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THE NEUMANN CONDITION FOR THE SUPERPOSITION

OF FRACTIONAL LAPLACIANS

Serena Dipierro, Edoardo Proietti Lippi, Caterina Sportelli*

and Enrico Valdinoci

Abstract. We present a new functional setting for Neumann conditions related to the superposition
of (possibly infinitely many) fractional Laplace operators. We will introduce some bespoke functional
framework and present minimization properties, existence and uniqueness results, asymptotic formulas,
spectral analyses, rigidity results, integration by parts formulas, superpositions of fractional perimeters,
as well as a study of the associated heat equation.
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1. Introduction

1.1. Superposition of fractional Laplacians and Neumann conditions

Nonlocal operators have significantly impacted contemporary research, playing a crucial role in both the-
oretical studies and practical applications across various fields of applied sciences. In this trend, the analysis
of models arising from the superposition of operators of different orders is also receiving increasing attention
also to improve our understanding of complex systems with long-range interactions acting on different scales,
to allow for a more accurate and realistic representation of several physical phenomena and to possibly increase
computational power in numerical simulations.

In this paper, a novel functional framework for Neumann conditions is introduced, specifically tailored to
address the superposition of fractional Laplace operators, potentially involving an infinite (even uncountable)
number of such operators. The results obtained include, among the others, minimization properties, exis-
tence and uniqueness theorems, asymptotic behavior, spectral analyses, continuity results, integration by parts
formulas and divergence theorems, as well as a study of the associated heat equation.

The mathematical setting that we can consider with our methods is very broad but, for the sake of
concreteness, we focus on the following specific framework.

Let µ be a nonnegative and nontrivial finite (Borel) measure over (0, 1) and let α ⩾ 0. The operator that
we address here deals with the possible coexistence of a Laplacian and a possibly continuous superposition of
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fractional Laplacians, namely

Lα,µ(u) := −α∆u+

�
(0,1)

(−∆)sudµ(s). (1.1)

As customary, the notation (−∆)s stands for the fractional Laplacian, defined, for all s ∈ (0, 1), as

(−∆)s u(x) = cN,s

�
RN

2u(x)− u(x+ y)− u(x− y)

|y|N+2s
dy. (1.2)

The positive normalizing constant cN,s is chosen in such a way to provide consistent limits as s↗ 1 and as s↘ 0,
namely

lim
s↗1

(−∆)su = (−∆)1u = −∆u and lim
s↘0

(−∆)su = (−∆)0u = u.

The explicit value of cN,s does not play a major role in our paper and is given by

cN,s := −
22s−1Γ(N+2s

2 )

πN/2Γ(−s)

see e.g. [1], Definition 1.1.
In the nonlocal context, at least three notions of fractional normal derivatives have been considered. One

of them is of “geometric” type, and deals with the incremental quotient in the normal direction related to
the half of the order of the operator: this notion is typically very useful for boundary regularity, Pohozaev-type
identities, Hopf-type results, moving plane methods, symmetry results, etc. (see in particular [2–6]). This notion
gives rise to overdetermined problems when combined to Dirichlet external data, but when one allows suitable
larger function spaces, the problem with this type of Neumann condition becomes well-posed, see [7, 8].

A second notion of fractional boundary derivative arises from spectral considerations, in which, roughly
speaking, one considers, in lieu of (1.2), a different operator of fractional order obtained by eigenfunction
expansion and multiplication by powers of eigenvalues (the Neumann condition being thus encoded into the
choice of eigenfunctions, see [9–11]). The structure of this spectral operator is however quite different from that
of the integral fractional Laplacian in (1.2), see in particular [12], Section 2.3 for similarities and differences.

Another notion of fractional normal derivative has been put forth in [13] and it is nicely compatible with
energy methods and variational techniques; also it has a natural probabilistic interpretation which makes it
suitable for applications in mathematical biology (see [14, 15]). This latter notion of fractional derivative related
to (−∆)s takes the form

Nsu(x) := cN,s

�
Ω

u(x)− u(y)

|x− y|N+2s
dy. (1.3)

While the first notion of fractional derivative is strictly linked to the order of the fractional operator (or
of the induced boundary regularity) and the second to the spectral structure of the classical Laplacian, the
latter setting happens to be conveniently flexible and can deal with the case of operators of mixed order as
well. In fact, as we aim to show in this paper, it can be advantageously exploited in a very general framework
comprising also the superposition of possibly infinitely many fractional Laplacians (and possibly a continuum
of operators). The setting provided here is actually prone to further generalizations, but we present the results
in their simplest possible form. For this, we define the Neumann conditions associated to the operator Lα,µ

in (1.1) in the following way:
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Definition 1.1. We say that u satisfies the (α, µ)-Neumann conditions if



�
(0,1)

Nsu(x) dµ(s) = g(x) for all x ∈ RN \ Ω, if α = 0,

∂νu(x) = h(x) for all x ∈ ∂Ω, if µ ≡ 0,

∂νu(x) = h(x) for all x ∈ ∂Ω and�
(0,1)

Nsu(x) dµ(s) = g(x) for all x ∈ RN \ Ω, if α ̸= 0 and µ ̸≡ 0.

(1.4)

Moreover, when g ≡ 0 in RN \ Ω and h ≡ 0 on ∂Ω, we call the conditions in (1.4) as homogeneous (α, µ)-
Neumann conditions.

It is worth noting that continuous superpositions of operators of different fractional orders have been recently
considered in [16–18] in the more general case in which µ is a signed measure. We refer the interested reader
also to [19] for the case of combinations of fractional Laplacians with the “wrong sign”. However, the setting
of [16–18] is quite different from the one presented here, since it was tailored for problems subject to Dirichlet
boundary conditions, while the main focus here is about conditions of Neumann type.

1.2. Main results

As a first result, we show that the functions minimizing the integral of the Gagliardo seminorms (which will
be defined precisely in (2.1)), namely

�
(0,1)

[u]2s dµ(s),

are the ones satisfying the homogeneous Neumann condition

�
(0,1)

Nsu(x) dµ(s) = 0 (1.5)

for every x ∈ RN \ Ω (and this is interesting, because it relates the homogeneous Neumann condition directly
to a variational problem).

Theorem 1.2. Let u : RN → R with u ∈ L1(Ω). For all x ∈ RN \ Ω, we define

Eu(x) :=

�
(0,1)

cN,s

�
Ω

u(z)

|x− z|N+2s
dz dµ(s).

We set

ũ(x) :=


u(x) if x ∈ Ω,

Eu(x)

E1(x)
if x ∈ RN \ Ω,

(1.6)

where E1 stands for Eu when u ≡ 1.
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Then,

�
(0,1)

cN,s [ũ]
2
s dµ(s) ⩽

�
(0,1)

cN,s [u]
2
s dµ(s). (1.7)

We also give an existence and uniqueness result for solutions of{
Lα,µ(u) = f in Ω,

with (α, µ)-Neumann conditions.
(1.8)

In the forthcoming Section 2 we will introduce the precise functional setting for this problem, see in particular
formulas (2.3) and (2.5) for the definition of the functional spaces Hµ(Ω) and Hα,µ(Ω), respectively.

Theorem 1.3. Let Ω be a bounded Lipschitz domain. Assume that f ∈ L2(Ω), g ∈ L1(RN \Ω) and h ∈ L1(∂Ω).
Suppose that there exists ψ ∈ C2(RN ) such that ∂νψ = h on ∂Ω and

�
(0,1)

Nsψ dµ(s) = g in RN \ Ω.

Then, problem (1.8) admits a solution in Hα,µ(Ω) if and only if

�
Ω

f dx = −
�
RN\Ω

g dx− α

�
∂Ω

hdH N−1
x . (1.9)

Moreover, if (1.9) holds, the solution is unique up to an additive constant.

We observe that the statement of Theorem 1.3 is in analogy with the case µ ≡ 0 (see [20], p. 294) and with the
fractional case in which α = 0 and µ is a Dirac delta centered at some s ∈ (0, 1) (see [13], Thm. 3.9). The proof
of Theorem 1.3 follows the same strategy of [13], Theorem 3.9 and therefore it is postponed to Appendix A.

The following result deals with the behavior at infinity of functions satisfying the homogeneous Neumann
condition in RN \ Ω.

Theorem 1.4. Let Ω be a bounded open subset of RN . Let u ∈ Hµ(Ω) be a bounded function such that

�
(0,1)

Nsudµ(s) = 0 in RN \ Ω.

Then

lim
|x|→+∞

u(x) =
1

|Ω|

�
Ω

u(x) dx.

We also study the eigenvalue problem associated with our superposition operator under Neumann conditions:

Theorem 1.5. Let Ω ⊂ Rn be a bounded Lipschitz domain.
Then, there exists a sequence of eigenvalues

0 = λ1 < λ2 ⩽ λ3 . . .

with a corresponding sequence of eigenfunctions ui : Rn → R, with i ∈ {1, 2, . . . }, which provide a complete
orthogonal system in L2(Ω).
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Interestingly, the Neumann condition forces a global continuity property, as stated in the following result:

Theorem 1.6. Let Ω ⊂ RN be a domain with C1 boundary. Let u be continuous in Ω, with

�
(0,1)

Nsudµ(s) = 0 in RN \ Ω. (1.10)

Then, u is continuous in the whole of RN .

These main results will be complemented by other auxiliary results which have their own interest, such
as continuous and compact embeddings (Prop. 2.3), divergence theorems and integration by parts formulas
(Lem. 3.1 and 3.2), maximum principles (Lem. 4.3), Poincaré inequalities (Lem. 5.1), mass conservation, energy
decresingness and asymptotics for the heat equation (Props. 6.1, 6.2 and 6.3), asymptotic properties of a
normalized Neumann condition (Prop. 7.2), superpositions of fractional perimeters, etc.

1.3. Examples and possible applications

The setting that we introduce here for the Neumann conditions extends the one proposed in [13] but is also
entirely new in its wide generality. Moreover, the assumptions on the measure µ allow us to consider many
specific cases which, to the best of our knowledge, have never been addressed in the literature. We provide some
examples1 below:

� If µ = δs for some s ∈ (0, 1) and α = 0, then the operator introduced (1.1) reduces to the fractional
Laplacian, for some s ∈ (0, 1). In this case, the Neumann conditions in (1.4) turn out to be

Nsu(x) = g(x) for all x ∈ RN \ Ω.

In this case, we find exactly the setting introduced in [13];
� If µ = βδs with β > 0 and α ̸= 0, then the operator defined in (1.1) reduces to the mixed local and nonlocal
problem

Lα,µ(u) = −α∆u+ β(−∆)su (1.11)

and the Neumann conditions in (1.4) simplify to{
∂νu(x) = h(x) for all x ∈ ∂Ω,

Nsu(x) = g(x) for all x ∈ RN \ Ω.
(1.12)

The mixed operator (1.11) has been widely studied in the recent literature also in regards to elliptic
regularity [21–27], parabolic estimates [28, 29], classification and symmetry results [30], geometric and
functional inequalities [31, 32], numerical schemes [33], Aubry-Mather theory [34], transport in magnetic
fields [35], etc.
The study of this mixed operator problem under the Neumann condition (1.12) has emerged in [14, 36]
and has been further extended in [37].

� Let n ∈ N with n ⩾ 2 and consider the measure given by

µ :=

n∑
k=1

δsk . (1.13)

1As customary, δs denotes the Dirac measure concentrated at some fractional power s ∈ (0, 1).
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If α ̸= 0, the operator in (1.1) provides the superposition of a Laplacian and n nonlocal operators with
different orders, namely

Lα,µ(u) = −α∆u+

n∑
k=1

(−∆)sku.

Also, the Neumann conditions in (1.4) reduce to∂νu(x) = h(x) for all x ∈ ∂Ω,
n∑

k=1

Nsku(x) = g(x) for all x ∈ RN \ Ω.

At the best of our knowledge, this setting is new in the literature;
� If α = 0 and µ is as in (1.13), we have the superpositions of n fractional Laplacians, i.e.

Lα,µ(u) =

n∑
k=1

(−∆)sku

with the Neumann conditions in (1.4) given by

n∑
k=1

Nsku(x) = g(x) for all x ∈ RN \ Ω.

This case is also new;
� If α ̸= 0 and

µ :=

+∞∑
k=1

ckδsk , (1.14)

with ck ⩾ 0 for any k ∈ N\{0}, then we are able to address the case of a mixed order operator consisting of
a Laplacian and a convergent series of infinitely many fractional Laplacians, namely the operator in (1.1)
reads as

Lα,µ(u) = −α∆u+

+∞∑
k=1

ck (−∆)sku.

In this case, the Neumann conditions reduce to
∂νu(x) = h(x) for all x ∈ ∂Ω,
+∞∑
k=1

ck Nsku(x) = g(x) for all x ∈ RN \ Ω.

