p)− F (X, p) ≤ ω(|Y −X| (1 + |p′|+max {0,max(F,H)(X, p)})).

iv) (Uniform normal semi-coercivity)
For any L > 0, we have

lim
pd→−∞

inf{F (X, p′, pd) : X ∈ [0, T ]× ∂Ω, p′ ∈ [−L,L]d−1} = +∞.

(1.5)
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Under the previous structural conditions, sub and super-solutions of the Hamilton–Jacobi equation under study
can be compared.

Theorem 1.1 (A comparison principle with strong tangential coupling). Let Ω = Rd−1 × (0,+∞), T > 0
and assume that H,F satisfy (1.4)–(1.5). Assume that the initial data u0 is uniformly continuous. Let u, v :
[0, T ) × Ω → R be two functions with u upper semi-continuous and v lower semi-continuous. Assume that u
(resp. v) is a viscosity subsolution (resp. supersolution) of (1.1)–(1.2). Assume moreover that there exists a
constant CT > 0 such that

u ≤ u0 + CT and v ≥ u0 − CT on [0, T )× Ω. (1.6)

If we have

u(0, ·) ≤ u0 ≤ v(0, ·) on {0} × Ω

then we have

u ≤ v on [0, T )× Ω.

Remark 1.2. A simplified version of Theorem 1.1 is presented in [1]. It was assumed in this note that dimension
d = 1 and that initial data are Lipschitz continuous. Some details were skept and they are presented in this new
work.

Remark 1.3. In Section 5, we also extend this result to the case where Ω is a C1 bounded open set.

Remark 1.4. Notice that, given (1.4), we can always define the state constraint boundary function

H−(X, p′, pd) := inf
qd≤pd

H(X, p′, qd) for X ∈ [0, T ]× ∂Ω and p = (p′, pd) ∈ Rd−1 × R

and it satisfies (1.5). Up to our knowledge, the comparison principle was also an open problem for F = H− in
this generality.

Remark 1.5. Notice that in Theorem 1.1, semi-coercivity of F in condition (1.5) iv) can be replaced by the
weak continuity of the subsolution u on the boundary (0, T )× ∂Ω, using [2], Proposition 3.12 and replacing F
by F1 := max(F,H−).

Main contribution. When comparing non-Lipschitz sub/supersolutions (for instance after constructing solu-
tions by Perron’s method), a strong coupling between tangential coordinates (t, x′) ∈ [0, T ] × Rd−1 and the
normal gradient ∂xd

u is well identified in the literature as a technical difficulty, especially when this coupling
arises in the boundary condition, see for instance [3–7].

It is standard to make the (strong) assumption of uniform continuity in time t, uniformly in the gradient
Du. Such an assumption is not satisfied by the following simple example,{

ut + a(X)|Du| = 0 in (0, T )× Ω,

ut +max {0,−b(X)∂xd
u} = 0 in (0, T )× ∂Ω

(1.7)

when a, b ≥ 1 are bounded Lipschitz continuous functions (here with b(t, x) = b(t, x′, 0)).

In the following corollary, we give an application of our results. It is a straightforward consequence of
Theorem 1.1.
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Corollary 1.6 (Existence and uniqueness). Let Ω := Rd−1 × (0,+∞). Let α, β, γ ∈ R1+d and set H(X, p) :=
a(X)|p| and F (X, p) := max {0,−b(X)pd} with a(X) := 2 + sin(α ·X), b(X) := 2 + sin(β ·X), u0(x) := sin(γ ·
(0, x)) for X = (t, x). Then there exists a unique solution u of (1.1)–(1.2) with initial data u0.

Comparison with known results. J. Guerand [8] proved a comparison principle in our geometric setting
in dimension d = 1 in the case where H and F are independent of (t, x). She also proved a comparison principle
for non-coercive Hamiltonians.

P.-L. Lions and P. Souganidis [7] introduced a new method for proving comparison principles for bounded
uniformly continuous sub/supersolutions for equations posed on junctions with several branches (or half-spaces).
They use a blow-up argument that reduces the study to a 1D problem. They show the comparison principle
in the case of Kirchoff-type boundary conditions and non-convex Hamiltonians. As far as (t, x) dependence
is concerned, their method allows them to handle Hamiltonians that are Lipschitz continuous in t, see [7],
Assumption 4.

This result is generalized by G. Barles and E. Chasseigne [5], Theorem 15.3.7, p. 295 to the case of bounded
semi-continuous sub/supersolutions under three different junction conditions. Even if they are presented for
N = 2 branches, we present their results in our geometric setting: a junction reduced to a single branch N = 1
in dimension d ≥ 1. The three cases are the following: (1) F is independent on pd, (2) the Neumann problem and
(3) general nonincreasing continuous pd 7→ F (X, p′, pd). In the third case, the normal derivative is not coupled
with the tangential coordinates (t, x′) in F (see also the very end of [5], Sect. 13.2.2 and condition (GA-G-FLT)
p. 247).

As explained above, we improve these results, using the twin blow-up method introduced in [1]. A close look
at the proof reveals that new ideas appear at the beginning of Step 4, when the reasoning focuses on the case
where the point of maximum is on the boundary of the domain. Compared to the note [1], we also extend the
result by considering uniformly continuous initial data (and not only Lipschitz continuous ones) and working
in dimension greater than one.

Organization of the paper. In Section 2, we present two key boundary results stated for stationary problems
in space dimension d = 1. We also extend these results to the case of junctions (that will be used in future works).
In Section 3, we recall two classical results which are suitable for our purpose. We first construct barriers. We
next present some a priori estimates for the sup-convolution of subsolutions to coercive HJ equations. The proof
of the comparison principle in the case of the half space (Thm. 1.1) is done in Section 4. Finally in Section 5,
we show how to adapt our twin blow-up method to the case of a C1 bounded open domain.

2. Boundary lemmas

In this section, we work in dimension d = 1 and set Ω := (0,+∞). We present some fundamental boundary
results that will allow us to prove our comparison principle. At the end of this section, we also extend them
naturally to the case of junctions (that will be useful for future works).

Before to state our result, we need to introduce the following notion of (limiting) semi-differentials.

Definition 2.1 ((Limiting) semi-differentials). Let A ⊂ Ω and x0 ∈ A. For (+/−), we define the (first order)
super/subdifferential at x0 of a function u on A as

D±
Au(x0) = {p ∈ R, such that 0 ≤ ±{u(x0) + p · (x− x0) + o(x− x0)− u(x)} on A} (2.1)

and the limit (first order) super/subdiffential at the boundary point x0 ∈ ∂Ω of u as

D̄±
Ωu(x0) =

{
p ∈ R, there exists a sequence pk ∈ D±

Ωu(x
k) with xk ∈ Ω and (xk, pk) → (x0, p)

}
. (2.2)
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Remark 2.2. Note that if p ∈ D̄+
Ωu(x0) with x0 ∈ ∂Ω, and if u is a subsolution of H(Du) ≤ 0 in Ω, then

H(p) ≤ 0.

We then have the following result.

Lemma 2.3 (Critical slopes and semi-differentials). Let Ω := (0,+∞). We consider two functions u, v : Ω →
R ∪ {−∞,+∞} with u upper semi-continuous and v lower semicontinous satisfying u(0) = 0 = v(0) with u ≤ v
on Ω. We define the critical slopes by

p := lim sup
Ω∋x→0

u(x)

x
, p := lim inf

Ω∋x→0

v(x)

x
. (2.3)

Then we have the following (limiting) semi-differential inclusions

R ∩
[
p, p

]
⊂ D̄+

Ωu(0) ∩ D̄−
Ωv(0) if p ≥ p (2.4)

R ∩
[
p, p

]
⊂ D+

Ω
u(0) ∩D−

Ω
v(0) if p ≤ p (2.5)

{
p ∈ D̄+

Ωu(0) if p ̸= −∞
p ∈ D̄−

Ωu(0) if p ̸= +∞.
(2.6)

Proof. The proof of this lemma is already contained in [1] but for sake of completeness, we give it here. We first
notice that (2.5) is a straightforward consequence of the definition of sub and superdifferentials.
In order to prove (2.4), we first focus on the proof of

R ∩
[
p, p

]
⊂ D̄+

Ωu(0) in case p > p (2.7)

and we will even show the follower better result

R ∩
[
q, p

]
⊂ D̄+

Ωu(0) in case p > q := lim inf
Ω∋x→0

u(x)

x
. (2.8)

Note that u ≤ v implies q ≤ p and so (2.7) is a consequence of (2.8). The claim is a variant of (18) in [7] and
the proof is a variant of the one done in Barles, Chasseigne [5], Lemma 15.3.1. We give the details for sake of
completeness. We first assume that p ∈ (q, p). This implies that

lim sup
Ω∋x→0

u(x)

x
= p > p > q = lim inf

Ω∋x→0

u(x)

x

and so for any ε > 0, there exists yε ∈ (0, ε) and zε ∈ (0, yε) such that

u(zε)

zε
> p >

u(yε)

yε
.

