Issue
ESAIM: COCV
Volume 23, Number 1, January-March 2017
Page(s) 137 - 164
DOI https://doi.org/10.1051/cocv/2015043
Published online 10 October 2016
  1. L. Ambrosio and N. Gigli, A user’s guide to optimal transport. In Modelling and optimisation of flows on networks. Vol. 2062 of Lect. Notes Math. Springer, Heidelberg (2013) 1–155. [Google Scholar]
  2. L. Ambrosio, N. Gigli and G. Savaré, Gradient flows in metric spaces and in the space of probability measures. Lectures in Mathematics ETH Zürich. 2nd edition. Birkhäuser Verlag, Basel (2008). [Google Scholar]
  3. A. Arnold, P. Markowich and G. Toscani, On large time asymptotics for drift-diffusion-Poisson systems. Vol. 29 of In Proc. of the Fifth International Workshop on Mathematical Aspects of Fluid and Plasma Dynamics (Maui, HI, 1998) (2000) 571–581. [Google Scholar]
  4. A. Arnold, P. Markowich, G. Toscani and A. Unterreiter, On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations. Commun. Partial Differ. Eq. 26 (2001) 43–100. [Google Scholar]
  5. J.-D. Benamou and Y. Brenier, A computational fluid mechanics solution to the Monge−Kantorovich mass transfer problem. Numer. Math. 84 (2000) 375–393. [CrossRef] [MathSciNet] [Google Scholar]
  6. P. Biler and J. Dolbeault, Long time behavior of solutions of Nernst−Planck and Debye−Hückel drift-diffusion systems. Ann. Henri Poincaré (2000) 461–472. [Google Scholar]
  7. P. Biler, J. Dolbeault and P.A. Markowich, Large time asymptotics of nonlinear drift-diffusion systems with Poisson coupling. The Sixteenth International Conference on Transport Theory, Part II (Atlanta, GA 1999). Transport Theory Statist. Phys. 30 (2001) 521–536. [CrossRef] [MathSciNet] [Google Scholar]
  8. A. Blanchet and Ph. Laurençot, The parabolic-parabolic Keller-Segel system with critical diffusion as a gradient flow in Rd,d ≥ 3. Commun. Partial Differ. Eq. 38 (2013) 658–686. [Google Scholar]
  9. A. Blanchet, V. Calvez and J.A. Carrillo, Convergence of the mass-transport steepest descent scheme for the subcritical Patlak-Keller-Segel model. SIAM J. Numer. Anal. 46 (2008) 691–721. [CrossRef] [MathSciNet] [Google Scholar]
  10. A. Blanchet, J.A. Carrillo, D. Kinderlehrer and M. Kowalczyk, Philippe Laurençot and Stefano Lisini. A hybrid variational principle for the Keller−segel system in R2. Preprint arXiv:1407.5562 [math.AP] (2014). [Google Scholar]
  11. J.A. Carrillo, R.J. McCann and C. Villani, Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates. Rev. Mat. Iberoamer. 19 (2003) 971–1018. [CrossRef] [Google Scholar]
  12. M. Di Francesco and M. Wunsch, Large time behavior in Wasserstein spaces and relative entropy for bipolar drift-diffusion-Poisson models. Monatsh. Math. 154 (2008) 39–50. [CrossRef] [MathSciNet] [Google Scholar]
  13. W. Fang and K. Ito, On the time-dependent drift-diffusion model for semiconductors. J. Differ. Eq. 117 (1995) 245–280. [CrossRef] [Google Scholar]
  14. H. Gajewski, On the uniqueness of solutions to the drift-diffusion model of semiconductor devices. Math. Models Methods Appl. Sci. 4 (1994) 121–133. [CrossRef] [MathSciNet] [Google Scholar]
  15. S. Hastings, D. Kinderlehrer and J.B. McLeod, Diffusion mediated transport in multiple state systems. SIAM J. Math. Anal. 39 (2007/08) 1208–1230. [CrossRef] [MathSciNet] [Google Scholar]
  16. R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the Fokker-Planck equation. SIAM J. Math. Anal. 29 (1998) 1–17. [CrossRef] [MathSciNet] [Google Scholar]