As far as we know, this problem happens to be new as well;
� If α = 0 and µ is defined as in (1.14) with ck ⩾ 0 for any k ∈ N \ {0}, then the operator in (1.1) is written
as a convergent series of nonlocal operators, that is

Lα,µ(u) =

+∞∑
k=1

ck (−∆)sku.
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Moreover, the Neumann conditions in (1.4) are given by

+∞∑
k=1

Nsku(x) = g(x) for all x ∈ RN \ Ω.

Also this case has not been explored in the existing literature;
� Given a measurable, nonnegative and not identically zero function f , we consider the continuous
superposition of fractional operators corresponding to the measure µ such that

dµ(s) := f(s) ds, (1.15)

where ds stands for the usual Lebesgue measure. In this case, if α ̸= 0, the operator in (1.1) boils down to

Lα,µ(u) = −α∆u+

� 1

0

f(s)(−∆)su ds.

With this choice, the Neumann conditions are given by∂νu(x) = h(x) for all x ∈ ∂Ω,� 1

0

f(s)Nsu(x) ds = g(x) for all x ∈ RN \ Ω.

To the best of our knowledge, the existing literature lacks of this specific case.
� If α = 0 and the measure µ satisfies (1.15), then we can cover the case of a continuous superposition of
fractional operators of the form

Lα,µ(u) =

� 1

0

f(s)(−∆)su ds

and the Neumann conditions in (1.4) reduce to

� 1

0

f(s)Nsu(x) ds = g(x) for all x ∈ RN \ Ω.

1.4. Organization of the paper

The rest of this paper is organized as follows. The functional framework needed for this paper will be presented
in Section 2.

Section 3 will put forth the integration by parts formulas, discuss minimization properties and give the proof
of Theorem 1.2.

Section 4 will make precise the notion of weak solutions and provide the proofs of Theorem 1.4.
The spectral theory and the proof of Theorem 1.5 will be contained in Section 5.
The heat equation will be discussed in Section 6 and Section 7 will be devoted to the proof of Theorem 1.6

(an alternative proof of Thm. 1.6 being showcased in Appendix E).
The connection with fractional perimeters will be presented in Section 8.
Appendix A contains the proof of Theorem 1.3.
Appendices B, C and D contain some results which easily stem from [13], Propositions 3.1, 3.7, and 4.3. For

the sake of completeness, we provide them with all the details.
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2. Functional setting

In this section, we introduce the functional setting that we work in. To maintain the discussion as simple as
possible, we follow the approach in [13]; a different approach with a more delicate choice of test spaces would
require the finer analysis put forth in [38].

We start by considering the case in which only nonlocal interactions are present, that is α = 0. To do this,
we introduce the Gagliardo seminorm, that is

[u]s :=

(
cN,s

�
Q

|u(x)− u(y)|2

|x− y|N+2s
dxdy

)1/2

, (2.1)

where Q := R2N \ (RN \ Ω)2.
Given g ∈ L1(RN \ Ω), we also define the norm

∥u∥µ :=

(
∥u∥2L2(Ω) + ∥|g|1/2u∥2L2(RN\Ω) +

1

2

�
(0,1)

[u]2s dµ(s)

)1/2

(2.2)

as well as the space Hµ(Ω) of all measurable functions such that the norm in (2.2) is finite, namely

Hµ(Ω) :=
{
u : RN → R measurable : ∥u∥µ < +∞

}
. (2.3)

To deal with the more general case, we consider functions g ∈ L1(RN \ Ω) and h ∈ L1(∂Ω) and define the
norm

∥u∥α,µ :=

(
∥u∥2L2(Ω) + ∥|h|1/2u∥2L2(∂Ω) + ∥|g|1/2u∥2L2(RN\Ω)

+ α∥∇u∥2L2(Ω) +
1

2

�
(0,1)

[u]2s dµ(s)

)1/2 (2.4)

and the space

Hα,µ(Ω) :=


H1(Ω) if µ ≡ 0,

Hµ(Ω) if α = 0,

H1(Ω) ∩Hµ(Ω) if µ ̸≡ 0 and α ̸= 0,

(2.5)

endowed with the norm in (2.4).
It is easy to check that the norms defined in (2.2) and (2.4) are induced by the scalar products

(u, v)µ :=

�
Ω

uv dx+

�
RN\Ω

|g|uv dx+

�
(0,1)

cN,s

2

�
Q

(u(x)− u(y))(v(x)− v(y))

|x− y|N+2s
dxdy dµ(s) (2.6)

and

(u, v)α,µ :=

�
Ω

uv dx+

�
∂Ω

|h|uv dH N−1
x +

�
RN\Ω

|g|uv dx+ α

�
Ω

∇u · ∇v dx

+

�
(0,1)

cN,s

2

�
Q

(u(x)− u(y))(v(x)− v(y))

|x− y|N+2s
dxdy dµ(s),

(2.7)

respectively.
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Proposition 2.1. (Hα,µ(Ω), ∥ · ∥α,µ) is a Hilbert space.

Proof. We observe that

(Hµ(Ω), ∥ · ∥µ) is a Hilbert space. (2.8)

(see Appendix B). Hence, the completeness of Hα,µ(Ω) follows from its definition in (2.5) and 2.8.

Accordingly, observing that (2.7) is a bilinear form and ∥u∥α,µ = (u, u)
1/2
α,µ, it only remains to show that

if ∥u∥α,µ = 0, then u = 0 a.e. in RN (or, if µ ≡ 0, in Ω).
To this aim, we observe that, if ∥u∥α,µ = 0, then ∥u∥L2(Ω) = 0, and thus u = 0 a.e. in Ω. Hence, if µ ≡ 0, the

proof is concluded. Otherwise, we also have

�
(0,1)

(
cN,s

�
Q

|u(x)− u(y)|2

|x− y|N+2s
dxdy

)
dµ(s) = 0,

which gives

�
Q

|u(x)− u(y)|2

|x− y|N+2s
dxdy = 0 for any s ∈ supp(µ).

Hence |u(x)− u(y)| = 0 for any (x, y) ∈ Q. In particular, for a.e. x ∈ Rn \ Ω and y ∈ Ω, we get

u(x) = u(x)− u(y) = 0,

which means that u = 0 for a.e. x ∈ RN . This concludes the proof.

As a next step, we aim to prove an embedding result for the spaces Hµ(Ω) and Hα,µ(Ω).
We notice that, since µ is nontrivial, there exists s♯ ∈ (0, 1) such that

µ([s♯, 1)) > 0. (2.9)

We will show that the space Hµ(Ω) is continuously embedded in L
2∗s♯ (Ω), with2

2∗s♯ :=
2N

N − 2s♯
. (2.10)

For this, we provide a preliminary result.

Lemma 2.2. Let s ∈ (0, 1). Let also s ⩽ s1 ⩽ s2 < 1 and Ω be an open subset of RN . Let u : Ω → R be a
measurable function. Then,

∥u∥2L2(Ω) +

�
Ω×Ω

|u(x)− u(y)|2

|x− y|N+2s1
dxdy ⩽ c

(
∥u∥2L2(Ω) +

�
Ω×Ω

|u(x)− u(y)|2

|x− y|N+2s2
dxdy

)
,

where c = c(N, s) ⩾ 1.
Explicitly, one can take

c(N, s) := 1 +
2ωN−1

s
,

2We remark that some arbitrariness is allowed in the choice of s♯ in (2.10), hence the results obtained will be stronger if one
picks s♯ “as large as possible” but still verifying (2.9).
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where ωN−1 denotes the measure of the unit sphere in RN .

Proof. We write

�
Ω×Ω

|u(x)− u(y)|2

|x− y|N+2s1
dx dy

=

�
(Ω×Ω)∩{|x−y|<1}

|u(x)− u(y)|2

|x− y|N+2s1
dx dy +

�
(Ω×Ω)∩{|x−y|⩾1}

|u(x)− u(y)|2

|x− y|N+2s1
dxdy.

Notice that, since s1 ⩽ s2, we have

�
(Ω×Ω)∩{|x−y|<1}

|u(x)− u(y)|2

|x− y|N+2s1
dxdy ⩽

�
(Ω×Ω)∩{|x−y|<1}

|u(x)− u(y)|2

|x− y|N+2s2
dxdy

⩽
�

Ω×Ω

|u(x)− u(y)|2

|x− y|N+2s2
dxdy.

(2.11)

Moreover, since N + 2s1 > N and s1 ⩾ s > 0, we have

�
(Ω×Ω)∩{|x−y|⩾1}

|u(x)− u(y)|2

|x− y|N+2s1
dx dy

⩽ 2

(�
Ω

|u(x)|2dx
�
|z|⩾1

dz

|z|N+2s1
+

�
Ω

|u(y)|2dy
�
|z|⩾1

dz

|z|N+2s1

)
⩽

2ωN−1

s
∥u∥2L2(Ω).

(2.12)

Thus, combining (2.11) and (2.12), we have

∥u∥2L2(Ω) +

�
Ω×Ω

|u(x)− u(y)|2

|x− y|N+2s1
dx dy ⩽

(
1 +

2ωN−1

s

)
∥u∥2L2(Ω) +

�
Ω×Ω

|u(x)− u(y)|2

|x− y|N+2s2
dxdy

⩽ c

(
∥u∥2L2(Ω) +

�
Ω×Ω

|u(x)− u(y)|2

|x− y|N+2s2
dxdy

)
,

as desired.

Thanks to Lemma 2.2, we are able to prove an embedding result for the space Hµ(Ω) defined in (2.3).

Proposition 2.3. Let Ω be a bounded, open set in RN with Lipschitz boundary. Let s♯ be as in (2.9). Then,
the space Hµ(Ω) is continuously embedded in Hs♯(Ω).

In particular, Hµ(Ω) is compactly embedded in Lq(Ω) for any q ∈ [1, 2∗s♯).

Proof. We observe that

∥u∥2L2(Ω) +

�
(0,1)

cN,s

2

�
Ω×Ω

|u(x)− u(y)|2

|x− y|N+2s
dx dy dµ(s) ⩽ ∥u∥2µ, (2.13)

thanks to (2.2). Then, we use Lemma 2.2 with s1 := s♯ and s2 := s ∈ [s♯, 1). By (2.9), without loss of generality
we can assume that there exists δ > 0 such that µ([s♯, 1− δ]) > 0. We set

m := min
s∈[s♯,1−δ]

{
1

µ([s♯, 1− δ])
,
cN,s

2

}
.
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From this, we have

∥u∥2L2(Ω) +

�
(0,1)

cN,s

2

�
Ω×Ω

|u(x)− u(y)|2

|x− y|N+2s
dx dy dµ(s)

⩾ ∥u∥2L2(Ω) +

�
[s♯,1−δ]

cN,s

2

�
Ω×Ω

|u(x)− u(y)|2

|x− y|N+2s
dx dy dµ(s)

=

�
[s♯,1−δ]

(
∥u∥2L2(Ω)

µ([s♯, 1− δ])
+
cN,s

2

�
Ω×Ω

|u(x)− u(y)|2

|x− y|N+2s
dxdy

)
dµ(s)

⩾ m

�
[s♯,1−δ])

(
∥u∥2L2(Ω) +

�
Ω×Ω

|u(x)− u(y)|2

|x− y|N+2s
dx dy

)
dµ(s)

⩾
m

C(N, s♯)

�
[s♯,1−δ]

(
∥u∥2L2(Ω) +

�
Ω×Ω

|u(x)− u(y)|2

|x− y|N+2s♯
dxdy

)
dµ(s)

⩾ C1∥u∥2Hs♯ (Ω),

(2.14)

for some C1 = C1(N, s♯, δ) > 0.
Now, combining inequalities (2.13) and (2.14) we arrive at

∥u∥2Hs♯ (Ω) ⩽ C∥u∥2µ,

up to renaming the constant C.
This proves that Hµ(Ω) is continuously embedded in Hs♯(Ω), as claimed. Finally, the compact embedding

follows from [39], Corollary 7.2 and this concludes the proof.

As a consequence of Proposition 2.3, we derive a suitable compact embedding result for the space Hα,µ(Ω)
as well.

Corollary 2.4. Let Ω be a bounded, open set in RN with Lipschitz boundary. Assume that α ̸= 0. Then, the
space Hα,µ(Ω) is continuously embedded in H1(Ω).

In particular, we have that Hα,µ(Ω) is compactly embedded in Lq(Ω) for any q ∈ [1, 2∗), where

2∗ :=
2N

N − 2
.

Proof. Let α ̸= 0. We observe that, by the definition of the norm in (2.4), if u ∈ Hα,µ(Ω), then

∥u∥H1(Ω) ⩽ C∥u∥α,µ,

for a suitable constant C > 0.

3. Integration by parts formulas and minimization property

In this section, we will prove some auxiliary formulas which will be useful in the forthcoming results.
To start, we give the analogue of the divergence theorem. We point out that the assumptions required in the

next two results are significantly more general than the ones required in [13], Lemma 3.2 and Lemma 3.3.