Hence the function ζ(x) := u(x)− px satisfies

ζ(0) = 0 > ζ(yε) with M := sup
[0,yε]

ζ ≥ ζ(zε) > 0.



6 N. FORCADEL ET AL.

Let xε ∈ (0, yε) be a point of maximum of ζ in [0, yϵ]. We see that the function x 7→ px+M is a test function
touching u from above at xε, which implies that p ∈ D+

Ωu(xε). In the limit ε → 0, we recover p ∈ D̄+
Ωu(0) which

proves the claim. In the case where p ∈ [q, p], we get the result by the closedness of D̄+
Ωu(0). This proves (2.8).

A similar inclusion for v implies (2.4) in the special case where p > p. On the other hand, notice that (2.6)
implies (2.4) in the case p = p.

Hence it remains to show (2.6). We claim that

p ∈ D̄−
Ωv(0) if p ∈ R. (2.9)

This result is a property of the critical slope for lower semi-continuous functions. Its proof follows exactly the
lines of [9], Proof of Lemma 2.9 (where the proof does not use any Hamiltonian). A similar result holds for u
and proves (2.6). This ends the proof of the lemma.

Before to state the fundamental lemma for the comparison principle, we recall the definition of (semi-)
coercive functions.

Definition 2.4 (Coercive and semi-coercive functions). Consider a function G : R → R. Then G is coercive if
lim

|p|→+∞
G(p) = +∞, and semi-coercive if lim

p→−∞
G(p) = +∞.

As a consequence of Lemma 2.3, we have the following result which will be used to prove the comparison
principle.

Corollary 2.5 (Boundary viscosity inequalities). Let Ω and u, v be as in statement of Lemma 2.3. For γ = α, β,
consider continuous functions Hγ , Fγ : R → R with Hα coercive and Fα semi-coercive. Assume that we have the
following viscosity inequalities for some η > 0

Hα(ux) ≤ 0 on Ω ∩{|u| < +∞}
min {Fα, Hα} (ux) ≤ 0 on {0} ∩ {|u| < +∞}

Hβ(vx) ≥ η on Ω ∩{|v| < +∞}
max {Fβ , Hβ} (vx) ≥ η on {0} ∩ {|v| < +∞} .

(2.10)

For p, p defined in (2.3), we set a := min
{
p, p

}
and b := max

{
p, p

}
. Then p ∈ [a, b] ∩ R and there exists a real

number p ∈ [a, b] such that

either Hα(p) ≤ 0 < η ≤ (Hβ −Hα)(p) or max {Fα, Hα} (p) ≤ 0 < η ≤ (Fβ − Fα)(p). (2.11)

Proof. The main steps of the proof is given in [1], but for sake of completeness, we give all the details here. We
begin to explain why p ∈ R. Because Hα is coercive and Fα is semi-coercive, we know from [2], Lemma 3.8 that
u is weakly continuous at x = 0, i.e.

0 = u(0) = lim sup
Ω∋x→0+

u(x). (2.12)

Then [9], Proof of Lemma 2.10 shows additionally that p > −∞. Now we claim that we also have p < +∞.
Indeed, assume by contradiction that p = +∞. Then, there exists yn → 0 such that pn := u(yn)/yn → +∞. For
b ∈ R, let us define ϕb(x) := pnx+ b and

b = inf{b, u ≤ ϕb in [0, yn]}.

In particular, there exists xn ∈ [0, yn] such that ϕb touches u from above at xn. If xn = 0, then 0 = u(0)−ϕb(0) =

−b. In the same way, if xn = yn, then u(yn) = ϕb(yn) = u(yn) + b and we recover again that b = 0. This implies
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that u(x) ≤ pnx and so

+∞ = lim sup
x→0

u(x)

x
≤ pn < +∞.

We then deduce that xn ∈ (0, yn) and since u is a sub-solution, we get

Hα(pn) ≤ 0

which is absurd for n large enough by coercivity ofHα. This implies that p < +∞. We conclude that p ∈ R∩ [a, b].
We now turn to the proof of (2.11). If p ≤ p, then (2.4) shows, for all p ∈

[
p, p

]
∩ R, that

Hα(p) ≤ 0 < η ≤ Hβ(p)

which implies in particular the desired conclusion.
We now assume that p > p. We have in particular [a, b] ⊂ (−∞,+∞] with a < b and Hα(a) ≤ 0 because a ∈ R

0 < η ≤ Hβ(b) if b ∈ R
min {Hα, Fα} ≤ 0 < η ≤ max {Hβ , Fβ} on [a, b] ∩ R

(2.13)

where the last line follows from (2.5), and the first two lines follow from (2.6).

We now claim that for all ε > 0 small enough, there exists some pε ∈ [a, b] ∩ R such that we have at pε

i) Hα ≤ ε < η − ε ≤ Hβ −Hα or ii) max {Fα, Hα} ≤ ε < η ≤ Fβ − Fα. (2.14)

By contradiction, we assume that there exists ε > 0 (small enough) such that i) Hβ −Hα < η − ε or ε < Hα

and
ii) Fβ − Fα < η or ε < max {Fα, Hα}

∣∣∣∣∣∣ for all p ∈ [a, b] ∩ R. (2.15)

Recall that the coercivity of Hα means Hα(±∞) := lim infp→±∞ Hα(p) = +∞. We distinguish two cases.

Case 1: Hα(b) > ε
Here b can be finite or equal to +∞. We get

Hα(b) > ε > 0 ≥ Hα(a).

Therefore by continuity, there exists p ∈ (a, b) such that Hα(p) = ε. Hence in the last line of (2.13), the first
inequality implies that Fα(p) ≤ 0. Because (2.15) i) and ii) hold true for p, we get

Hβ(p) < η and Fβ(p) < η

which leads to a contradiction with the second inequality in the last line of (2.13).

Case 2: Hα(b) ≤ ε
Then b ∈ R and (2.15) i) implies for p = b that Hβ(b) < η, which is in contradiction with the second line of
(2.13).
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In all the cases, we get a contradiction, which proves (2.14). Since Hα is coercive, we see in both cases i) or
ii) of (2.14), that we can always extract a subsequence as ε → 0 such that pε → p ∈ [a, b] ∩ R. Passing to the
limit in (2.14), we get the desired conclusion. This ends the proof of the corollary.

Notice that it is very easy to show the following extension of Corollary 2.5 to the case of junctions.

Proposition 2.6 (Junction viscosity inequalities). For N ≥ 1, let J i := (0,+∞) for i = 1, . . . , N , and set

J := {0} ∪

 ⋃
i=1,...,N

J i


with the topology of glued branches. For a piecewise C1 function u on J , and ui := u|Ji∪{0}, we set

ux(x) =

{
(u1

x(0), . . . , u
N
x (0)) if x = 0

ui
x(x) if x ∈ J i.

We consider two sets of functions u, v : J → R ∪ {−∞,+∞} with u upper semi-continuous and v lower
semicontinous satisfying

u(0) = 0 = v(0) with u ≤ v on J. (2.16)

For i = 1, . . . , N , we define

pi := lim sup
Ji∋x→0

u(x)

x
, pi := lim inf

Ji∋x→0

v(x)

x
. (2.17)

We also set ai := min
{
pi, pi

}
, bi := max

{
pi, pi

}
and

[a, b] ∩ RN :=
∏

i=1,...,N

[ai, bi] ∩ R.

For γ = α, β, consider continuous functions Hi
γ : R → R and Fγ : RN → R with Hi

α coercive and Fα semi-

coercive. For p = (p1, . . . , pN ) ∈ RN , we set

Hγ;min(p) = min
i=1,...,N

Hi
γ(p

i), Hγ;max(p) = max
i=1,...,N

Hi
γ(p

i).