  17. A. Jüngel, A nonlinear drift-diffusion system with electric convection arising in electrophoretic and semiconductor modeling. Math. Nachr. 185 (1997) 85–110. [CrossRef] [MathSciNet] [Google Scholar]
  18. A. Jüngel, Quasi-hydrodynamic semiconductor equations. Vol. 41 of Progress in Nonlinear Differential Equations and their Applications. Birkhäuser Verlag, Basel (2001). [Google Scholar]
  19. C.E. Kenig, Harmonic analysis techniques for second order elliptic boundary value problems. Vol. 83 of CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI (1994). [Google Scholar]
  20. D. Kinderlehrer and M. Kowalczyk, The Janossy effect and hybrid variational principles. Discrete Contin. Dyn. Syst. Ser. B 11 (2009) 153–176. [MathSciNet] [Google Scholar]
  21. M. Kurokiba and T. Ogawa, Well-posedness for the drift-diffusion system in Lp arising from the semiconductor device simulation. J. Math. Anal. Appl. 342 (2008) 1052–1067. [CrossRef] [Google Scholar]
  22. Ph. Laurençot and B.-V. Matioc, A gradient flow approach to a thin film approximation of the Muskat problem. Calc. Var. Partial Differ. Eq. 47 319–341, 2013. [Google Scholar]
  23. El.H. Lieb and M. Loss, Analysis. Vol. 14 of Grad. Stud. Math. American Mathematical Society, Providence, RI, 2nd edition (2001). [Google Scholar]
  24. P.A. Markowich, C.A. Ringhofer and C. Schmeiser, Semiconductor equations. Springer-Verlag, Vienna (1990). [Google Scholar]
  25. D. Matthes and J. Zinsl, Exponential convergence to equilibrium in a coupled gradient flow system modelling chemotaxis. Preprint arXiv:1310.3977 [math.AP] (2014). [Google Scholar]
  26. D. Matthes, R.J. McCann and G. Savaré, A family of nonlinear fourth order equations of gradient flow type. Commun. Partial Differ. Equ. 34 (2009) 1352–1397. [CrossRef] [Google Scholar]
  27. R.J. McCann, A convexity principle for interacting gases. Adv. Math. 128 (1997) 153–179. [CrossRef] [MathSciNet] [Google Scholar]
  28. A. Mielke. A gradient structure for reaction-diffusion systems and for energy-drift-diffusion systems. Nonlinearity 24 (2011) 1329–1346. [CrossRef] [Google Scholar]
  29. Felix Otto. Dynamics of labyrinthine pattern formation in magnetic fluids: a mean-field theory. Arch. Rational Mech. Anal. 141 (1998) 63–103. [Google Scholar]
  30. F. Otto, The geometry of dissipative evolution equations: the porous medium equation. Commun. Partial Differ. Eq. 26 (2001) 101–174. [Google Scholar]
  31. M. Schmuck, New porous medium Poisson-Nernst-Planck equations for strongly oscillating electric potentials. J. Math. Phys. 54 (2013) 021504. [CrossRef] [Google Scholar]
  32. J. Simon, Compact sets in the space Lp(0,T;B). Ann. Mat. Pura Appl. 146 (1987) 65–96. [Google Scholar]
  33. E.M. Stein, Singular integrals and differentiability properties of functions. Princeton Mathematical Series. Princeton University Press, Princeton, N.J. (1970) 30. [Google Scholar]
  34. J.L. Vázquez. The porous medium equation. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, Oxford (2007). Mathematical theory. [Google Scholar]
  35. C. Villani, Topics in optimal transportation. Vol. 58 of Grad. Stud. MathAmerican Mathematical Society, Providence, RI (2003). [Google Scholar]
  36. Sh. Xu, P. Sheng and Ch. Liu, An energetic variational approach for ion transport. Commun. Math. Sci. 12 (2014) 779–789. [MathSciNet] [Google Scholar]
  37. J. Zinsl, Existence of solutions for a nonlinear system of parabolic equations with gradient flow structure. Monatsh. Math. 174 (2014) 653–679. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.