Lemma 3.1. Let u : RN → R be such that u ∈ C2(Ω) and

(−∆)su ∈ L1(Ω× (0, 1)). (3.1)
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Assume that the function

Ω× (RN \ Ω)× (0, 1) ∋ (x, y, s) 7→ cN,s
u(x)− u(y)

|x− y|N+2s
belongs to L1(Ω× (RN \ Ω)× (0, 1)). (3.2)

Then,

�
(0,1)

�
Ω

(−∆)su(x) dxdµ(s) =

�
(0,1)

�
RN\Ω

Nsu(x) dxdµ(s). (3.3)

Proof. We first point out that the assumptions (3.1) and (3.2) give that the integrals in (3.3) are finite.
Now, we observe that

�
Ω

�
Ω

u(x)− u(y)

|x− y|N+2s
dxdy =

�
Ω

�
Ω

u(y)− u(x)

|x− y|N+2s
dxdy = 0,

since the role of x and y is symmetric.
This implies that

�
(0,1)

cN,s

�
Ω

�
Ω

u(x)− u(y)

|x− y|N+2s
dxdy dµ(s) = 0.

Hence, recalling the definitions in (1.2) and (1.3), we can use (3.2) to exchange the order of integration and
obtain

�
(0,1)

�
Ω

(−∆)su(x) dx dµ(s) =

�
(0,1)

cN,s

�
Ω

�
RN

u(x)− u(y)

|x− y|N+2s
dydxdµ(s)

=

�
(0,1)

cN,s

�
Ω

�
RN\Ω

u(x)− u(y)

|x− y|N+2s
dydxdµ(s)

=

�
(0,1)

cN,s

�
RN\Ω

�
Ω

u(x)− u(y)

|x− y|N+2s
dxdy dµ(s)

= −
�
(0,1)

�
RN\Ω

Nsu(y) dy dµ(s),

as desired.

We have the following integration by parts formula.

Lemma 3.2. Let u, v : RN → R be such that u, v ∈ C2(Ω) and

Q× (0, 1) ∋ (x, y, s) 7→ cN,s
(u(x)− u(y))(v(x)− v(y))

|x− y|N+2s
belongs to L1(Q× (0, 1)). (3.4)

Assume that

(−∆)suv ∈ L1(Ω× (0, 1)) (3.5)
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and that the function

(RN \ Ω)× Ω× (0, 1) ∋ (x, y, s) 7→ cN,s
(u(x)− u(y))v(x)

|x− y|N+2s

belongs to L1((RN \ Ω)× Ω× (0, 1)).

(3.6)

Then,

1

2

�
(0,1)

cN,s

�
Q

(u(x)− u(y))(v(x)− v(y))

|x− y|N+2s
dxdy dµ(s)

=

�
(0,1)

�
Ω

v(x)(−∆)su(x) dxdµ(s) +

�
(0,1)

�
RN\Ω

v(x)Nsu(x) dx dµ(s)

(3.7)

where cN,s is the constant in (1.2).

Proof. First, we observe that the assumptions (3.4), (3.5) and (3.6) guarantee that the integrals in (3.7) are
finite.

We notice that Q = (Ω× Ω) ∪ (Ω× RN \ Ω) ∪ (RN \ Ω× Ω). Then, we compute

�
Ω

�
Ω

(u(x)− u(y))(v(x)− v(y))

|x− y|N+2s
dxdy

=

�
Ω

�
Ω

v(x)
u(x)− u(y)

|x− y|N+2s
dx dy −

�
Ω

�
Ω

v(y)
u(x)− u(y)

|x− y|N+2s
dx dy

= 2

�
Ω

�
Ω

v(x)
u(x)− u(y)

|x− y|N+2s
dx dy.

Moreover,

�
Ω

�
RN\Ω

(u(x)− u(y))(v(x)− v(y))

|x− y|N+2s
dxdy

=

�
Ω

�
RN\Ω

v(x)
u(x)− u(y)

|x− y|N+2s
dxdy −

�
Ω

�
RN\Ω

v(y)
u(x)− u(y)

|x− y|N+2s
dxdy

=

�
Ω

�
RN\Ω

v(x)
u(x)− u(y)

|x− y|N+2s
dxdy +

�
RN\Ω

�
Ω

v(x)
u(x)− u(y)

|x− y|N+2s
dxdy,

and in a similar way

�
RN\Ω

�
Ω

(u(x)− u(y))(v(x)− v(y))

|x− y|N+2s
dxdy

=

�
RN\Ω

�
Ω

v(x)
u(x)− u(y)

|x− y|N+2s
dxdy −

�
RN\Ω

�
Ω

v(y)
u(x)− u(y)

|x− y|N+2s
dxdy

=

�
RN\Ω

�
Ω

v(x)
u(x)− u(y)

|x− y|N+2s
dxdy +

�
Ω

�
RN\Ω

v(x)
u(x)− u(y)

|x− y|N+2s
dxdy.
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Combining all the previous identities, we get

1

2

�
Q

(u(x)− u(y))(v(x)− v(y))

|x− y|N+2s
dxdy

=

�
Ω

�
RN

v(x)
u(x)− u(y)

|x− y|N+2s
dxdy +

�
RN\Ω

�
Ω

v(x)
u(x)− u(y)

|x− y|N+2s
dxdy.

Thus, by using (1.2) and (1.3),

�
(0,1)

cN,s

2

�
Q

(u(x)− u(y))(v(x)− v(y))

|x− y|N+2s
dxdy dµ(s)

=

�
(0,1)

�
Ω

v(x)cN,s

�
RN

u(x)− u(y)

|x− y|N+2s
dy dxdµ(s)

+

�
(0,1)

�
RN\Ω

v(x)cN,s

�
Ω

u(x)− u(y)

|x− y|N+2s
dy dxdµ(s)

=

�
(0,1)

�
Ω

v(x)(−∆)su(x) dx dµ(s) +

�
(0,1)

�
RN\Ω

v(x)Nsu(x) dxdµ(s).

This concludes the proof.

Now we complete the proof of Theorem 1.2.

Proof of Theorem 1.2. Without loss of generality, we can suppose that

�
(0,1)

cN,s

�
Q

|u(x)− u(y)|2

|x− y|N+2s
dxdy dµ(s) < +∞,

otherwise we are done.
Now, we observe that

�
(0,1)

cN,s

�
Ω

�
Ω

|ũ(x)− ũ(y)|2

|x− y|N+2s
dxdy dµ(s) =

�
(0,1)

cN,s

�
Ω

�
Ω

|u(x)− u(y)|2

|x− y|N+2s
dxdy dµ(s), (3.8)

so we only need to consider the integral over (RN \Ω)×Ω, or equivalently over Ω× (RN \Ω). Setting φ(x) :=
u(x)− ũ(x), for every y ∈ RN \ Ω we have

�
(0,1)

cN,s

�
Ω

|u(x)− u(y)|2

|x− y|N+2s
dxdµ(s) =

�
(0,1)

cN,s

�
Ω

|u(x)− ũ(y)− φ(y)|2

|x− y|N+2s
dx dµ(s)

=

�
(0,1)

cN,s

�
Ω

|u(x)− ũ(y)|2 − 2φ(y)(u(x)− ũ(y)) + |φ(y)|2

|x− y|N+2s
dxdµ(s).

(3.9)

We notice that, for every y ∈ RN \ Ω,

�
(0,1)

cN,s

�
Ω

u(x)− ũ(y)

|x− y|N+2s
dxdµ(s) = Eu(y)−

Eu(y)

E1(y)
E1(y) = 0.
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Therefore we deduce from the identity in (3.9) that

�
(0,1)

cN,s

�
Ω

|u(x)− u(y)|2

|x− y|N+2s
dxdµ(s) =

�
(0,1)

cN,s

�
Ω

|ũ(x)− ũ(y)|2 + |φ(y)|2

|x− y|N+2s
dxdµ(s)

⩾
�
(0,1)

cN,s

�
Ω

|ũ(x)− ũ(y)|2

|x− y|N+2s
dxdµ(s)

for every y ∈ RN \ Ω, and the equality holds if and only if φ(y) = 0.
Integrating over RN \ Ω (or, equivalently, over RN \ Ω), and using Fubini’s theorem, we conclude that

�
(0,1)

cN,s

�
RN\Ω

�
Ω

|u(x)− u(y)|2

|x− y|N+2s
dxdy dµ(s) ⩾

�
(0,1)

cN,s

�
RN\Ω

�
Ω

|ũ(x)− ũ(y)|2

|x− y|N+2s
dxdy dµ(s),

and the equality holds if and only if φ ≡ 0 in RN \ Ω. This and (3.8) imply (1.7), as desired.

4. Weak solutions with (α, µ)-Neumann conditions

In this section we consider the problem{
Lα,µ(u) = f in Ω,

with (α, µ)-Neumann conditions
(4.1)

for some suitable functions f : Ω → R, g : RN \ Ω → R and h : ∂Ω → R.
We now provide the following definition.

Definition 4.1. Assume that f ∈ L2(Ω), g ∈ L1(RN \Ω) and h ∈ L1(∂Ω). We say that u ∈ Hα,µ(Ω) is a weak
solution of the problem (4.1) if, for any v ∈ Hα,µ(Ω),

α

�
Ω

∇u · ∇v dx+

�
(0,1)

cN,s

2

�
Q

(u(x)− u(y))(v(x)− v(y))

|x− y|N+2s
dx dy dµ(s)

=

�
Ω

fv dx+

�
RN\Ω

gv dx+

�
∂Ω

hv dH N−1
x .

(4.2)

We state the following preliminary result, with the proof provided in Appendix C.

Proposition 4.2. Assume that f ∈ L2(Ω), g ∈ L1(RN \ Ω) and h ∈ L1(∂Ω). Let I : Hα,µ(Ω) → R be the
functional defined as

I(u) :=
α

2

�
Ω

|∇u|2dx+

�
(0,1)

cN,s

4

�
Q

|u(x)− u(y)|2

|x− y|N+2s
dxdy dµ(s)

−
�
Ω

fudx−
�
RN\Ω

gudx−
�
∂Ω

hudH N−1
x .

Then, critical points of I are weak solutions of the problem (4.1).

Next result is a sort of maximum principle and is helpful to prove the existence and uniqueness result in
Theorem 1.3.

Lemma 4.3. Let f ∈ L2(Ω), g ∈ L1(RN \ Ω) and h ∈ L1(∂Ω) be nonnegative functions. Let u ∈ Hα,µ(Ω) be a
weak solution of (4.1).



16 S. DIPIERRO ET AL.

Then, u is constant.

Proof. The argument is inspired by that of Lemma 3.8 in [13], but some care is needed to address the presence
of the measure µ. To this end, observing that the constant function v ≡ 1 belongs to Hα,µ(Ω), we can use it as
a test function in (4.2) to obtain that

0 =

�
Ω

f dx+

�
RN\Ω

g dx+

�
∂Ω

hdH N−1
x .

This implies that f = 0 a.e. in Ω, g = 0 a.e. in RN \ Ω and h = 0 a.e. in ∂Ω.
Thus, taking v := u in (4.2), we get

α

�
Ω

|∇u|2 dx+

�
(0,1)

cN,s

2

�
Q

|u(x)− u(y)|2

|x− y|N+2s
dx dy dµ(s) = 0,

hence u is constant in RN , as desired.

Now we complete the proof of Theorem 1.4 (though inspired by Prop. 3.13 in [13], the complication arising
from the measure does require here some bespoke modifications).

Proof of Theorem 1.4. We observe that, since Ω is bounded, there exists R > 0 such that Ω ⊂ BR. Thus, if
y ∈ Ω and |x| > R, we have

|x| −R ⩽ |x− y| ⩽ |x|+R.

Since u is bounded, we set ũ(x) := u(x) + c for some c > 0 such that ũ ⩾ 0. We notice that, for any x ∈ RN \Ω,
�
(0,1)

Nsũ(x) dµ(s) =

�
(0,1)

Nsu(x) dµ(s) = 0.

Thus, recalling the definition in (1.3), for any x ∈ RN \ Ω we can write

ũ(x) =

�
(0,1)

cN,s

�
Ω

ũ(y)

|x− y|N+2s
dy dµ(s)

�
(0,1)

cN,s

�
Ω

1

|x− y|N+2s
dy dµ(s)

.