Then assume that we have the following viscosity inequalities for some η > 0
Hi

α(ux) ≤ 0 on J i ∩{|u| < +∞} for i = 1, . . . , N
min {Fα, Hα;min} (ux) ≤ 0 on {0} ∩ {|u| < +∞}

Hi
β(vx) ≥ η on J i ∩{|v| < +∞} for i = 1, . . . , N

max {Fβ , Hβ;max} (vx) ≥ η on {0} ∩ {|v| < +∞} .

(2.18)

Then there exists p = (p1, . . . , pN ) ∈ [a, b] ∩ RN ̸= ∅ such that{
either Hi

α(p
i) ≤ 0 < η ≤ (Hi

β −Hi
α)(p

i) for some i ∈ {1, . . . , N}
or max(Fα, Hα;max)(p) ≤ 0 < η ≤ (Fβ − Fα)(p).

(2.19)
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3. Barriers and regularization

Lemma 3.1 (Barriers). Let T > 0 and assume that H,F satisfy (1.4)–(1.5), and that the initial data u0 is
uniformly continuous. Assume that u (resp. v) is an upper semi-continuous subsolution (resp. a lower semi-
continuous supersolution) of (1.1), (1.3), satisfying the a priori bounds (1.6) for some constant CT .

Then there exists a continuous increasing function f : [0, T ] → [0,+∞) with f(0) = 0 such that the functions

u±(t, x) := u0(x)± f(t)

satisfy the following barrier properties:

� if u ≤ u0 in {0} × Ω, then u ≤ u+ in [0, T )× Ω,
� if v ≥ u0 in {0} × Ω, then v ≥ u− in [0, T )× Ω.

Proof. The idea of the proof is somehow very standard. We first extend by continuity the initial data defined
on Rd−1 × [0,+∞) to a function defined on Rd−1 ×R, setting u0(x

′, x) := u0(x
′, 0) for all x ≤ 0. Hence u0 still

satisfies

|u0(x)− u0(y)| ≤ ω0(|x− y|) for all x, y ∈ Rd

where ω0 is the modulus of continuity of (u0)|Rd−1×[0,+∞). We do the proof to compare u and u+, the one to
compare v and u− being similar.

Case 1: u0 ∈ (C1 ∩ Lip)(Rd)
In this case, there exists some L > 0 such that |Du0|L∞(Rd) ≤ L. From assumptions i) and ii) of both (1.4) and
(1.5), we see that there exists λ = λ(T, L) ≥ 0 minimal such that, for BL := BL(0),

−λ ≤ inf
[0,T ]×Ω×B2L

min {H,F} ≤ sup
[0,T ]×Ω×B2L

max {H,F} ≤ λ (3.1)

where we have extended the function F as follows: F (t, x′, xd, p) := F (t, x′, 0, p) for all xd ≥ 0. Setting f(t) := λt,
we see that u+ is a supersolution of (1.1), (1.3). Assume now by contradiction that

M := sup
QT

(u− u+) > 0 with QT := [0, T )× Ω.

Now for η, α > 0, let us consider

Mη,α := sup
QT

Φ with Φ(t, x) := u(t, x)− u+(t, x)− η

T − t
− α

2
x2.

For η, α > 0 small enough, we have Mη,α ≥ M/2 > 0. Moreover from the bound (1.6) on u, we see that the
supremum in Mη,α is reached for some point X̄ = (t̄, x̄) ∈ QT . We also have

lim sup
(η,α)→(0,0)

{
η

T − t̄
+

α

2
x̄2

}
= 0

and then we can fix η, α > 0 small enough such that |αx̄| ≤ L.
Assume that t̄ = 0. Then 0 < M/2 ≤ Mη,α = Φ(0, x̄) ≤ − η

T which leads to a contradiction. Hence
t̄ > 0 and X̄ = (t̄, x̄) = (t̄, x̄′, x̄d) ∈ (0, T ) × Rd−1 × [0,+∞). Therefore we have the viscosity inequalities for
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p := Du0(x̄) ∈ BL and αx̄ ∈ BL{
η

(T−t̄)2 + λ+H(X̄, p+ αx̄) ≤ 0 if x̄d > 0
η

(T−t̄)2 + λ+max(F,H)(X̄, p+ αx̄) ≤ 0 if x̄d = 0

which leads to a contradiction from the choice of λ in (3.1). This implies that M ≤ 0 and then u ≤ u+.

Case 2: u0 is only uniformly continuous
Let φ be a smooth nonnegative function satisfying φ = 0 on Rn\B1(0) and

∫
Rn φ(x)dx = 1. For ε > 0, we set

the convolution uε
0 := φε ⋆ u0 with φε(x) =

1
εnφ(

x
ε ). Hence we have

|uε
0 − u0|L∞(Rn) ≤ ω0(ε)

and Duε
0(x) =

1
ε

∫
Rn dy 1

εnDφ(yε ) {u0(x− y)− u0(x)}. Therefore, we get

|Duε
0|L∞(R) ≤ |Dφ|L1(R) ·

ω0(ε)

ε
≤ Lε := |Dφ|L1(Rn) · sup

δ≥ε

ω0(δ)

δ
.

We define λε = λT,Lε ≥ 0 minimal such that

−λε ≤ inf
[0,T ]×Ω×B2Lε

min(H,F ) ≤ sup
[0,T ]×Ω×B2Lε

max(H,F ) ≤ λε,

where by construction the map ε 7→ λε is nonincreasing, and we set fε(t) := λεt. Using that u0(x) ≤ uε
0(x) +

ω0(ε), we can show as in Case 1 that u(t, x) ≤ uε
0(x) + ω0(ε) + λεt ≤ u0(x) + 2ω0(ε) + λεt. If we set

f(t) := inf
ε>0

{2ω0(ε) + λεt} ,

where f is a (continuous) concave nondecreasing function satisfying f(0) = 0, we get u ≤ u+. This ends the
proof of the lemma.

We now consider a (classical) regularization of a subsolution u by tangential sup-convolutions. Because we
only assume a bound from above u ≤ u0 +CT , we have additionally to truncate u from below by some function.
We will use the function u0 := u0 −CT (which will also be later in the next section a bound from below for the
supersolution v), where u0 is the initial data, which is assumed to be Lipschitz continuous, in order to simplify
the presentation. Then we have the following result.

Lemma 3.2 (Tangential regularization after truncation by Lipschitz initial data). Let T > 0 and assume that
H satisfies (1.4) and that the initial data u0 is Lipschitz continuous of Lipschitz constant L0. Let u be an upper
semi-continuous subsolution of (1.1)–(1.2), satisfying moreover the a priori bound (1.6) for some constant CT ,
namely

u(t, x) ≤ u0(x) + CT for all (t, x) ∈ [0, T )× Ω. (3.2)

We define u(T, x) := lim sup
(s,y)→(T,x), s<T

u(s, y) for all x ∈ Ω = Rd−1 × [0,+∞), and extend u to R × Ω, setting

u(t, x) := u(T, x) if t ≥ T , and u(t, x) := u(0, x) if t ≤ 0. We set

ũ := max(u, u0) with u0(t, x) := u0(x)− CT .
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We denote the tangential variable by ξ = (ξ0, ξ′) = (s, x′) ∈ Rd and the normal variable by xd ∈ [0,+∞) and
we define for ν > 0 the tangential sup-convolution

ũν(ξ, xd) := sup
ζ∈Rd

{
ũ(ζ, xd)−

|ξ − ζ|2

2ν

}
= ũ(ζ̄, xd)−

|ξ − ζ̄|2

2ν

where each ζ̄ depends on (ξ, xd) ∈ Rd × [0,+∞) with |ζ − ξ| ≤ θν :=
√

5(4νCT + ν2L2
0) < T/2, for ν small

enough.
Then the function ũν is Lipschitz continuous in R×Ω with respect to the variable ξ. Moreover it is Lipschitz

continuous in Iν × Ω with respect to the variable xd, with Iν := (θν , T − θν),

|Dξũ
ν |L∞(R×Ω) ≤

θν

ν
and |∂xd

ũν |L∞(Iν×Ω) ≤ max {Lν , L0}

where Lν := sup

{
pd ∈ R, inf(X,p′)∈([0,T ]×Ω)×B θν

ν

H(X, p′, pd) ≤ θν

ν

}
.

Assume furthermore that u is a subsolution at the boundary (0, T )× ∂Ω, i.e. satisfies the first line of (1.3)
for some F satisfying (1.5). Then ũν is Lipschitz continuous in space and time on Iν × Ω of Lipschitz constant
Lν := max

{
θν

ν , Lν , L0

}
.

Proof. The proof is splited into three steps.
Step 1: first bounds using the 2-sided bound
We begin to show that

|ζ̄ − ξ| ≤ θν . (3.3)

From the 1-sided bound (3.2) and the definition of u0 and ũ, we get the 2-sided bound

|ũ(t, x)− u0(x)| ≤ CT for all (t, x) ∈ R× Ω. (3.4)

For ξ = (t, ξ′) := (t, x′) and z := xd (to simplify the notation), we have

ũ(ξ, z) ≤ ũν(ξ, z) = ũ(ζ̄, z)− |ξ − ζ̄|2

2ν

with ζ̄ = (t̄, ζ̄ ′). Using (3.4), we then get

|ξ − ζ̄|2

2ν
− 2CT ≤ u0(ζ̄

′, z)− u0(ξ
′, z) ≤ L0|ζ̄ ′ − ξ′|.

This implies

{
|ξ′ − ζ̄ ′| − νL0

}2
+ |t− t̄|2 ≤ 4νCT + ν2L2

0 =
(θν)2

5
.

We then deduce that |t− t̄| ≤ θν
√
5
, |ξ′ − ζ̄ ′| ≤ 2 θν

√
5
which implies (3.3).

We now prove that

|Dξũ
ν |L∞(R×Ω) ≤

θν

ν
. (3.5)
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For ξa ∈ Rd, we set

ũν(ξa, z) := sup
ζ∈Rd

{
ũ(ζ, z)− |ξa − ζ|2

2ν

}
= ũ(ζ̄a, z)− |ξa − ζ̄a|2

2ν
.

Hence, by definition, we have

ũν(ξa, z) ≥ ũ(ζ̄, z)− |(ξa − ξ) + ξ − ζ̄|2

2ν
= ũν(ξ, z)− (ξa − ξ) · (ξ − ζ̄)

ν
− |ξa − ξ|2

2ν

and also by symmetry

ũν(ξ, z) ≥ ũν(ξa, z)− (ξ − ξa) · (ξ
a − ζ̄a)

ν
− |ξ − ξa|2

2ν

i.e.

|ũν(ξa, x)− ũν(ξ, x)|
|ξa − ξ|

≤ max

{
|ξ − ζ̄|

ν
,
|ξa − ζ̄a|

ν

}
+

|ξa − ξ|
2ν

≤ θν

ν
+

|ξa − ξ|
2ν

.

This implies that ũν is Lipschitz continuous in the tangential coordinates and (3.5).

Step 2: bounds on the normal gradient
It is easy to check that ũν is upper semi-continuous (because this is the case for u itself and the supremum
in ξ is locally taken in a compact set). Let φ be a test function touching ũν from above at X0 := (t0, x0) ∈
(Iν × Ω) ∩ {ũν > uν

0} and set ξ0 := (t0, x
′
0) and z0 := (x0)d. We have

uν
0(X0) < ũν(X0) := sup

h∈Rd

{
ũ(ξ0 + h, z0)−

|h|2

2ν

}
= ũ(ξ0 + h̄0, z0)−

|h̄0|2

2ν
with |h̄0| ≤ θν

and

ũ(ξ + h̄0, z)−
|h̄0|2

2ν
≤ ũν(ξ, z) ≤ φ(ξ, z) with equality at (ξ, z) = (ξ0, z0).

Setting

φ̄(ξ, z) := φ(ξ − h̄0, z) +
|h̄0|2

2ν
, X̄0 := (ξ0 + h̄0, z0),

we then get
ũ ≤ φ̄ with equality at X̄0

ũ(X̄0) = ũν(X0) +
|h̄0|2
2ν > uν

0(X0) +
|h̄0|2
2ν = suph∈Rd

{
u0(ξ0 + h, z0)− |h|2

2ν

}
+ |h̄0|2

2ν ≥ u0(X̄0).

Hence ũ = u at X̄0 ∈
(
[−|h̄0|, |h̄0|] + Iν

)
×Ω ⊂ (0, T )×Ω. Because u ≤ ũ, we have that φ̄ touches u from above

at X̄0 and since u satisfies the viscosity inequalities on (0, T )× Ω, we get

φ̄t(X̄0) +H(X̄0, Dφ̄(X̄0)) ≤ 0
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i.e.

φt(X0) +H(X̄0, Dφ(X0)) ≤ 0.

Setting for θ > 0 and X = (t, x′, xd)

Hθ(X, p) := min
h∈Bθ

H((t, x′) + h, xd, p),

we see that we have

φt(X0) +Hθν (X0, Dφ(X0)) ≤ 0

which shows that ũν satisfies this viscosity inequality on (Iν × Ω) ∩ {ũν > uν
0}.

Recall that we have ũ ≥ u0 and so ũν ≥ uν
0 with |Duν

0 | ≤ |Du0| ≤ L0. Hence we get in the viscosity sense

min

{
−θν

ν
+Hθν (X,Dũν), |Dũν | − L0

}
≤ 0 on Iν × Ω

which implies that

|∂xd
ũν | ≤ max {Lν , L0} on Iν × Ω.

Step 4: Lispchitz bounds on [θν , T − θν ]× Ω
Because H is coercive and F is semi-coercive, we can use [2], Lemma 3.8 to get that u is weakly continuous for
all (t, x) ∈ (0, T )× ∂Ω, i.e.

u∗(t, x) = lim sup
(s,y)→(t,x), y∈Ω

u(s, y)

which is again the case for ũ = max {u, u0}. By sup-convolution, it is then easy to check that this is also true
for

ũν(ξ, xd) = sup
|ζ−ξ|≤θν

{
ũ(ζ, xd)−

|ξ − ζ|2

2ν

}
at least for all t ∈ Iν = (θν , T − θν). Because ũν is uniformly Lipschitz continuous on Iν × Ω, we deduce that
ũν is also Lipschitz continuous on Iν × Ω. Finally, because the bound on ∂tũ

ν is uniform in space and time,
we deduce that ũν is Lipschitz continuous on [θν , T − θν ]×Ω with the same Lipschitz constants. This ends the
proof of the lemma.

4. The comparison principle on a half space

This Section is devoted to the proof of the comparison principle Theorem 1.1.

Proof of Theorem 1.1. The strategy of the proof is similar to the one of the note [1] but need technical adapta-
tions. We first follow the proof of the comparison principle in [9], but then modify the proof on the boundary,
introducing the twin blow-ups method. Let η, θ > 0 and consider

M(θ) := sup
{
Ψ(ξ, ζ, xd), xd ∈ [0,+∞), ξ, ζ ∈ [0, T )× Rn−1, |ξ − ζ| ≤ θ

}
(4.1)
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with ζ = (s, x′), x = (x′, xd) and

Ψ(ξ, ζ, xd) := ũ(ξ, xd)− v(ζ, xd)−
η

T − s
, ũ = max {u, u0} , u0(t, x) := u0(X)− CT =: u0(x)

where we choose carefully η
T−s instead of η

T−t , because we want to do later a doubling of variables which looks
like a sup-convolution (in particular in time) to the function ũ.

We want to prove that M := limθ→0 M(θ) ≤ 0. Assume by contradiction that

M > 0. (4.2)

Step 0. Reduction to u0 Lipschitz continuous
By assumption, the initial data u0 is uniformly continuous. We follow the line of Case 2 of the proof of Lemma 3.1.
We first extend u0 by the value u0(x

′, 0) for z = xd ≤ 0 and x′ ∈ Rn−1. For the ball B1 = B1(0), we then consider
a smooth nonnegative function φ satisfying φ = 0 on Rn\B1 with

∫
Rn φ(x)dx = 1, and for β > 0, we set the

convolution u0,β := φβ ⋆ u0 with φβ(x) =
1
βnφ(

x
β ). Then we can insure that

|u0,β − u0| ≤ ω0(β), |Du0,β | ≤ Lβ

where ω0 is the modulus of continuity of u0 and Lβ is some constant.
We have in particular

u− ω0(β) ≤ u0,β ≤ v + ω0(β) on {0}t × Ω.

Hence the problem is reduced to replace the quantities (u, u0, v) by (u − ω0(β), u0,β , v + ω0(β) and M by
M − 2ω0(β), and keep CT unchanged. Therefore fixing some β := β1 > 0 small enough such that 2ω0(β) < M ,
we see that we can redefine u, u0, v and assume without loss of generality that u0 is Lipschitz continuous, say
(forgetting now β) for some Lipschitz constant L0, with M > 0.