Therefore, if |x| > R, from the previous inequality we obtain that

�
(0,1)

cN,s

�
Ω

ũ(y)

(|x|+R)N+2s
dy dµ(s)

�
(0,1)

cN,s

�
Ω

1

(|x| −R)N+2s
dy dµ(s)

⩽ ũ(x) ⩽

�
(0,1)

cN,s

�
Ω

ũ(y)

(|x| −R)N+2s
dy dµ(s)

�
(0,1)

cN,s

�
Ω

1

(|x|+R)N+2s
dy dµ(s)

,

which becomes

�
(0,1)

cN,s

(|x|+R)N+2s
dµ(s)

�
(0,1)

cN,s

(|x| −R)N+2s
dµ(s)

 
Ω

ũ(y) dy ⩽ ũ(x) ⩽

�
(0,1)

cN,s

(|x| −R)N+2s
dµ(s)

�
(0,1)

cN,s

(|x|+R)N+2s
dµ(s)

 
Ω

ũ(y) dy. (4.3)
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Now, we claim that

lim
|x|→+∞


�
(0,1)

cN,s

(|x|+R)N+2s
dµ(s)

�
(0,1)

cN,s

(|x| −R)N+2s
dµ(s)

 = 1. (4.4)

To check this, first we observe that

�
(0,1)

cN,s

(|x|+R)N+2s
dµ(s)

�
(0,1)

cN,s

(|x| −R)N+2s
dµ(s)

= 1−

�
(0,1)

cN,s

(
1

(|x| −R)N+2s
− 1

(|x|+R)N+2s

)
dµ(s)

�
(0,1)

cN,s

(|x| −R)N+2s
dµ(s)

, (4.5)

where we can write

�
(0,1)

cN,s

(
1

(|x| −R)N+2s
− 1

(|x|+R)N+2s

)
dµ(s)

=

�
(0,1)

cN,s

(|x| −R)N+2s

[
1−

(
1− 2R

|x|+R

)N+2s
]
dµ(s).

Setting

t :=
2R

|x|+R
⩽ 1,

we have

1− (1− t)N+2s = (N + 2s)

� t

0

(1− τ)N+2s−1 dτ ⩽ (N + 2)

� t

0

dτ = (N + 2)t,

and so

�
(0,1)

cN,s

(|x| −R)N+2s

[
1−

(
1− 2R

|x|+R

)N+2s
]
dµ(s) ⩽

2R(N + 2)

|x|+R

�
(0,1)

cN,s

(|x| −R)N+2s
dµ(s).

Accordingly,

lim
|x|→+∞


�
(0,1)

cN,s

(
1

(|x| −R)N+2s
− 1

(|x|+R)N+2s

)
dµ(s)

�
(0,1)

cN,s

(|x| −R)N+2s
dµ(s)

 ⩽ lim
|x|→+∞

2R(N + 2)

|x|+R
= 0.

From this and (4.5) we obtain (4.4).
Thus, from (4.4), passing to the limit in (4.3), we see that

lim
|x|→+∞

ũ(x) =
1

|Ω|

�
Ω

ũ(x) dx,
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which implies

lim
|x|→+∞

u(x) =
1

|Ω|

�
Ω

u(x) dx,

as desired.

5. Eigenvalues and eigenfunctions

In this section we examine the spectral properties of the problem (4.1). To this aim, for any measurable
function u : RN → R, we set

∥u∥Hµ(Ω) := ∥u∥L2(Ω) +

�
(0,1)

cN,s

�
Ω×Ω

|u(x)− u(y)|2

|x− y|N+2s
dx dy dµ(s) (5.1)

and we define the space

Hµ(Ω) :=

{
u ∈ L2(Ω) :

�
(0,1)

cN,s

�
Ω×Ω

|u(x)− u(y)|2

|x− y|N+2s
dxdy dµ(s) < +∞

}
.

Arguing as in Proposition 2.8, it is easy to check that Hµ(Ω) is a Hilbert space as well. Moreover, it is worth
noting that in the proof of Proposition 2.3, we have also proved that Hµ(Ω) is continuously embedded in Hs♯(Ω).

In our setting, the following version of the Poincaré inequality holds:

Lemma 5.1. Let s ∈ (0, 1) and let Ω ⊂ RN be any bounded Lipschitz domain.
Then, for any function u ∈ Hµ(Ω), we have

�
Ω

∣∣∣∣u(x)−  
Ω

u(x)dx

∣∣∣∣2 dx ⩽ c(Ω, µ)

�
(0,1)

cN,s

�
Ω×Ω

|u(x)− u(y)|2

|x− y|N+2s
dx dy dµ(s),

for a suitable constant c(Ω, µ) > 0.

Proof. The argument presented is a sharpening of Lemma 3.10 in [13]. Assume by contradiction that the desired
inequality does not hold. Then, there exists a sequence un ∈ Hµ(Ω) such that

 
Ω

un(x) dx = 0, ∥un∥L2(Ω) = 1 (5.2)

and

�
(0,1)

cN,s

�
Ω×Ω

|un(x)− un(y)|2

|x− y|N+2s
dxdy dµ(s) <

1

n
. (5.3)

Hence, by (5.1), (5.2) and (5.3) we gather that un is bounded in Hµ(Ω). Besides, by Proposition 2.3, we infer
that the embeddings

Hµ(Ω) ⊂ Hµ(Ω) ⊂ Hs♯(Ω)
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are continuous. Moreover, by [39], Corollary 7.1, we have that Hs♯(Ω) is compactly embedded in L2(Ω). Hence,
up to subsequences, un converges to some u ∈ L2(Ω), namely

un → u in L2(Ω) and un → u a.e. in Ω.

Furthermore, by (5.2),

 
Ω

u(x) dx = 0, and ∥u∥L2(Ω) = 1. (5.4)

Thus, recalling that un converges to u a.e. in Ω as n→ +∞, by (5.3) and Fatou’s Lemma, we get

�
(0,1)

cN,s

�
Ω×Ω

|u(x)− u(y)|2

|x− y|N+2s
dxdy dµ(s) ⩽ lim inf

n→+∞

�
(0,1)

cN,s

�
Ω×Ω

|un(x)− un(y)|2

|x− y|N+2s
dx dy dµ(s) ⩽ 0.

Since µ is nontrivial, we infer by the previous identity that u is constant in Ω, in contradiction with (5.4).

We now provide the definition of eigenvalues and eigenfunctions of the operator Lα,µ in (1.1) with
homogeneous (α, µ)-Neumann conditions in Definition 1.1.

Definition 5.2. We say that λ ∈ R is an eigenvalue if the problem{
Lα,µ(u) = λu in Ω,

with homogeneous (α, µ)-Neumann conditions
(5.5)

admits a solution u ∈ Hα,µ(Ω) which is not identically zero.
If λ is an eigenvalue, we call the solution u an eigenfunction associated to the eigenvalue λ.

With this setting, we can prove Theorem 1.5 (in this regard, some care is needed to deal with the presence
of the measure µ and the possible coexistence with a local operator):

Proof of Theorem 1.5. We set

L2
0(Ω) :=

{
f ∈ L2(Ω) :

�
Ω

f(x)dx = 0

}
.

Moreover, let T0 be the operator defined as

T0 : f ∈ L2
0(Ω) 7−→ T0f = u ∈ Hα,µ(Ω), (5.6)

where u denotes the unique weak solution to the problem (4.1), according to the Definition 4.1. We point out
that, by Theorem 1.3 and since f ∈ L2

0(Ω), there exists a unique solution to problem (4.1), up to an additive
constant. We can choose such a constant to be e.g.

�
u(x)dx. In this way,

�
Ω

(
u(x)−

 
Ω

u(x)dx

)
dx = 0

and then u ∈ L2
0(Ω).

Also, we define the operator T as the restriction

T : f ∈ L2
0(Ω) 7−→ T0f

∣∣
Ω
∈ L2

0(Ω). (5.7)
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Let us show that T is a compact and self-adjoint operator.
We start proving that T is compact. To this, we test (4.2) with v = u = T0f , getting

α

�
Ω

|∇u|2dx+

�
(0,1)

cN,s

2

�
Q

|u(x)− u(y)|2

|x− y|N+2s
dxdy dµ(s) =

�
Ω

fudx

⩽ ∥f∥L2(Ω)∥u∥L2(Ω).

(5.8)

We notice that two cases can occur:

� if α ̸= 0, by (5.8), we infer that

α

�
Ω

|∇u|2dx ⩽ α

�
Ω

|∇u|2dx+

�
(0,1)

cN,s

2

�
Q

|u(x)− u(y)|2

|x− y|N+2s
dxdy dµ(s)

⩽ ∥f∥L2(Ω)∥u∥L2(Ω).

(5.9)

Also, the classical Poincaré inequality gives

∥u∥L2(Ω) ⩽ c1

(�
Ω

|∇u|2dx
)1/2

, (5.10)

for a suitable constant c1 > 0 depending only on Ω. Thus, combining (5.9) and (5.10), we have

α

(�
Ω

|∇u|2dx
)1/2

⩽ c2∥f∥L2(Ω), (5.11)

for a suitable c2 > 0;
� if α = 0, by (5.8) it follows that

�
(0,1)

cN,s

2

�
Ω×Ω

|u(x)− u(y)|2

|x− y|N+2s
dxdy dµ(s) ⩽

�
(0,1)

cN,s

2

�
Q

|u(x)− u(y)|2

|x− y|N+2s
dxdy dµ(s)

⩽ ∥f∥L2(Ω)∥u∥L2(Ω).

(5.12)

Now, recalling that
�
u(x)dx = 0 since u ∈ L2

0(Ω), by Lemma 5.1 we get

∥u∥L2(Ω) ⩽

(
c(Ω, µ)

�
(0,1)

cN,s

2

�
Ω×Ω

|u(x)− u(y)|2

|x− y|N+2s
dx dy dµ(s)

)1/2

.

Thus, (5.12) becomes

(�
(0,1)

cN,s

2

�
Ω×Ω

|u(x)− u(y)|2

|x− y|N+2s
dxdy dµ(s)

)1/2

⩽ c3∥f∥L2(Ω), (5.13)

with c3 > 0 depending only on Ω and µ.

Now, let fn be any bounded sequence in L2
0(Ω) and let un := Tfn. On the one hand, if α ̸= 0, by (5.11) we

obtain that un is bounded in H1(Ω), which is compactly embedded in L2(Ω). Hence, un converges strongly to
some u ∈ L2(Ω), up to subsequences.
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On the other hand, if α = 0, by (5.13) we infer that un is bounded in Hµ(Ω). By [39], Corollary 7.2, the
space Hµ(Ω) is compactly embedded in L2(Ω) and again un converges strongly, up to subsequences, to some
u ∈ L2(Ω). Consequently, we have that T is a compact operator.

Let us show that T is self-adjoint. To this aim, we take f1, f2 ∈ C∞
0 (Ω) satisfying

 
Ω

f1(x)dx =

 
Ω

f2(x)dx = 0.

Hence, by (5.6) and (4.2) (recall that g ≡ h ≡ 0), we have

α

�
Ω

∇(T0f1)(x) · ∇v(x) dx+
�
(0,1)

cN,s

2

�
Q

(T0f1(x)− T0f1(y))(v(x)− v(y))

|x− y|N+2s
dx dy dµ(s)

=

�
Ω

f1v dx for any v ∈ Hα,µ(Ω)

(5.14)

and

α

�
Ω

∇(T0f2)(x) · ∇w(x) dx+
�
(0,1)

cN,s

2

�
Q

(T0f2(x)− T0f2(y))(w(x)− w(y))

|x− y|N+2s
dx dy dµ(s)

=

�
Ω

f2w dx for any w ∈ Hα,µ(Ω).

(5.15)

Now, recalling the definition (5.7) and testing (5.14) and (5.15) with v := T0f2 ∈ Hα,µ(Ω) and w := T0f1 ∈
Hα,µ(Ω) respectively, we obtain that

�
Ω

f1(x)Tf2(x)dx =

�
Ω

f2(x)Tf1(x)dx for any f1, f2 ∈ C∞
0 (Ω). (5.16)

We employ a density argument to prove that the identity (5.16) holds for any f1, f2 ∈ L2
0(Ω). For this, we

notice that if f1, f2 ∈ L2
0(Ω), one can find two sequences f1,n, f2,n ∈ C∞

0 (Ω) such that f1,n → f1 in L2(Ω) and
f2,n → f2 in L2(Ω), as n→ +∞.