Step 1. Doubling naively the space variables
We first consider a space penalization and standard doubling of variables in space and time, but we distinguish
the tangential variables from the normal variable. To this end, we introduce parameters α, ν, δ > 0 and set

Mν,α,δ := sup
(t,x),(s,y)∈[0,T )×Ω

Ψν,α,δ(t, x, s, y)

with for ξ = (t, x′), ζ = (s, y′), x = (x′, xd), y = (y′, yd)

Ψν,α,δ(t, x, s, y) := ũ(t, x)− v(s, y)− αg(y)− η

T − s
− |(t, x′)− (s, y′)|2

2ν
− |xd − yd|2

2δ
, g(y) :=

y2

2
(4.3)

which satisfies lim inf
α→0

{
lim inf
δ→0

Mν,α,δ

}
≥ M > 0. Hence we see that (independently on ν > 0) for α > 0 small

enough, and for δ > 0 small enough (say δ ∈ (0, δα]), we get

Mν,α,δ ≥ M/2 > 0. (4.4)

In particular, the maximum is reached at some point that (X̄δ, Ȳδ) = (t̄δ, x̄δ, s̄δ, ȳδ) and we claim that we have
the following estimate.
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Lemma 4.1 (Bounds on any optimizing sequence). Given T,CT > 0, there exists η > 0 small enough such that
the following holds true. Let X,Y ∈ [0, T )× Ω with X = (t, x), Y = (s, y) be such that

0 < Ψν,α,δ(X,Y ).

Then for ν, δ > 0 small enough (depending on η > 0), we have

t, s ∈ [τη, T − τη], τη :=
η

4CT

αg(y) +
η

T − s
+

|t− s|2

2ν
≤ 3CT

|x′ − y′| ≤

√
2ν

{
CT +

δL2
0

4

}
+ 2νL0

|xd − yd| ≤

√
2δ

{
CT +

νL2
0

4

}
+ 2δL0.

This result is standard but since we need precise constants in the estimation, we postponed the proof.

Step 2. When the doubled normal variable converges to a single variable
Step 1 shows that up to extract a subsequence, we have for Bρα = Bρα(0) and for ν small enough,

(X̄δ, Ȳδ) → (X̄, Ȳ ) ∈
(
[τη, T − τη]×Bρα

)2
as δ → 0 where ρα := 2

√
6CT

α
, (4.5)

with X̄ = (t̄, x̄′, x̄d) = (ξ̄, x̄d), Ȳ = (s̄, ȳ′, ȳd) = (ζ̄, ȳd), ȳd = x̄d, and

αg(ȳ) +
η

T − s̄
+

|t̄− s̄|2

2ν
≤ 3CT and |x̄′ − ȳ′| ≤

√
2νCT + 2νL0 = oν(1) → 0 as ν → 0

where the last bound follows from estimate of Lemma 4.1. Moreover, we have

0 < M/2 ≤ Mν,α,δ → Mν,α := sup
X,Y ∈[0,T )×Ω

Ψν,α(X,Y ) = Ψν,α(X̄, Ȳ ) as δ → 0

with

Ψν,α(t, x, s, y) :=

 ũ(t, x′, xd)− v(s, y′, xd)− αg(y)− η

T − s
− |(t, x′)− (s, y′)|2

2ν
if xd = yd

−∞ if xd ̸= yd.

From the fact that Mν,α → Mν,0 as α → 0 (with obvious definitions), we deduce that all maximizer in the
definition of Mν,α satisfies

lim
α→0

αg(ȳ) = 0. (4.6)

Moreover we have

lim
ν→0

(
lim
α→0

Mν,α

)
= M = lim

θ→0
M(θ)
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where M(θ) is defined in (4.1). This also implies that

lim
ν→0

(
lim
α→0

|(t̄, x̄′)− (s̄, ȳ′)|2

ν

)
= 0. (4.7)

We now prove that X̄ ∈ {ũ > u0}. Assume by contradiction that ũ(X̄) = u0(X̄). Then

Ψν,α(X̄, Ȳ ) ≤ u0(X̄)− v(Ȳ )− |x̄′ − ȳ′|2

2ν

which implies (using the a priori bound v ≥ u0)

0 < M/4 ≤ Mν,α = Ψν,α(X̄, Ȳ )

≤ u0(x̄)− u0(ȳ)−
|x̄′ − ȳ′|2

2ν

≤ L0|x̄′ − ȳ′| − |x̄′ − ȳ′|2

2ν
.

(4.8)

This leads to a contradiction as ν → 0. Hence

X̄ ∈ {ũ > u0} . (4.9)

This implies also that for δ small enough X̄δ ∈ {ũ > u0} .

Step 3: proof that x̄d = 0
By contradiction, we assume that we are in the standard case x̄d > 0. Then we also have (x̄δ)d, (ȳδ)d > 0 and

the viscosity inequalities with p̄δ :=
(

x̄′
δ−ȳ′

δ

ν , (x̄δ)d−(ȳδ)d
δ

)


t̄δ−s̄δ
ν +H(X̄δ, p̄δ) ≤ 0 because X̄δ ∈ {ũ > u0}

− η
(T−s̄δ)2

+ t̄δ−s̄δ
ν +H(Ȳδ,−αDg(ȳδ) + p̄δ) ≥ 0.

(4.10)

We know from Lemma 4.1, that

∣∣∣∣ x̄′
δ − ȳ′δ
ν

∣∣∣∣ ≤ ν−1

{√
2ν

{
CT +

δL2
0

4

}
+ 2νL0

}

and

H(X̄δ, p̄δ) ≤ −
{
t̄δ − s̄δ

ν

}
≤

√
6CT

ν
.

Moreover, the uniform coercivity of H (see (1.4), iv)) implies the existence of some L̃ν > 0 (independent on δ,
for δ > 0 small enough, and independent on α) such that∣∣∣∣( t̄δ − s̄δ

ν
, p̄δ

)∣∣∣∣ ≤ L̃ν .
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We can then subtract the two viscosity inequalities in (4.10), and get

η

(T − s̄δ)2
≤ H(Ȳδ,−αDg(ȳδ) + p̄δ)−H(X̄δ, p̄δ).

Passing to the limit δ → 0, we get (up to extraction of a subsequence) that
(

t̄δ−s̄δ
ν , p̄δ

)
→

(
t̄−s̄
ν , p̄

)
with

p̄ =

(
x̄′ − ȳ′

ν
, p̄d

)
∈ Rd−1 × R and

(
t̄− s̄

ν
, p̄

)
∈ D̄1,+

t,x u(X̄) with

∣∣∣∣( t̄− s̄

ν
, p̄

)∣∣∣∣ ≤ L̃ν

and

η

(T − s̄)2
≤ H(Ȳ ,−αDg(ȳ) + p̄)−H(X̄, p̄) with ȳd = x̄d. (4.11)

Using assumptions (1.4) ii) and iii), this implies that (say with L := 2L̃ν and α small enough)

η

T 2
≤ ωL(αDg(ȳ)) +ω(|X̄ − Ȳ |(1 + |p̄′|+max(0, H(X̄, p̄)) ≤ ωL(αDg(ȳ)) +ω(|X̄ − Ȳ |(1 + |x̄′ − ȳ′|

ν
+

|t̄− s̄|
ν

)).

Using the fact that αDg(ȳ) → 0 as α → 0 and estimate (4.7), we get a contradiction for α and ν small enough.

Step 4: The key one-sided Lipschitz estimate
In the remaining of the proof we then have x̄d = 0. For ξ = (t, x′), ζ = (s, y′), and xd ∈ [0,+∞), we set

Ψα
ν (ξ, ζ, xd) := Ψν,α(ξ, xd, ζ, xd) = ũ(ξ, xd)− v(ζ, xd)−

η

T − s
− αg(y′, xd)−

|ξ − ζ|2

2ν

and consider

0 < M/2 ≤ Mν,α = sup
ξ,ζ∈([0,T )×Rd−1)2, xd∈[0,+∞)

Ψα
ν (ξ, ζ, xd) = Ψα

ν (ξ̄, ζ̄, x̄d). (4.12)

We define

V (s, y) := v(s, y) +
η

T − s
+ αg(y)

so that we have

∂tũ+H(X,Dũ) ≤ 0 in ((0, T )× Ω) ∩{ũ > u0}

∂tũ+min {F,H} (X,Dũ) ≤ 0 on ((0, T )× ∂Ω) ∩{ũ > u0}

− η
(T−s)2 + ∂sV +H(Y,DV − αDg) ≥ 0 in (0, T )× Ω

− η
(T−s)2 + ∂sV +max {F,H} (Y,DV − αDg) ≥ 0 on (0, T )× ∂Ω.