Thus, by (5.16) we deduce that

�
Ω

f1,n(x)Tf2,n(x)dx =

�
Ω

f2,n(x)Tf1,n(x)dx. (5.17)

Moreover, recalling that (5.11) and (5.13) hold with u = T0f and f ∈ L2(Ω), either by (5.7), (5.10), (5.11)
if α ̸= 0 or by Lemma 5.1 and (5.13) if α = 0, we have

∥Tf1,n∥L2(Ω) ⩽ c4∥f1,n∥L2(Ω) and ∥Tf2,n∥L2(Ω) ⩽ c5∥f2,n∥L2(Ω),

for some constants c4, c5 > 0.
Thus, Tf1,n → Tf1 in L2(Ω) and Tf2,n → Tf2 in L2(Ω) as n→ +∞ and by (5.17) we have

�
Ω

f1(x)Tf2(x)dx =

�
Ω

f2(x)Tf1(x)dx,

which means that T is a self-adjoint operator in L2(Ω).
Then, by the spectral theorem, there exists a sequence of eigenvalues {µi}i⩾2 of T with corresponding

eigenfunctions {ei}i⩾2 which are a complete orthogonal system of L2
0(Ω).
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We claim that

µi ̸= 0 for any i ∈ {2, . . . , n}. (5.18)

If not, there exists i ∈ {2, . . . , n} such that µi = 0. Hence,

0 = µiei = Tei = T0ei in Ω (5.19)

and also

�
(0,1)

Nsei(x) dµ(s) = 0

in Rn \ Ω, by construction.
This, along with (5.19), imply that

T0ei(x) =

�
(0,1)

cN,s

�
Ω

T0ei(y)

|x− y|n+2s
dy dµ(s)

�
(0,1)

cN,s

�
Ω

1

|x− y|n+2s
dy dµ(s)

= 0 in Rn \ Ω.

Hence, by the previous identity and (5.19) we infer that

0 = −α∆(T0ei) +

�
(0,1)

(−∆)s(T0ei) dµ(s) = ei in Ω

in the weak sense, which gives ei ≡ 0 in Ω. This contradicts the fact that ei is an egenfunction and then (5.18)
holds.

Now, in light (5.18), we set

λi := µ−1
i for any i ∈ {1, . . . , n}.

Moreover, we also define ui := T0ei and we claim that u2, u3, . . . is the desired systems of eigenfunctions with
corresponding eigenvalues λ2, λ3, . . . .

Indeed, by definition

ui = T0ei = Tei = µiei in Ω,

which means that the desired properties of orthogonality and completeness properties of u2, u3, . . . simply
follows by those of e2, e3, . . . and the previous identity provides that

−α∆(ui) +

�
(0,1)

(−∆)s(ui) dµ(s) = −α∆(T0ei) +

�
(0,1)

(−∆)s(T0ei) dµ(s) = ei = λiui in Ω,

which means that also the spectral property holds. Let us prove that

λi > 0 for any i ⩾ 2. (5.20)
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To this end, we notice that the corresponding eigenfunctions u1, u2, . . . are solutions of the problem{
Lα,µ(ui) = λiui in Ω

with homogeneous (α, µ)-Neumann conditions,

Then, taking ui as a test function in the weak formulation of this problem, we find

α

�
Ω

|∇u(x)|2dx+

�
(0,1)

cN,s

2

�
Q

|u(x)− u(y)|2

|x− y|N+2s
dxdy dµ(s) = λi

�
Ω

ui(x)
2dx,

which entails that λi ⩾ 0.
Let us prove that λi > 0. To check this, suppose by contradiction that λi = 0. Then, Lemma 4.3 provides

that ui is constant. As we also know that that ui ∈ L2
0(Ω), it follows that ui ≡ 0, against the fact that ui is an

eigenvalue. This proves (5.20).
From (5.20), up to reordering them, we can suppose that 0 < λ2 ⩽ λ3 ⩽ . . . and we notice that λ1 = 0 is

an eigenvalue, with eigenfunction u1 = 1, again by Lemma 4.3. Therefore, we have a sequence of eigenvalues
0 = λ1 < λ2 ⩽ λ3 ⩽ . . . and its corresponding eigenfunctions are a complete orthogonal system in L2(Ω) (see
the proof of [13], Thm. 3.11). This concludes the proof.

6. The heat equation

In this section we study the heat equation with homogeneous Neumann conditions, namely
∂tu(x, t) + Lα,µ(u(x, t)) = 0 in Ω× (0,+∞),

u(x, 0) = u0(x) in Ω,

with homogeneous (α, µ)-Neumann conditions in (0,+∞).

(6.1)

Here, we deal with classical solutions, that is u(·, t) ∈ L∞(RN )∩C(Ω)∩C2(Ω) for any t ∈ [0,+∞) and u(x, ·) ∈
C1((0,+∞)) ∩ C([0,+∞)), with the homogeneous (α, µ)-Neumann conditions satisfied pointwise in RN \ Ω
and ∂Ω respectively.

The next two results give that classical solutions of problem (6.1) preserve their mass and have energy that
decreases in time.

We point out that the assumptions required throughout this section are significantly more general than the
ones required in [13], Propositions 4.1, 4.2 and 4.3.

Proposition 6.1. Let u(x, t) be a classical solution of (6.1) satisfying

∂tu ∈ L∞
loc

(
(0,+∞), L1(Ω)

)
(6.2)

and

α∆u(·, t) ∈ L1(Ω) and (−∆)su(·, t) ∈ L1 (Ω× (0, 1)) for any t ∈ (0,+∞). (6.3)

Assume that the following statements hold:

� if α ̸= 0, then

u(·, t) ∈ C1(Ω) for any t ∈ (0,+∞); (6.4)
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� if µ ̸≡ 0, then, for any t ∈ (0,+∞), the function

Ω× (RN \ Ω)× (0, 1) ∋ (x, y, s) 7→ u(x, t)− u(y, t)

|x− y|N+2s
belongs to L1

(
Ω× (RN \ Ω)× (0, 1)

)
. (6.5)

Then,

�
Ω

u(x, t) dx =

�
Ω

u0(x) dx for any t ∈ (0,+∞),

namely the total mass is conserved.

Proof. The argument presented here is a careful refinement of Proposition 4.1 in [13]. In light of (6.2) and (6.3),
from the dominated convergence theorem we have

d

dt

�
Ω

u(x, t) dx =

�
Ω

∂tu(x, t) dx = α

�
Ω

∆u(x, t) dx−
�
(0,1)

�
Ω

(−∆)su(x, t) dx dµ(s).

Moreover, by (6.4) and (6.5), and using the homogeneous Neumann conditions in Definition 1.1, we have that
divergence theorem and Lemma 3.1 apply and

d

dt

�
Ω

u(x, t) dx = α

�
∂Ω

∂νu(x) dH N−1
x +

�
(0,1)

�
RN\Ω

Nsu(x, t) dxdµ(s) = 0.

This implies that the quantity
�
Ω
u(x, t) dx does not depend on t, which concludes the proof.

Proposition 6.2. Let u(x, t) be a classical solution of (6.1) such that

α∇u(·, t)∇∂tu(·, t) ∈ L1(Ω) (6.6)

and suppose that the function

Q× (0, 1) ∋ (x, y, s) 7→ cN,s
(u(x, t)− u(y, t))(∂tu(x, t)− ∂tu(y, t))

|x− y|N+2s

belongs to L1(Q× (0, 1)),

(6.7)

and

α∂tu(·, t)∆u(·, t) ∈ L1(Ω), ∂tu(·, t)(−∆)su(·, t) ∈ L1(Ω× (0, 1)), (6.8)

for any t ∈ (0,+∞).
In addition, assume that:

� if α ̸= 0, then the assumption in (6.4) is satisfied,
� if µ ̸≡ 0, then, for any t ∈ (0,+∞), the function

(RN \ Ω)× Ω× (0, 1) ∋ (x, y, s) 7→ cN,s
(u(x, t)− u(y, t))∂tu(x, t)

|x− y|N+2s

belongs to L1
(
(RN \ Ω)× Ω× (0, 1)

)
.

(6.9)
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Then, the energy

E(t) :=
α

2

�
Ω

|∇u(x, t)|2 dx+

�
(0,1)

cN,s

4

�
Q

|u(x, t)− u(y, t)|2

|x− y|N+2s
dx dy dµ(s)

is decreasing in time t > 0 (and strictly decreasing, unless u is independent of time).

Proof. This proof is inspired to Proposition 4.2 in [13], but here some additional care is required to distinguish
the cases α ̸= 0 and µ ̸≡ 0.

We compute E′(t) and show that it is negative. Indeed, recalling (6.6) and (6.7), we have

E′(t) = α

�
Ω

∇u(x, t)∇∂tu(x, t) dx

+

�
(0,1)

cN,s

2

�
Q

(u(x, t)− u(y, t))(∂tu(x, t)− ∂tu(y, t))

|x− y|N+2s
dxdy dµ(s).

(6.10)

In light of (6.4), (6.6), (6.7), (6.8) and (6.9), from Lemma 3.2, the classical integration by parts formula and
the homogeneous Neumann conditions, we gather that

α

�
Ω

∇u(x, t)∇∂tu(x, t) dx+

�
(0,1)

cN,s

2

�
Q

(u(x, t)− u(y, t))(∂tu(x, t)− ∂tu(y, t))

|x− y|N+2s
dxdy dµ(s)

= −α
�
Ω

∂tu(x, t)∆u(x, t) dx+

�
(0,1)

�
Ω

∂tu(x, t)(−∆)su(x, t) dx dµ(s)

= −
�
Ω

∂tu(x, t)

(
α∆u(x, t) dx−

�
(0,1)

(−∆)su(x, t) dµ(s)

)
dx.

Thus, (6.10) becomes

E′(t) = −
�
Ω

∂tu(x, t) (−Lα,µu(x, t)) dx = −
�
Ω

|∂tu(x, t)|2 dx ⩽ 0,

with the equality holding if and only if u is constant in time. This concludes the proof.

The next result generalizes [13], Proposition 4.3 to our setting, with the proof postponed to Appendix D.

Proposition 6.3. Let u(x, t) be a classical solution of (6.1) satisfying (6.2) and (6.3).
In addition, assume that:

� if α ̸= 0, then the assumption in (6.4) is satisfied,
� if µ ̸≡ 0, then, for any t ∈ (0,+∞), the assumption in (6.5) is satisfied.

Then,

u(x, t) → 1

|Ω|

�
Ω

u0(x) dx in L2(Ω) as t→ +∞.

7. Continuity properties

In this section we study some continuity properties induced by the nonlocal Neumann condition (1.5) and
we prove Theorem 1.6.
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Proof of Theorem 1.6. First, we fix x0 ∈ RN \ Ω and we prove that u is continuous at x0. Since RN \ Ω is an
open set, there exists ρ > 0 such that |x0 − y| ⩾ ρ for any y ∈ Ω. So, if x ∈ Bρ/2(x0), we have that

|x− y| ⩾ |x0 − y| − |x0 − x| ⩾ ρ

2
for any y ∈ Ω.

As a concequence, if ρ is small enough, for any x ∈ Bρ/2(x0) and y ∈ Ω we have that

|u(y)|+ 1

|x− y|N+2s
⩽

2N+2s

ρN+2s

(
∥u∥L∞(Ω) + 1

)
⩽

2N+2

ρN+2

(
∥u∥L∞(Ω) + 1

)
.

From this, we deduce that

�
(0,1)

cN,s

�
Ω

|u(y)|+ 1

|x− y|N+2s
dy dµ(s) ⩽

2N+2

ρN+2
|Ω|
(
∥u∥L∞(Ω) + 1

)�
(0,1)

cN,s dµ(s)

⩽
2N+2

ρN+2
|Ω|
(
∥u∥L∞(Ω) + 1

)
sup

s∈(0,1)

cN,s

�
(0,1)

dµ(s)

< +∞.

Thus, by the Neumann condition in (1.10) and the dominated convergence theorem we obtain that

lim
x→x0

u(x) = lim
x→x0

�
(0,1)

cN,s

�
Ω

u(y)

|x− y|N+2s
dy dµ(s)

�
(0,1)

cN,s

�
Ω

1

|x− y|N+2s
dy dµ(s)

=

�
(0,1)

cN,s

�
Ω

u(y)

|x0 − y|N+2s
dy dµ(s)

�
(0,1)

cN,s

�
Ω

1

|x0 − y|N+2s
dy dµ(s)

= u(x0).

This proves that u is continuous at any point of RN \ Ω.
Now we show that u is continuous at any point p ∈ ∂Ω. To do so, we need a more accurate argument,

since numerators and denominators may create singularities which have to be attentively estimated to detect
cancellations. We take a sequence {pk}k converging to p as k goes to infinity. Let qk be the projection of pk
onto Ω. Since p ∈ Ω, from the minimizing property of the projection we have that

|pk − qk| = inf
ξ∈Ω

|pk − ξ| ⩽ |pk − p|,

and so

lim
k→+∞

|qk − p| ⩽ lim
k→+∞

(
|qk − pk|+ |pk − p|

)
⩽ lim

k→+∞
2|pk − p| = 0.

Thus, since by assumption u is continuous in Ω, we have

lim
k→+∞

u(qk) = u(p). (7.1)
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Figure 1. The rigid motion Rk of Ω.

Now we claim that

lim
k→+∞

(
u(qk)− u(pk)

)
= 0. (7.2)

To prove this, it is enough to consider the points pk that belong to RN \ Ω. Indeed, if pk ∈ Ω, we have pk = qk
and so (7.2) is trivially satisfied.

We define νk := (pk − qk)/|pk − qk|, so that νk is the exterior normal of Ω at qk ∈ ∂Ω. We consider a rigid
motion Rk such that Rkqk = 0 and Rkνk = eN = (0, · · · , 0, 1) (see Fig. 1). Let hk := |pk − qk|. We notice that

h−1
k Rkpk = h−1

k Rk(pk − qk) = Rkνk = eN . (7.3)

Then, the domain

Ωk := h−1
k RkΩ

has a vertical exterior normal at 0 and approaches the half space Π := {xN < 0} as k → ∞.
Now, we use the homogeneous Neumann condition at pk to obtain

u(pk)− u(qk) =

�
(0,1)

cN,s

�
Ω

u(y)

|pk − y|N+2s
dy dµ(s)

�
(0,1)

cN,s

�
Ω

1

|pk − y|N+2s
dy dµ(s)

− u(qk)

=

�
(0,1)

cN,s

�
Ω

u(y)− u(qk)

|pk − y|N+2s
dy dµ(s)

�
(0,1)

cN,s

�
Ω

1

|pk − y|N+2s
dy dµ(s)

= I1 + I2,

with

I1 :=

�
(0,1)

cN,s

�
Ω∩B√

hk
(qk)

u(y)− u(qk)

|pk − y|N+2s
dy dµ(s)

�
(0,1)

cN,s

�
Ω

1

|pk − y|N+2s
dy dµ(s)
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and

I2 :=

�
(0,1)

cN,s

�
Ω\B√

hk
(qk)

u(y)− u(qk)

|pk − y|N+2s
dy dµ(s)

�
(0,1)

cN,s

�
Ω

1

|pk − y|N+2s
dy dµ(s)

. (7.4)

We observe that from the uniform continuity of u in Ω, we have

lim
k→+∞

sup
Ω∩B√

hk
(qk)

|u(y)− u(qk)| = 0.

Therefore,

lim
k→+∞

|I1| ⩽ lim
k→+∞

sup
Ω∩B√

hk
(qk)

|u(y)− u(qk)| = 0. (7.5)

Moreover, using the change of variable η := h−1
k Rky and recalling (7.3), we obtain

|I2| ⩽

�
(0,1)

cN,s

�
Ω\B√

hk
(qk)

|u(y)− u(qk)|
|pk − y|N+2s

dy dµ(s)

�
(0,1)

cN,s

�
Ω

1

|pk − y|N+2s
dy dµ(s)

⩽ 2∥u∥L∞(Ω)

�
(0,1)

cN,s

�
Ω\B√

hk
(qk)

1

|pk − y|N+2s
dy dµ(s)

�
(0,1)

cN,s

�
Ω

1

|pk − y|N+2s
dy dµ(s)

= 2∥u∥L∞(Ω)

�
(0,1)

cN,s

�
Ωk\B1/

√
hk

hNk
|hkR−1

k eN − hkR
−1
k η|N+2s

dη dµ(s)

�
(0,1)

cN,s

�
Ωk

hNk
|hkR−1

k eN − hkR
−1
k η|N+2s

dη dµ(s)

= 2∥u∥L∞(Ω)

�
(0,1)

cN,s

�
Ωk\B1/

√
hk

h−2s
k

|eN − η|N+2s
dη dµ(s)

�
(0,1)

cN,s

�
Ωk

h−2s
k

|eN − η|N+2s
dη dµ(s)

.

Now, we observe that, if η ∈ Ωk \B1/
√
hk
, we have

|eN − η|N+2s = |eN − η|N+s|eN − η|s ⩾ |eN − η|N+s(|η| − 1)s

= |eN − η|N+s(h
−1/2
k − 1)s ⩾ |eN − η|N+sh

−s/4
k ,
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for k large enough, and consequently

|I2| ⩽ 2∥u∥L∞(Ω)

�
(0,1)

cN,s

�
Ωk

h
− 7

4 s

k

|eN − η|N+2s
dη dµ(s)

�
(0,1)

cN,s

�
Ωk

h−2s
k

|eN − η|N+2s
dη dµ(s)

. (7.6)

Then, setting

m := min

{
n ∈ N : supp(µ) ∩

((
7

8

)n

,

(
7

8

)n−1
]
̸= ∅

}
, (7.7)

we can multiply and divide (7.6) by h
2(7/8)m

k to obtain

|I2| ⩽ 2∥u∥L∞(Ω)

�
(0,(7/8)m−1]

cN,s

�
Ωk

h
2( 7

8 )
m− 7

4 s

k

|eN − η|N+2s
dη dµ(s)

�
(0,(7/8)m−1]

cN,s

�
Ωk

h
2( 7

8 )
m−2s

k

|eN − η|N+2s
dη dµ(s)

. (7.8)

Recalling that Ωk converges to the half space Π, if k is large enough, then we can suppose that Ωk ⊂ RN \
B1/2(eN ). In this way,

cN,s

�
Ωk

1

|eN − η|N+2s
dη dµ(s) ⩽ cN,s

�
RN\B1/2(eN )

1

|eN − η|N+2s
dη dµ(s)

= cN,s ωN−1

� +∞

1/2

ρ−1−2s dρ =
cN,s

s
22s−1ωN−1,

which is uniformly bounded for s ∈ (0, 1).
Moreover, in view of (7.7) we can focus on the case s < (7/8)m−1 (otherwise we exit the support of µ). As a

result, we see that

h
2( 7

8 )
m− 7

4 s

k → 0 as k → +∞

and therefore, by the dominated convergence theorem,

lim
k→+∞

�
(0,(7/8)m−1]

cN,s

�
Ωk

h
2( 7

8 )
m− 7

4 s

k

|eN − η|N+2s
dη dµ(s) = 0. (7.9)

We observe that, for any s ∈ ((7/8)m, (7/8)m−1],

lim
k→+∞

cN,s

�
Ωk

h
2( 7

8 )
m−2s

k

|eN − η|N+2s
dη = +∞.
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Hence, by Fatou’s lemma and (7.7),

lim inf
k→+∞

�
((7/8)m,(7/8)m−1]

cN,s

�
Ωk

h
2( 7

8 )
m−2s

k

|eN − η|N+2s
dη dµ(s) = +∞. (7.10)

Using (7.9) and (7.10) in (7.8), we obtain that

lim
k→+∞

|I2| = 0. (7.11)

This and (7.5) imply (7.2), as desired.
From (7.1) and (7.2) we conclude that

lim
k→+∞

u(pk) = u(p),

that is u is continuous at p, as desired.

Next result is a consequence of Theorem 1.6.

Corollary 7.1. Let Ω ⊂ RN be a domain with C1 boundary and let v0 ∈ C(Ω). Let

v(x) :=



v0(x) if x ∈ Ω,

�
(0,1)

cN,s

�
Ω

v0(y)

|x− y|N+2s
dy dµ(s)

�
(0,1)

cN,s

�
Ω

1

|x− y|N+2s
dy dµ(s)

if x ∈ RN \ Ω.

Then v ∈ C(RN ), it satisfies v = v0 in Ω and

�
(0,1)

Nsudµ(s) = 0 in RN \ Ω.

Proof. By construction, v = v0 in Ω and
�
(0,1)

Nsudµ(s) = 0 in RN \ Ω. Hence, we can use Theorem 1.6 to

obtain that v ∈ C(RN ).

We now study the behavior of the normalized Neumann function defined as

Ñ u(x) :=

�
(0,1)

Nsu(x) dµ(s)

�
(0,1)

cN,s

�
Ω

1

|x− y|N+2s
dy dµ(s)

. (7.12)

Proposition 7.2. Let Ω ⊂ RN be a domain with C1 boundary and let u ∈ C(RN ). Then,

lim
x→∂Ω

x∈RN\Ω

Ñ u(x) = 0. (7.13)
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Proof. Let {xk}k be a sequence in RN \ Ω such that xk converges to x∞ ∈ ∂Ω as k goes to infinity.
From Corollary 7.1 applied with v0 := u, there exists v ∈ C(RN ) such that v = u in Ω and

�
(0,1)

Nsv dµ(s) = 0

in RN \ Ω. By the continuity of u and v we also have that

lim
k→+∞

(
u(xk)− v(xk)

)
=
(
u(x∞)− v(x∞)

)
= 0. (7.14)

Moreover,

Ñ u(xk) = Ñ u(xk)− Ñ v(xk)

=

�
(0,1)

cN,s

�
Ω

u(xk)− u(y)

|x− y|N+2s
dy dµ(s)−

�
(0,1)

cN,s

�
Ω

v(xk)− v(y)

|x− y|N+2s
dy dµ(s)

�
(0,1)

cN,s

�
Ω

1

|x− y|N+2s
dy dµ(s)

=

�
(0,1)

cN,s

�
Ω

u(xk)− v(xk)

|x− y|N+2s
dy dµ(s)

�
(0,1)

cN,s

�
Ω

1

|x− y|N+2s
dy dµ(s)

= u(xk)− v(xk).

This and (7.14) imply that

lim
k→+∞

Ñ u(xk) = 0,

that is (7.13), which concludes the proof.

8. The superposition of fractional perimeters

In this section we discuss the relation between the superposition of nonlocal Neumann derivatives and the
notion of superposition of fractional perimeters, which we introduce in here.

At first, we recall that, in the local case, taking ∂νu = 1, the perimeter of Ω (often denoted by Per(Ω)) can
be obtained as

|∂Ω| =
�
∂Ω

dH N−1
x =

�
∂Ω

∂νudH N−1
x .

In the nonlocal case, discussed in [13], Remark 3.4, a similar result was established by considering a notion of
normalized nonlocal derivative. We now extend this idea to cover the case of superpositions of operators (and
perimeters) of different order. To this end, one considers

ws,Ω(x) := cN,s

�
Ω

dy

|x− y|N+2s

and the normalized nonlocal derivative given by

Ñsu(x) :=
Nsu(x)

ws,Ω(x)
for x ∈ RN \ Ω. (8.1)
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In this setting, if Ñsu(x) = 1 for any x ∈ RN \ Ω, then the fractional perimeter, introduced in [40] turns to be
the integral of Nsu(x) over RN \ Ω, namely

Pers(Ω) =

�
RN\Ω

Nsu(x)dx, (8.2)

see [13], Remark 3.4.
In our setting, the normalized superposition of nonlocal derivatives is defined in (7.12) and can be written as

Ñ u(x) =

�
(0,1)

Ns u(x) dµ(s)

�
(0,1)

ws,Ω(x) dµ(s)

for x ∈ RN \ Ω.

The reader can appreciate similarities and differences with respect to (8.1).

Also, if Ñ u(x) = 1, the superposition of fractional perimeters, provided that Pers(Ω) ∈ L1((0, 1),dµ), can
be obtained as

�
(0,1)

Pers(Ω) dµ(s) :=

�
(0,1)

cN,s

(�
Ω

�
RN\Ω

1

|x− y|N+2s
dxdy

)
dµ(s)

=

�
(0,1)

( �
RN\Ω

ws,Ω(x) dx

)
dµ(s)

=

�
RN\Ω

( �
(0,1)

ws,Ω(x) dµ(s)

)
dx

=

�
RN\Ω

( �
(0,1)

ws,Ω(x) dµ(s)

)
Ñ u(x) dx

=

�
RN\Ω

( �
(0,1)

Ns u(x) dµ(s)

)
dx

=

�
(0,1)

( �
RN\Ω

Ns u(x) dµ(s)

)
dx.

(8.3)

This identity is interesting, because it recovers the superposition of fractional perimeters from the superposition
of fractional Neumann derivatives.

We stress that (8.3) can not be obtained by directly integrating the identity in (8.2). This would be true if

Ñsu(x) = 1 for any s ∈ supp(µ) which, in general, is not guaranteed by the condition Ñ u(x) = 1.
It is also worth noting that, if µ = δs for some fractional power s ∈ (0, 1), then (8.3) turns into (8.2).
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H. Poincaré C Anal. Non Linéaire 40 (2023) 1093–1166.

[15] S. Dipierro and E. Valdinoci, Description of an ecological niche for a mixed local/nonlocal dispersal: an evolution
equation and a new Neumann condition arising from the superposition of Brownian and Lévy processes. Phys. A
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Appendix A. Proof of Theorem 1.3

We now provide a complete proof of Theorem 1.3.

Proof of Theorem 1.3. We first deal with the case g ≡ 0 and h ≡ 0, corresponding to the homogeneous (α, µ)-Neumann
conditions introduced in Definition 1.1. In this case, we assume that f ̸≡ 0, otherwise the constant is clearly the only
solution, due to Lemma 4.3.
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Taking ξ ∈ L2(Ω), we look for a function v ∈ Hα,µ(Ω) which solves

�
Ω

vφdx+ α

�
Ω

∇v · ∇φdx

+

�
(0,1)

cN,s

2

�
Q

(v(x)− v(y))(φ(x)− φ(y))

|x− y|N+2s
dxdy dµ(s) =

�
Ω

ξφdx,

(A.1)

for any φ ∈ Hα,µ(Ω), with homogeneous (α, µ)-Neumann conditions.
Let us consider the functional F : Hα,µ(Ω) → R defined as

F(φ) :=

�
Ω

ξφdx for any φ ∈ Hα,µ(Ω).