We now claim the following one-sided “Lipschitz” estimate

ũ(ξ, xd)− V (ζ, yd) ≤ ũ(ξ̄, x̄d)− V (ζ̄, x̄d) +
|ξ − ζ|2

2ν
− |ξ̄ − ζ̄|2

2ν
+ Lν |xd − yd| (4.13)
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where Lν is given in Lemma 3.2, and where equality holds for t = t̄, s = s̄, x′ = x̄′, y′ = ȳ′ and xd = yd = x̄d,
with X̄ = (ξ̄, x̄d), Ȳ = (ζ̄, x̄d). For clarity, the proof of (4.13) is postponed at the end of the proof of the theorem.

Step 5: the twin blow-ups.
We then consider the following twin blow-ups with small parameter ε > 0: one blow-up for ũ at the point
X̄ = (ξ̄, x̄d) and one blow-up for V at the point Ȳ = (ζ̄, x̄d),Uε(X̂) := ε−1

{
ũ(X̄ + εX̂)− ũ(X̄)

}
, Uε(0) = 0,

V ε(Ŷ ) := ε−1
{
V (Ȳ + εŶ )− V (Ȳ )

}
, V ε(0) = 0.

(4.14)

Before passing to the limit ε → 0, they satisfy for X̂ = (t̂, x̂) and Ŷ = (ŝ, ŷ)


∂t̂U

ε +H(X̄ + εX̂,Dx̂U
ε) ≤ 0 in Iεt̄ × Ω

∂t̂U
ε +min(F,H)(X̄ + εX̂,Dx̂U

ε) ≤ 0 on Iεt̄ × ∂Ω

−η̄ε + ∂ŝV
ε +H(Ȳ + εŶ ,DŷV

ε − αDyg(ȳ + εŷ)) ≥ 0 in Iεs̄ × Ω

−η̄ε + ∂ŝV
ε +max(F,H)(Ȳ + εŶ ,DŷV

ε − αDyg(ȳ + εŷ)) ≥ 0 on Iεs̄ × ∂Ω

(4.15)

with

η̄ε(ŝ) :=
η

(T − (s̄+ εŝ))2
and Iεr̄ :=

(
− r̄

ε
,
T − r̄

ε

)
for r̄ = t̄, s̄.

From (4.13), they also satisfy

Uε(ξ̂, x̂d)− V ε(ζ̂, ŷd) ≤ Lν |x̂d − ŷd|+ b̄ · (ξ̂ − ζ̂) + ε
|ξ̂ − ζ̂|2

2ν
with b̄ :=

ξ̄ − ζ̄

ν
. (4.16)

We then define the following half-relaxed limits U0 := lim sup
ε→0

∗Uε, U0(0) ≥ 0,

V 0 := lim inf
ε→0

∗V
ε, V 0(0) ≤ 0.

Passing to the limit in (4.16), we get

U0(ξ̂, x̂d)− V 0(ζ̂, ŷd) ≤ Lν |x̂d − ŷd|+ b̄ · (ξ̂ − ζ̂), (4.17)

which implies in particular that U0(0) = 0 = V 0(0). Passing to the limit in (4.15) and using the discontinuous
stability of viscosity solutions, we also get

∂t̂U
0 +H(X̄,Dx̂U

0) ≤ 0 in (R× Ω) ∩
{
|U0| < +∞

}
∂t̂U

0 +min(F,H)(X̄,Dx̂U
0) ≤ 0 on (R× ∂Ω) ∩

{
|U0| < +∞

}
−η̄ + ∂ŝV

0 +H(Ȳ , DŷV
0 − αDyg(ȳ)) ≥ 0 in (R× Ω) ∩

{
|V 0| < +∞

}
−η̄ + ∂ŝV

0 +max(F,H)(Ȳ , DŷV
0 − αDyg(ȳ)) ≥ 0 on (R× ∂Ω) ∩

{
|V 0| < +∞

} (4.18)

with η̄ := η
(T−s̄)2 .
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Step 6: the 1D problem.
We now define the following functions on [0,+∞) as the supremum/infimum in the tangential variables of the
functions defined in R× Ω,

u(x̂d) := sup
ξ̂∈Rd

{
U0(ξ̂, x̂d)− b̄ · ξ̂

}
, v(ŷd) := inf

ζ̂∈Rd

{
V 0(ζ̂, ŷd)− b̄ · ζ̂

}
.

From (4.17), these functions satisfy

−∞ ≤ −Lν |x̂d − ŷd|+ u(x̂d) ≤ v(ŷd) ≤ +∞, 0 ≤ u(0) ≤ v(0) ≤ 0.

In particular, this implies that u(0) = 0 = v(0). Because of this one-sided Lipschitz inequality, this is also the
case for their semi-continuous envelopes, i.e. we have (and this is important)

−∞ ≤ −Lν |x̂d − ŷd|+ u∗(x̂d) ≤ v∗(ŷd) ≤ +∞, u∗(0) = 0 = v∗(0). (4.19)

We setHα(Y, p) = H(Y, p−αDg(ȳ)) and Fα(Y, p) = F (Y, p−αDg(ȳ)). From (4.18), we get (again from stability)
that these functions satisfy in particular for X̄ := (t̄, x̄), Ȳ := (s̄, x̄) and b̄ = (b̄0, b̄

′) ∈ R× Rd−1


b̄0 +H(X̄, b̄′, ∂x̂d

u∗) ≤ 0 in (0,+∞) ∩{|u∗| < +∞}
b̄0 +min(F,H)(X̄, b̄′, ∂x̂d

u∗) ≤ 0 in {0} ∩ {|u∗| < +∞}

−η̄ + b̄0 +Hα(Ȳ , b̄′, ∂ŷd
v∗) ≥ 0 in (0,+∞) ∩{|v∗| < +∞}

−η̄ + b̄0 +max(Fα, Hα)(Ȳ , b̄′, ∂ŷd
v∗) ≥ 0 in {0} ∩ {|v∗| < +∞} .

(4.20)

Step 7: getting a contradiction from structural assumptions.
We now apply Corollary 2.5. In order to do so, we now set z = x̂d = ŷd and consider

pd := lim sup
[0,+∞)∋z→0

u∗(z)

z
, p

d
:= lim inf

[0,+∞)∋z→0

v∗(z)

z
, ad := min(p

d
, pd), bd := max(p

d
, pd)

and we get that there exists pd ∈ [ad, bd] ∩ R ̸= ∅ such that either

b̄0 +H(X̄, b̄′, pd) ≤ 0 < η̄ ≤ Hα(Ȳ , b̄′, pd)−H(X̄, b̄′, pd)

or

b̄0 +max(F,H)(X̄, b̄′, pd) ≤ 0 < η̄ ≤ Fα(Ȳ , b̄′, pd)− F (X̄, b̄′, pd).

One of these facts are true along a subsequence ν → 0. In the first case, we get from the assumption on the
Hamiltonian H, see (1.4) ii), that (using p̄′ = b̄′) and again L := 2L̃ν for α small enough,

η̄ ≤ Hα(Ȳ , b̄′, pd)−H(X̄, b̄′, pd) ≤ ω
(
|X̄ − Ȳ | ·

[
1 + |b̄′|+max

{
0, H(X̄, b̄′, pd)

}])
+ ωL(αDg(ȳ))

≤ ω
(
|ξ̄ − ζ̄| ·

[
1 + |b̄′|+max

{
0,−b̄0

}])
+ ωL(αDg(ȳ))

≤ ω

(
2
|ξ̄ − ζ̄|2

ν
+ |ξ̄ − ζ̄|

)
+ ωL(αDg(ȳ)) → 0 as α → 0, and then ν → 0
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where we have used the expression of b̄ =
ξ̄ − ζ̄

ν
in the third line, and (4.7) in the last line. Contradiction because

η̄ ≥ η/T 2 > 0.
From the assumption on the function F , see (1.5) ii), we get a similar contradiction in the second case,

η̄ ≤ Fα(Ȳ , b̄′, pd)− F (X̄, b̄′, pd) ≤ ω
(
|ξ̄ − ζ̄| ·

[
1 + |b̄′|+max

{
0,max {F,H} (X̄, b̄′, pd)

}])
+ ωL(αDg(ȳ))

≤ ω
(
|ξ̄ − ζ̄| ·

[
1 + |b̄′|+max

{
0,−b̄0

}])
+ ωL(αDg(ȳ))

≤ ω

(
2
|ξ̄ − ζ̄|2

ν
+ |ξ̄ − ζ̄|

)
+ ωL(αDg(ȳ)) → 0 as α → 0, and then ν → 0.