Clearly, the functional F is linear, and it is also continuous on Hα,µ(Ω). Indeed, by Proposition 2.3, we have

|F(φ)| ⩽
�
Ω

|ξ| |φ| dx ⩽ ∥ξ∥L2(Ω)∥φ∥L2(Ω) ⩽ ∥ξ∥L2(Ω)∥φ∥α,µ.

Thus, from the Riesz representation theorem we know that, for any given ξ ∈ L2(Ω), problem (A.1) admits a unique
solution v ∈ Hα,µ(Ω).

Moreover, taking φ := v in (A.1) and using again Proposition 2.3, we obtain that

∥v∥α,µ =

�
Ω

ξv dx ⩽ C∥ξ∥L2(Ω). (A.2)

Now, we can define the operator T0 : L2(Ω) → Hα,µ(Ω) as T0ξ := v, and we also denote by T its restriction operator in
Ω, that is

Tξ := T0ξ
∣∣
Ω
.

We remark that the function T0ξ is defined in the whole of RN , while Tξ is its restriction in Ω. In light of this, we see
that T : L2(Ω) → L2(Ω).

We claim that T is a compact operator. To show this, we take a bounded sequence {ξk}k∈N in L2(Ω). From (A.2)
we have that the sequence {T0ξk}k∈N is bounded in Hα,µ(Ω), and from Proposition 2.3 we deduce that the sequence
{Tξk}k∈N admits a subsequence that converges strongly in L2(Ω). This proves that T is compact.

Now, we claim that T is a self-adjoint operator. To show this, we take ξ1, ξ2 ∈ C∞
0 (Ω) and we use the weak formulation

in (A.1). From this, we have that for any φ, ϕ ∈ Hα,µ(Ω),

�
Ω

T0ξ1φ dx+ α

�
Ω

∇T0ξ1 · ∇φdx

+

�
(0,1)

cN,s

2

�
Q

(T0ξ1(x)− T0ξ1(y))(φ(x)− φ(y))

|x− y|N+2s
dxdy dµ(s) =

�
Ω

ξ1φ dx

(A.3)

and

�
Ω

T0ξ2ϕ dx+ α

�
Ω

∇T0ξ2 · ∇ϕ dx

+

�
(0,1)

cN,s

2

�
Q

(T0ξ2(x)− T0ξ2(y))(ϕ(x)− ϕ(y))

|x− y|N+2s
dxdy dµ(s) =

�
Ω

ξ2ϕ dx.

(A.4)
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Taking φ := T0ξ2 in (A.3) and ϕ := T0ξ1 in (A.4), we obtain that

�
Ω

ξ1 T0ξ2 dx =

�
Ω

ξ2 T0ξ1 dx for any ξ1, ξ2 ∈ C∞
0 (Ω).

Thus, since T0ξ1 = Tξ1 and T0ξ2 = Tξ2 in Ω, we conclude that

�
Ω

ξ1 Tξ2 dx =

�
Ω

ξ2 Tξ1 dx for any ξ1, ξ2 ∈ C∞
0 (Ω). (A.5)

If ξ1, ξ2 ∈ L2(Ω), then there exist two sequences {ξ1,k}k∈N and {ξ2,k}k∈N in C∞
0 (Ω) such that ξ1,k converges to ξ1 and ξ2,k

converges to ξ2 in L2(Ω). Then, from (A.5), we have that

�
Ω

ξ1,k Tξ2,k dx =

�
Ω

ξ2,k Tξ1,k dx. (A.6)

Moreover, from (A.2) we deduce that Tξ1,k and Tξ2,k converge respectively to Tξ1 and Tξ2 in L2(Ω). Hence,

lim
k→+∞

�
Ω

ξ1,k Tξ2,k dx =

�
Ω

ξ1 Tξ2 dx

and

lim
k→+∞

�
Ω

ξ2,k Tξ1,k dx =

�
Ω

ξ2 Tξ1 dx.

These facts and (A.6) imply that

�
Ω

ξ1 Tξ2 dx =

�
Ω

ξ2 Tξ1 dx for any ξ1, ξ2 ∈ L2(Ω).

This proves that T is a self-adjoint operator.
Now, we claim that

Ker(Id− T ) consists only of constant functions. (A.7)

We first check that constant functions are in Ker(Id− T ). For this, let c ∈ R. We take a function costantly equal to c
and observe that ∆c = 0 = (−∆)sc in Ω, and so Lα,µ(c) + c = c. Moreover, we see that ∂νc = 0 on ∂Ω and

�
(0,1)

Nscdµ(s) = 0

in RN \ Ω. This shows that T0c = c in RN , and so Tc = c in Ω, wich implies that c ∈ Ker(Id− T ).
Now, we show that if ξ ∈ Ker(Id − T ) ⊆ L2(Ω), then ξ is constant. By construction, T0ξ ∈ Hα,µ(Ω) is a weak

solution of

Lα,µ(T0ξ) + T0ξ = ξ in Ω (A.8)

with

∂ν(T0ξ) = 0 on ∂Ω and

�
(0,1)

Ns(T0ξ) dµ(s) = 0 in RN \ Ω. (A.9)
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On the other hand, since ξ ∈ Ker(Id− T ) we have that

ξ = Tξ = T0ξ in Ω. (A.10)

Hence, from (A.8), T0ξ is a weak solution of

Lα,µ(T0ξ) = 0 in Ω.

This, (A.9) and Lemma 4.3 imply that T0ξ is constant. Then, from (A.10) we have that ξ is constant in Ω, which
concludes the proof of (A.7).

From (A.7) and the Fredholm Alternative, we have that

Im(Id− T ) = Ker(Id− T )⊥ = {constant functions}⊥,

where the orthogonality notion is in L2(Ω), that is

Im(Id− T ) =

{
f ∈ L2(Ω) :

�
Ω

f dx = 0

}
. (A.11)

Thus, taking f such that
�
Ω
f dx = 0, by (A.11) we know that there exists w ∈ L2(Ω) such that f = w − Tw. Now, we

set u := T0w. By construction, u is a weak solution of

Lα,µ(T0w) + T0w = w in Ω,

with ∂νu = 0 in ∂Ω and

�
(0,1)

Nsu dµ(s) = 0

in RN \ Ω. As a consequence,

f = w − Tw = w − T0w = Lα,µ(T0w) = Lα,µ(u) in Ω

in the weak sense, so that u is the desired solution.
Viceversa, let u ∈ Hα,µ(Ω) be a weak solution of

{
Lα,µ(u) = f in Ω

with homogeneous (α, µ)-Neumann conditions.

We set w := f + u and observe that

Lα,µ(u) + u = f + u = w in Ω

in the weak sense. So, we have that u = T0w in RN , and hence u = Tw in Ω. Thus,

(Id− T )w = w − u = f in Ω,

and so f ∈ Im(Id− T ). Finally, from (A.11) we obtain that
�
Ω
f dx = 0.

This conludes the proof in the case g ≡ 0 and h ≡ 0.
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Now, we deal with the nonhomogeneous case (4.1). By assumption, there exists a function ψ ∈ C2(RN ) such that ∂νψ =
h on ∂Ω and

�
(0,1)

Nsψ dµ(s) = g in RN \ Ω.

Thus, letting u = u− ψ, we get that u is a weak solution of{
Lα,µ(u) = f in Ω

with homogeneous (α, µ)-Neumann conditions,

where f := f − Lα,µ(ψ).
Then, from the proof in the homogeneous case, this problem admits a solution if and only if

�
Ω
f dx = 0, that is

0 =

�
Ω

f dx =

�
Ω

f dx−
�
Ω

Lα,µ(ψ) dx. (A.12)

From Lemma 3.1 and the divergence theorem, we have

�
Ω

Lα,µ(ψ) dx = −α
�
Ω

∆ψ dx+

�
(0,1)

�
Ω

(−∆)sψ dxdµ(s)

= α

�
∂Ω

∂νψ dH N−1
x +

�
(0,1)

�
RN\Ω

Nsψ dxdµ(s)

= α

�
∂Ω

h dH N−1
x +

�
RN\Ω

g dx.

From this and (A.12) we conclude that a solution of (4.1) exists if and only if (1.9) holds.
Finally, thanks to Lemma 4.3 the solution is unique up to an additive constant, which completes the proof of the

desired result.

Appendix B. Proof of (2.8)

In this appendix we show that (2.8) holds, namely (Hµ(Ω), ∥ · ∥µ) is a Hilbert space. The argument is rather standard,
but it is included here for the reader’s facility.

Proof of (2.8). It is easy to check that (2.6) is a bilinear form and ∥u∥µ = (u, u)
1/2
µ . Moreover, if ∥u∥µ = 0, we get

that ∥u∥L2(Ω) = 0. This gives u = 0 a.e. in Ω and

�
(0,1)

(
cN,s

�
Q

|u(x)− u(y)|2

|x− y|N+2s
dxdy

)
dµ(s) = 0,

which, in turn, entails that

�
Q

|u(x)− u(y)|2

|x− y|N+2s
dx dy = 0 for any s ∈ supp(µ).

Hence |u(x)− u(y)| = 0 for any (x, y) ∈ Q. From this, we infer that for a.e. x ∈ Rn \ Ω and y ∈ Ω,

u(x) = u(x)− u(y) = 0,

which means that u = 0 for a.e. x ∈ RN .



THE NEUMANN CONDITION FOR THE SUPERPOSITION OF FRACTIONAL LAPLACIANS 39

We now prove that Hµ(Ω) is complete. To this end, let uk denote a Cauchy sequence with respect to the norm (2.2).
Hence, uk is a Cauchy sequence in L2(Ω) and converges, up to subsequences, to some u ∈ L2(Ω) and also a.e. in Ω. More
precisely, this means that there exists a subset Z1 ⊂ RN with3

|Z1| = 0 and uk(x) → u(x) for all x ∈ Ω \ Z1. (B.1)

Moreover, given any U : RN → R, for any (x, y) ∈ R2N and s ∈ (0, 1), we define the new function

EU (x, y, s) :=

(
U(x)− U(y)

)
χQ(x, y)

|x− y|(N+2s)/2
. (B.2)

Now, since

Euk (x, y, s)− Euh(x, y, s) =

(
uk(x)− uk(y)− uh(x) + uh(y)

)
χQ(x, y)

|x− y|(N+2s)/2

and uk is a Cauchy sequence, for any ε > 0 there exists Nε ∈ N such that, if h, k ⩾ Nε,

ε2 ⩾
�
(0,1)

cN,s

�
Q

|(uk − uh)(x)− (uk − uh)(y)|2

|x− y|N+2s
dx dy dµ(s) =: ∥Euk − Euh∥

2
L2(R2N×(0,1)).

Thus, we have that Euk is a Cauchy sequence in L2
(
R2N × (0, 1),dxdy dµ

)
. From this we infer that Euk converges, up

to subsequences, to some E in L2
(
R2N × (0, 1),dxdy dµ

)
and Euk (x, y, s) converges to E(x, y, s) a.e. in R2N × (0, 1).

Namely, there exist Z2 ⊂ R2N and Σ ⊂ (0, 1) such that

|Z2| = 0, µ(Σ) = 0

and Euk (x, y, s) → E(x, y, s) for all (x, y) ∈ R2N \ Z2, s ∈ (0, 1) \ Σ.
(B.3)

Let fix s ∈ (0, 1) \ Σ. For any x ∈ Ω, we set

Sx := {y ∈ RN : (x, y) ∈ R2N \ Z2},

W := {(x, y) ∈ R2N : x ∈ Ω and y ∈ RN \ Sx}

and V := {x ∈ Ω : |RN \ Sx| = 0}.

We claim that

W ⊆ Z2. (B.4)

Indeed, if (x, y) ∈W , then y ∈ RN \ Sx, namely (x, y) ∈ R2N \ Z2 and hence (x, y) ∈ Z2, as desired.
Accordingly, by (B.3) and (B.4) we find that |W | = 0.
Hence, by Fubini’s theorem it follows that

0 = |W | =
�
Ω

∣∣∣RN \ Sx

∣∣∣dx,
and thus |RN \ Sx| = 0 for a.e. x ∈ Ω. Also, we have |Ω \ V | = 0 which, together with (B.1), gives

|Ω \ (V \ Z1)| = |(Ω \ V ) ∪ Z1| ⩽ |Ω \ V |+ |Z1| = 0.

In particular, we infer that V \ Z1 is non empty.

3In (B.1) we have used the standard notation | · | to denote the Lebesgue measure of a set.
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Let us fix x0 ∈ V \ Z1. Now, since x0 ∈ Ω \ Z1, we have

lim
k→+∞

uk(x0) = u(x0)

by (B.1). Moreover, |RN \ Sx0 | = 0 since x0 ∈ V , namely for any y ∈ Sx0 (i.e. for a.e. y ∈ RN ), it follows that (x0, y) ∈
R2N \ Z2. Hence, by (B.2) and (B.3),

lim
k→+∞

Euk (x0, y, s) = |x0 − y|−(N+2s)/2 lim
k→+∞

(
uk(x0)− uk(y)

)
χQ(x0, y) = E(x0, y, s). (B.5)

In addition, since Ω× (RN \ Ω) ⊆ Q, by the definition in (B.2),

Euk (x0, y, s) :=
uk(x0)− uk(y)

|x0 − y|(N+2s)/2
for a.e. y ∈ RN \ Ω.

Hence, we have

lim
k→+∞

uk(y) = lim
k→+∞

(
uk(x0)− |x0 − y|(N+2s)/2Euk (x0, y, s)

)
= u(x0)− |x0 − y|(N+2s)/2E(x0, y, s)

for a.e. y ∈ RN \ Ω.
Also, we can argue as in (B.5) to show that the latter limit does not depend on s as well. From this and (B.1) we

infer that uk converges a.e. in RN . Up to a change of notation, we have that uk converges a.e. in RN to some u.
Now, recalling that uk is a Cauchy sequence in Hµ(Ω), fixed any ε > 0, there exists Nε ∈ N such that, for any k ⩾ Nε,

ε2 ⩾ lim inf
h→+∞

∥uk − uh∥2µ

⩾ lim inf
h→+∞

�
Ω

(uk − uh)
2dx+ lim inf

h→+∞

�
RN\Ω

|g|(uk − uh)
2dx

+
1

2
lim inf
h→+∞

�
(0,1)

cN,s

�
Q

|(uk − uh)(x)− (uk − uh)(y)|2

|x− y|N+2s
dx dy dµ(s).

Hence, since uk converges to u a.e. in RN , by Fatou’s Lemma we get

ε2 ⩾
�
Ω

(uk − u)2dx+

�
RN\Ω

|g|(uk − u)2dx

+
1

2

�
(0,1)

cN,s

�
Q

|(uk − u)(x)− (uk − u)(y)|2

|x− y|N+2s
dxdy dµ(s)

= ∥uk − u∥2µ,

namely, uk converges to u in Hµ(Ω), i.e. Hµ(Ω) is complete.

Appendix C. Proof of Proposition 4.2

In this appendix we prove that Proposition 4.2 holds. The argument presented is rather standard, but it is included
here for the reader’s facility.

Proof of Proposition 4.2. Let u ∈ Hα,µ(Ω). By the Hölder inequality and recalling definition (2.4),∣∣∣∣�
Ω

fudx

∣∣∣∣ ⩽ ∥f∥L2(Ω)∥u∥L2(Ω) ⩽ c1∥u∥α,µ
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and ∣∣∣∣∣
�
RN\Ω

gudx

∣∣∣∣∣ ⩽
�
RN\Ω

|g|1/2|g|1/2|u| ⩽ ∥g∥1/2
L1(RN\Ω)

∥|g|1/2u∥L2(RN\Ω) ⩽ c2∥u∥α,µ,

for some positive constants c1, c2.
Similarly, there exists c3 > 0 such that∣∣∣∣ �

∂Ω

hudH N−1
x

∣∣∣∣ ⩽ ∥h∥1/2
L1(∂Ω)

∥|h|1/2u∥L2(∂Ω) ⩽ c3∥u∥α,µ.

From this, we infer that if u ∈ Hα,µ(Ω),

|I(u)| ⩽ c4∥u∥α,µ < +∞.

We now evaluate the first variation of the functional I. To this end, let ε ∈ (0, 1) and take v ∈ Hα,µ(Ω). Hence,

I(u+ εv) =
α

2

�
Ω

|∇(u+ εv)|2dx+

�
(0,1)

cN,s

4

�
Q

|(u+ εv)(x)− (u+ εv)(y)|2

|x− y|N+2s
dxdy dµ(s)

−
�
Ω

f (u+ εv) dx−
�
RN\Ω

g (u+ εv) dx−
�
∂Ω

h (u+ εv) dH N−1
x

= I(u) + ε

(
α

�
Ω

∇u · ∇v dx+

�
(0,1)

cN,s

2

�
Q

(u(x)− u(y))(v(x)− v(y))

|x− y|N+2s
dx dy dµ(s)

−
�
Ω

f v dx−
�
RN\Ω

g v dx−
�
∂Ω

h v dH N−1
x

)

+ ε2
(
α

2

�
Ω

|∇v|2dx+

�
(0,1)

cN,s

4

�
Q

|v(x)− v(y)|2

|x− y|N+2s
dx dy dµ(s)

)
.

From this, we infer that

lim
ε→0

I(u+ εv)− I(u)

ε
= α

�
Ω

∇u · ∇v dx+

�
(0,1)

cN,s

2

�
Q

(u(x)− u(y))(v(x)− v(y))

|x− y|N+2s
dxdy dµ(s)

−
�
Ω

fv dx−
�
RN\Ω

gv dx−
�
∂Ω

hv dH N−1
x ,

namely

(I ′(u), v) = α

�
Ω

∇u · ∇v dx+

�
(0,1)

cN,s

2

�
Q

(u(x)− u(y))(v(x)− v(y))

|x− y|N+2s
dxdy dµ(s)

−
�
Ω

fv dx−
�
RN\Ω

gv dx−
�
∂Ω

hv dH N−1
x .

Hence, if u is a critical point of I, we have that u is a weak solution of (4.1), according to the definition stated in (4.2).
This completes the proof.

Appendix D. Proof of Proposition 6.3

Here we prove Proposition 6.3.
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Proof of Proposition 6.3. Let

m :=
1

|Ω|

�
Ω

u0(x) dx

be the total mass of u, which does not depend on t thanks to Proposition 6.1. Defining

A(t) :=

�
Ω

|u(x, t)−m|2 dx,

from Proposition 6.1 we have

A(t) =

�
Ω

(u2(x, t) + 2mu(x, t) +m2) dx =

�
Ω

u2(x) dx− |Ω|m2.

In light of (6.2), (6.3), (6.4) and (6.5), we can use Lemma 3.2, the classical integration by parts formula and the
homogeneous Neumann conditions to obtain

A′(t) = 2

�
Ω

∂tu(x, t)u(x, t) dx = 2α

�
Ω

u(x, t)∆u(x, t) dx− 2

�
Ω

u(x, t)(−∆)su(x, t) dx

= −2α

�
Ω

|∇u(x, t)|2 dx−
�
(0,1)

cN,s

�
Q

|u(x, t)− u(y, t)|2

|x− y|N+2s
dx dy dµ(s)

< 0,

which gives that A is decreasing.
Moreover, if µ ̸≡ 0, we can use the Poincaré inequality in Lemma 5.1 and Proposition 6.1 to get

A′(t) ⩽ −
�
(0,1)

cN,s

�
Q

|u(x, t)− u(y, t)|2

|x− y|N+2s
dxdy dµ(s)

⩽ −c
�
Ω

|u(x, t)−m|2 dx = −cA(t),
(D.1)

for some c > 0. We notice that, in the case µ ≡ 0, one can prove a Poincaré inequality as in Lemma 5.1 and still obtain
the inequality in (D.1).

Thus, from (D.1) it follows that A(t) ⩽ e−ctA(0), and so

lim
t→+∞

�
Ω

|u(x, t)−m|2 dx = 0,

that is, u converges to m in L2(Ω) as t→ +∞.

Appendix E. An alternative proof of (7.11)

Here we provide an alternative proof of (7.11) in the proof of Theorem 1.6.

Lemma E.1. Under the same assumptions of Theorem 1.6, recalling the definition in (7.4), we have

lim
k→+∞

|I2| = 0.
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Proof. The same arguments as in Theorem 1.6 allow us to state inequality (7.6), namely

|I2| ⩽ 2∥u∥L∞(Ω)

�
(0,1)

cN,s

�
Ωk

h
− 7

4
s

k

|eN − η|N+2s
dη dµ(s)

�
(0,1)

cN,s

�
Ωk

h−2s
k

|eN − η|N+2s
dη dµ(s)

.

Let us define

αk,s := h
− 7

4
s

k cN,s

�
Ωk

dη

|eN − η|N+s
(E.1)

and βk,s := h−2s
k cN,s

�
Ωk

dη

|eN − η|N+2s
. (E.2)

We claim that

lim
k→+∞

�
(0,1)

αk,s dµ(s)

�
(0,1)

βk,s dµ(s)

= 0. (E.3)

First, we notice that for k large enough, it holds that Ωk ⊂ RN \B1/2(eN ). From this, we have

αk,s ⩽ h
− 7

4
s

k cN,s

�
RN\B1/2(eN )

dη

|eN − η|N+s
= h

− 7
4
s

k cN,s

�
RN\B1/2

dz

|z|N+s

= h
− 7

4
s

k cN,sωN−1

� +∞

1/2

ρ−1−sdρ =
2s

s
ωN−1 cN,s h

− 7
4
s

k .

(E.4)

We define the set

C :=

{
x ∈ RN : xN ⩽ 1− 9

10

√
x21 + · · ·+ x2N−1 , 2 ⩽ |x− 1| ⩽ 1

2
√
hk

}
,

as shown in Figure E.1. Since Ωk converges to the halfplane Π, we get

C ⊂
(
Ωk ∩B

1/2
√

hk

)
⊂ Ωk for sufficiently large k.

Moreover, we can write

C =

{
(ρ, θ1, . . . , θN−1) ∈ R× [0, 2π]N−2 × [0, π] : ρ ∈

[
2,

1

2
√
hk

]
, θ = (θ1, . . . , θN−1) ∈ Σ

}
,

with Σ ⊆ [0, 2π]N−2 × [0, π].
From this and recalling the definition in (E.2), we have

βk,s ⩾ h−2s
k cN,s

�
C

dη

|eN − η|N+2s
= h−2s

k cN,s

� 1
2
√

hk

2

(�
Σ

ρN−1

ρN+2s
dθ

)
dρ

= h−2s
k cN,s

(�
Σ

dθ

) � 1
2
√

hk

2

ρ−1−2sdρ = h−2s
k cN,s

ωC
N−1

2s
[2−2s − 22shs

k],

(E.5)
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Figure E.1. The set C (in blue).

where we introduced the notation

ωC
N−1 :=

�
Σ

dθ.

Now, by (E.4) and (E.5) we infer that

αk,s

βk,s
⩽

2s

s
ωN−1 cN,s h

− 7
4
s

k

h−2s
k cN,s

ωC
N−1

2s
[2−2s − 22shs

k]

=
2s+1 ωN−1 h

s
4
k

ωC
N−1 − hs

k ω
C
N−12

2s
.

Let us take δ > 0 such that µ
(
[δ, 1)

)
> 0. We notice that

αk,s

βk,s
⩽ Ch

δ
4
k for s ∈ (δ, 1),

for a positive constant C > 0 which does not depend on s. Hence, we have

�
(δ,1)

αk,s dµ(s)

�
(0,1)

βk,s dµ(s)

⩽ Ch
δ
4
k

�
(δ,1)

βk,s dµ(s)

�
(0,1)

βk,s dµ(s)

⩽ Ch
δ
4
k .

In light of the previous inequality and recalling that hk → 0 a k → +∞, we get

lim
k→+∞

�
(δ,1)

αk,s dµ(s)

�
(0,1)

βk,s dµ(s)

= 0. (E.6)
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Besides, multiplying and dividing by h
7
4
δ

k , we have

�
(0,δ)

αk,s dµ(s)

�
(0,1)

βk,s dµ(s)

⩽

ωN−1

�
(0,δ)

2s

s
cN,s h

7
4
(δ−s)

k dµ(s)

�
(0,δ)

βk,s dµ(s) + ωC
N−1

�
(δ,1)

cN,s

2s

[
2−2sh

−2s+ 7
4
δ

k − 22sh
−s+ 7

4
δ

k

]
dµ(s)

.

We notice that, by the dominated convergence theorem, it follows that

lim
k→+∞

�
(0,δ)

2s

s
cN,s h

7
4
(δ−s)

k dµ(s) = 0.

Moreover, since −2s+ 7
4
δ < 0 for s ∈ (δ, 1), we get

lim
k→+∞

�
(δ,1)

cN,s

2s

[
2−2sh

−2s+ 7
4
δ

k − 22sh
−s+ 7

4
δ

k

]
dµ(s) = +∞.

Therefore, we infer that

lim
k→+∞

�
(0,δ)

αk,s dµ(s)

�
(0,1)

βk,s dµ(s)

= 0. (E.7)

Finally, by (E.6) and (E.7) we have that (E.3) holds. This concludes the proof.
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