We conclude that M ≤ 0. Recalling that

M = sup
t∈[0,T ),x∈Ω

{
ũ(t, x)− v(t, x)− η

T − t

}
≤ 0,

it is enough to let η → 0 to get u ≤ ũ ≤ v as desired.

Back to Step 3: proof of the key one-sided Lipschitz estimate (4.13)
We now justify (4.13). Following Lemma 3.2, we extend ũ and consider

Ũν(ζ, xd) := sup
ξ∈R×Rd−1

{
ũ(ξ, xd)−

|ζ − ξ|2

2ν

}

and there exists some (possibly non unique) ξ̄ζ ∈ [s− θν , s+ θν ]×Rd−1 such that Ũν(ζ, xd) = ũ(ξ̄ζ , xd)− |ξ̄ζ−ζ|2
2ν .

If s ∈ [θν , T − θν ], then we see that ξ̄ζ ∈ (0, T )× Rd−1 and we also have

Ũν(ζ, xd) := sup
ξ∈[0,T )×Rd−1

{
ũ(ξ, xd)−

|ξ − ζ|2

2ν

}
.

In particular for (ζ, xd) = (ζ̄, x̄d), we can choose ξ̄ζ̄ = ξ̄ where ξ̄ζ̄ is given by Lemma 3.2 and X̄ = (ξ̄, x̄d),

Ȳ = (ζ̄, x̄d) appear in (4.5). Now we choose ν > 0 small enough such that θν < τη, and we set Iν := (θν , T − θν).
Moreover we have for all ζ ∈ Iν × Rd−1, yd ∈ [0,+∞),

Ũν(ζ, yd)− V (ζ, yd) ≤ sup
ξ∈[0,T )×Rd−1, xd∈[0,+∞)

Ψν,α(ξ, ζ, yd) = Ψν,α(ξ̄, ζ̄, x̄d) = Ũν(ζ̄, x̄d)− V (ζ̄, x̄d).

Now from Lemma 3.2, we also know that Ũν is Lν-Lipschitz, and then Ũν(ζ, xd) − Ũν(ζ, yd) ≤ Lν |xd − yd|,
which implies

Ũν(ζ, xd)− V (ζ, yd) ≤ Ũν(ζ̄, x̄d)− V (ζ̄, x̄d) + Lν |xd − yd|

which gives exactly (4.13). This ends the proof of the theorem.

We now turn to the proof of Lemma 4.1.

Proof of Lemma 4.1. Recall that we have

ũ(t, x) ≤ u0(x) + CT , v(t, x) ≥ u0(x)− CT .



THE TWIN BLOW-UP METHOD FOR HAMILTON–JACOBI EQUATIONS IN HIGHER DIMENSION 21

Hence

Ψν,α,δ(t, x, s, y) ≤ 2CT +Bδ(x, y)− αg(y)− η

T − s
− |t− s|2

2ν

with

Bδ(x, y) :=

{
u0(x)− u0(y)−

|xd − yd|2

2δ
− |x′ − y′|2

2ν

}
≤ ϕν(|x′ − y′|) + ϕδ(|xd − yd|)

and

ϕδ(r) := L0r −
r2

2δ
≤ δL2

0

2
.

Here ϕδ is concave with ϕδ(rδ) = 0 for rδ := 2δL0. Moreover

ϕδ(r) ≤ (r − rδ)ϕ
′
δ(rδ) = (r − rδ)(L0 −

r

δ
)

i.e.

ϕδ(r) ≤ −δ−1(r − rδ)
2 for r ≥ rδ = 2δL0. (4.21)

We get in particular

0 < Ψν,α,δ(X,Y ) ≤ 2CT + ϕδ(|xd − yd|) + ϕν(|x′ − y′|)

and then

0 < Ψν,α,δ(X,Y ) ≤ 2CT + ϕδ(|xd − yd|) +
νL2

0

2

which implies from (4.21) that

|xd − yd| ≤

√
2δ

{
CT +

νL2
0

4

}
+ 2δL0 (4.22)

and symmetrically that

|x′ − y′| ≤

√
2ν

{
CT +

δL2
0

4

}
+ 2νL0. (4.23)

We also deduce from 0 < Ψν,α,δ(X,Y ) that

αg(y) +
η

T − s
+

|t− s|2

2ν
≤ 2CT +

(ν + δ)L2
0

2
≤ 2CT +

η

T
≤ 3CT (4.24)
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for η > 0 small enough (the size of η depending on CT and T , but not on ν, α, δ), and for δ, ν > 0 small enough
(for a size depending on η). Therefore we have

|tk − sk| ≤ θ̄ν := 3
√
νCT (4.25)

and

T − sk >
η

3CT
, T − tk >

η

3CT
− θ̄ν ≥ η

4CT

for ν > 0 small enough (for a size depending on η).

Similarly, from Lemma 3.1 on the barriers (in particular using Case 1 of the proof, for Lipschitz initial data
u0), we know that there exists some λ > 0 such that

u(t, x) ≤ u0(x) + λt, v(s, y) ≥ u0(y)− λs.

Hence

Ψν,α,δ(Pk) ≤ λ(t+ s) + L0|x− y| − η

T
≤ λ(tk + sk)−

2η

3T

where we have used bound (4.22)–(4.23) for δ, ν > 0 small enough (for a size depending on η > 0). Therefore

max(t, s) >
η

3λT
, min(t, s) >

η

3λT
− θ̄ν ≥ η

4λT

for ν > 0 small enough (for a size depending on η). Up to increase λ or CT (and decrease ν > 0 if necessary),
we can assume that

λT ≡ CT .

Setting

τη :=
η

4λT
=

η

4CT

and for ν > 0 small enough, we see that

X,Y ∈ [τη, T − τη]× Ω.

This gives the result with (4.22), (4.23) and (4.24). This ends the proof of the lemma.

5. The comparison principle on a bounded domain

Let us consider an open set Ω satisfying for, d ≥ 1,

Ω ⊂ Rd is a bounded open set with C1 boundary and outward unit normal n(x). (5.1)

In particular, the boundary ∂Ω is locally the graph of some C1 function.
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Let T > 0. We consider the following equation for u(t, x) with X := (t, x) ∈ [0, T )× Ω

ut +H(X,Du) = 0 on (0, T )× Ω (5.2)

and the boundary condition

ut + F (X,Du) = 0 on (0, T )× ∂Ω. (5.3)

We also consider an initial boundary condition

u(0, ·) = u0 on {0} × Ω.

The rigorous meaning of desired boundary conditions is the following,{
ut +min(F,H)(X,Du) ≤ 0 on (0, T )× ∂Ω (for subsolutions)
ut +max(F,H)(X,Du) ≥ 0 on (0, T )× ∂Ω (for supersolutions)

(5.4)

In the case of a bounded C1 domain Ω, as far as Hamiltonians are concerned, we assume the following
structure conditions, where ω, ωL are moduli of continuity. For H, we assume

i) (Continuity)
H : [0, T ]× Ω× Rd → R is continuous

ii) (Uniform continuity in the gradient)
For any L > 0, we have
|H(X, p)−H(X, q)| ≤ ωL(|p− q|) for all X ∈ [0, T ]× Ω, p, q ∈ [−L,L]d

iii) (Quantified continuity in time-space variables)

H(Y, p)−H(X, p) ≤ ω(|Y −X| (1 + max {0, H(X, p)})) for all

{
X,Y ∈ [0, T ]× Ω
p ∈ Rd

iv) (Uniform coercivity)
lim

|p|→+∞
inf

X∈[0,T ]×Ω
H(X, p) = +∞

(5.5)

and similarly for F , we consider

i) (Continuity)
F : [0, T ]× ∂Ω× Rd → R is continuous
and the map q 7→ F (X, p− qn(x)) is nonincreasing

ii) (Uniform continuity in the gradient)
For any L > 0, we have
|F (X, p)− F (X, q)| ≤ ωL(|p− q|) for all X ∈ [0, T ]× ∂Ω, p, q ∈ [−L,L]d

iii) (Continuity in the tangential variables)

F (Y, p)− F (X, p) ≤ ω(|Y −X| (1 + max {0,max(F,H)(X, p)})) for all

{
X,Y ∈ [0, T ]× ∂Ω
p ∈ Rd

iv) (Uniform normal semi-coercivity)
For any L > 0, we have
lim

q→−∞
inf

X∈[0,T ]×∂Ω, p∈[−L,L]d
F (X, p− qn(x)) = +∞.

(5.6)

We then have the following theorem.
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Theorem 5.1 (Comparison principle on a bounded open set Ω). Let T > 0, Ω satisfying (5.1) and assume that
H,F satisfy respectively (5.5) and (5.6). Assume that the initial data u0 is continuous. Let u, v : [0, T )×Ω → R
be two functions with u upper semi-continuous and v lower semi-continuous. Assume that u (resp. v) is a
viscosity subsolution (resp. supersolution) of (5.2)–(5.3). Assume moreover that there exists a constant CT > 0
such that

u ≤ u0 + CT and v ≥ u0 − CT on [0, T )× Ω.

If

u(0, ·) ≤ u0 ≤ v(0, ·) on {0} × Ω,

then

u ≤ v in [0, T )× Ω.

A straightforward consequence of Theorem 5.1 is the following existence and uniqueness result.

Corollary 5.2 (Existence and uniqueness). Let Ω = B(0, 1) be the unit ball of Rd and of outward unit normal n.
Let α, β, γ ∈ R1+d and set H(X, p) := a(X)|p| and F (X, p) := max {0, b(X)p · n(x)} with a(X) := 2+sin(α ·X),
b(X) := 2+sin(β ·X), u0(x) := sin(γ · (0, x)) for X = (t, x). Then there exists a unique solution u of (5.2)–(5.3)
with initial data u0.

In order to give the proof of Theorem 5.1, we need the following lemma.

Lemma 5.3 (Action of a diffeomorphism on the structural conditions satisfied by H,F ). Assume that Ω has
the regularity given in assumption (5.1). For T > 0, we set QT := (0, T )×Ω with Ω ⊂ Rd and for P = (p0, p) ∈
R× Rd, we set

H0(Y, P ) := p0 +H(Y, p), F0(Y, P ) := p0 + F (Y, p).

We say by extension that H0, F0 satisfy respectively (5.5) and (5.6), if H,F do it.
Assume that H0, F0 satisfy respectively (5.5) and (5.6) and for x0 ∈ ∂Ω, consider, locally around x0, a C1-

diffeomorphism Φ from Ω to Ω̃ with Φ(x0) = y0 ∈ ∂Ω̃, that we extend by the identity on the time variable. Still

denoting by Φ this diffeomorphism, we assume that Φ maps locally QT to Q̃T ⊂ R1+d with locally Φ(∂QT ) =
∂Q̃T . For Y ∈ Q̃T and P ∈ R1+d, we set{

H̃0(Y, P ) := H0(Φ
−1(Y ), P ·B(Y )) locally around [0, T ]× {y0}, on Q̃T

F̃0(Y, P ) := F0(Φ
−1(Y ), P ·B(Y )) locally around [0, T ]× {y0}, on ∂Q̃T

(5.7)

with

(P ·B)j =

d∑
i=0

Pi

{
(DjΦi) ◦ Φ−1

}
for j = 0, . . . , d. (5.8)

Then H̃0 and F̃0 satisfy respectively (5.5) and (5.6) locally around [0, T ]× {y0}, with some suitable moduli.

Proof. We explain the arguments for H̃0 since the ones for F̃0 are similar. We first notice that (5.7) and
(5.8) are introduced such that if u(X) solves (5.2), i.e. H0(ut, Dxu) = 0, then ũ(Y ) := u ◦ Φ−1(Y ) solves
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H̃0(ũt, Dyũ) = 0. Indeed (5.8) is obtained after taking the derivative of u(X) = (ũ ◦ Φ)(X), evaluated at Y :=

Φ(X) = (t, 0) + Φ(0, x) for X = (t, x). This implies that H̃0 satisfies (5.5) with new moduli
ω̃L := ωL̃ with L̃ := ||B||∞ · L and ||B||∞ := sup

|ξ|≤1, X∈QT

ξ ·DΦ(X),

ω̃(r) = ω(r̃) with r̃ := K · r and K := sup
|ξ|≤1, Y ∈Q̃T

ξ ·DΦ−1(Y ).

We now turn to the proof of Theorem 5.1.

Proof of Theorem 5.1. Up to proceed as in Step 0 of the proof of Theorem 1.1, we can assume that u0 belongs
to C1(Ω).

We set

ũ := max {u, u0} , u0(t,X) = u0(X)− CT = u0(X)

and

M := sup
(t,x)∈[0,T )×Ω

Ψ(t, x) with Ψ(t,X) = ũ(t, x)− v(t, x)− η

T − t
.

Assume by contradiction that

0 < M = Ψ(X0) with X0 := (t0, x0) ∈ [0, T )× Ω.

By assumption, we have t0 > 0. If x0 ∈ Ω, then we can localize, and then get a contradiction by standard
method of doubling of variables. Hence assume that x0 ∈ ∂Ω. Up to modify slithly the functions, we can assume
that the suppremum is strict at X0. Up to change the coordinates, we can also assume that

x0 = 0, Ω ∩Br(x0) =
{
x = (x′, xd) ∈ Rd−1 × R, xd > h(x′)

}
∩Br(x0), h(0) = 0 = Dh(0).

Setting

x = Φ(y) with y = (y′, yd) = Φ−1(x) := (x′, xd − h(x′)) and Ũ(t, y) := ũ(t,Φ(y)), V (t, y) := v(t,Φ(y))

we see that Φ is locally invertible and its inverse is a C1 map, given, for some ρ > 0 small enough, by

Φ : K+
ρ → Ω ∩Br(x0) with K+

ρ := [−ρ, ρ]d−1 × [0, ρ].

Hence we have

x = (x′, xd) = (y′, yd + h(y′)) = Φ(y), ũ(t, x) = Ũ(t,Φ−1(x)), v(t, x) = V (t,Φ−1(x)),

and 
Dxd

ũ(t, x) = Dyd
Ũ(t,Φ−1(x)),

Dx′ ũ(t, x) = Dy′Ũ(t,Φ−1(x))−
{
Dyd

Ũ(t,Φ−1(x))
}
·Dx′h(x′),

ũt(t, x) = Ũt(t,Φ
−1(x)).
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This gives the new Hamiltonian H̃ and boundary function F̃ for Y = (t, y), X = (t, x) and x = Φ(y)

H̃(Y,DŨ(Y )) = H(X,Dũ(X)),

F̃ (Y,DŨ(Y )) = F (X,Dũ(X)), for y = (y′, 0)

which are defined by (for y := (y′, yd))

H̃(t, y, p′, pd) := H(t,Φ(y), p′ − pdDy′h(y′), pd),

F̃ (t, y, p′, pd) := F (t,Φ(y), p′ − pdDy′h(y′), pd), for y = (y′, 0).

Hence Ũ and V are respectively sub/supersolutions of{
Wt + H̃(Y,DW ) = 0 on (0, T )× [−ρ, ρ]d−1 × [0, ρ]

Wt + F̃ (Y,DW ) = 0 on (0, T )× [−ρ, ρ]d−1 × {0}

We now apply Lemma 5.3 to insure that H̃ and F̃ satisfy (locally) the same structural conditions than H and
F . Moreover, we have

M = sup
(t,y)∈[0,T )×K+

ρ

Ψ̃(t, y) = Ψ̃(t0, 0) with Ψ̃(t, y) := Ũ(t, y)− V (t, y)− η

T − t
.

Up to add some small and smooth tangential correction term |t− t0|2+ |y′|2 to V (here we neglect this correction
which can be treated in a very classical way), we can assume that

Ψ̃(t, y) < M for all (t, y) ∈
(
[0, T )×K+

ρ

)
\ {(t0, 0)} .

This implies that for ξ = (t, x′), ζ = (s, y′)

M(θ) := sup

{
Ũ(ξ, yd)− V (ζ, yd)−

η

T − s
, ξ, ζ ∈ [0, T )× [−ρ, ρ]d−1, yd ∈ [0, ρ], |ξ − ζ| ≤ θ

}
with

lim
θ→0+

M(θ) = M > 0.

We are then back to the begining of the proof of Theorem 1.1, which leads to a contradiction. Again, we
conclude that M ≤ 0 for all η → 0+, and then deduce that Ũ ≤ V , and then u ≤ v. This ends the proof of the
theorem.
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