Issue |
ESAIM: COCV
Volume 23, Number 2, April-June 2017
|
|
---|---|---|
Page(s) | 685 - 720 | |
DOI | https://doi.org/10.1051/cocv/2016008 | |
Published online | 26 January 2017 |
- P.R.S. Antunes and P. Freitas, Numerical optimization of low eigenvalues of the Dirichlet and Neumann Laplacians. J. Optim. Theory Appl. 154 (2012) 235–257. [CrossRef] [MathSciNet] [Google Scholar]
- M.G. Armentano and R.G. Durán, Asymptotic lower bounds for eigenvalues by nonconforming finite element methods. Electron. Trans. Numer. Anal. 17 (2004) 93–101. [MathSciNet] [Google Scholar]
- M.S. Ashbaugh and R.D. Benguria, Isoperimetric inequalities for eigenvalues of the Laplacian. Proc. Symp. Pure Math. 76 (2007) 105–139. [Google Scholar]
- P.H. Bérard and G. Besson, Lectures on Spectral Geometry. Conselho Nacional de Desenvolvimento Cientifico e Tecnologico, Instituto de Matematica Pura e Aplicada (1985). [Google Scholar]
- M. Berger, Sur les premiéres valeurs propres des variétés Riemanniennes. Comp. Math. 26 (1973) 129–149. [Google Scholar]
- D. Boffi, Finite element approximation of eigenvalue problems. Acta Numer. 19 (2010) 1–120. [CrossRef] [MathSciNet] [Google Scholar]
- P. Buser, Geometry and spectra of compact Riemann surfaces. Springer (2010). [Google Scholar]
- B. Colbois and J. Dodziuk, Riemannian metrics with large λ1, Proc. Am. Math. Soc. 122 (1994) 905–906. [Google Scholar]
- B. Colbois and A. El Soufi, Extremal eigenvalues of the Laplacian in a conformal class of metrics: the ‘conformal spectrum’. Ann. Global Anal. Geom. 24 (2003) 337–349. [CrossRef] [MathSciNet] [Google Scholar]
- B. Colbois and A. El Soufi, Extremal eigenvalues of the Laplacian on Euclidean domains and closed surfaces. Math. Z. 278 (2014) 529–546. [CrossRef] [MathSciNet] [Google Scholar]
- B. Colbois, A. El Soufi and A. Girouard, Isoperimetric control of the spectrum of a compact hypersurface. J. Reine Angew. Math. 2013 (2013) 49–65. [CrossRef] [Google Scholar]
- B. Colbois, E.B. Dryden and A. El Soufi, Bounding the eigenvalues of the Laplace–Beltrami operator on compact submanifolds. Bull. London Math. Soc. 42 (2010) 96–108. [CrossRef] [MathSciNet] [Google Scholar]
- I. Chavel, Eigenvalues in Riemannian geometry. Academic Press (1984). [Google Scholar]
- S. Cox and J. McLaughlin, Extremal eigenvalue problems for composite membranes. Part I and II. Appl. Math. Optim. 22 (1990) 153–167 and 169–187. [CrossRef] [MathSciNet] [Google Scholar]
- T.A. Driscoll, N. Hale and L.N. Trefethen, Chebfun guide. Pafnuty Publications, Oxford (2014). [Google Scholar]
- A. El Soufi and S. Ilias, Laplacian eigenvalue functionals and metric deformations on compact manifolds. J. Geom. Phys. 58 (2008) 89–104. [CrossRef] [MathSciNet] [Google Scholar]
- S. Friedland, Extremal eigenvalue problems defined on conformal classes of compact Riemannian manifolds. Comment. Math. Helvetici 54 (1979) 494–507. [CrossRef] [MathSciNet] [Google Scholar]
- O. Giraud and K. Thas, Hearing shapes of drums-mathematical and physical aspects of isospectrality. Rev. Mod. Phys. 82 (2010) 2213–2255. [CrossRef] [Google Scholar]
- A. Girouard, N. Nadirashvili and I. Polterovich, Maximization of the second positive Neumann eigenvalue for planar domains. J. Differ. Geom. 83 (2009) 637–661. [Google Scholar]
- R. Glowinski and D.C. Sorensen, Computing the eigenvalues of the Laplace-Beltrami operator on the surface of a torus: A numerical approach. Partial Differential Equations. In vol. 16 of Comput. Methods Appl. Sci. Springer (2008) 225–232. [Google Scholar]
- A. Henrot, Extremum Problems for Eigenvalues of Elliptic Operators. Verlag, Birkhäuser (2006). [Google Scholar]
- J. Hersch, Quatre propriétés isopérimétriques de membranes sphériques homogenes. (French). C. R. Acad. Sci. Paris Sér. AB 270 (1970) A1645–A1648. [Google Scholar]
- Y. Imayoshi and M. Taniguchi, An Introduction to Teichmüller Spaces. Springer-Verlag (1992). [Google Scholar]
- D. Jakobson, M. Levitin, N. Nadirashvili, N. Nigam and I. Polterovich, How large can the first eigenvalue be on a surface of genus two? Int. Math. Res. Not. 2005 (2005) 3967–3985. [CrossRef] [Google Scholar]
- D. Jakobson, N. Nadirashvili and I. Polterovich, Extremal metric for the first eigenvalue on a Klein bottle. Canadian J. Math. 58 (2006) 381–400. [CrossRef] [MathSciNet] [Google Scholar]
- M.A. Karpukhin, Nonmaximality of known extremal metrics on torus and Klein bottle. Sb. Math. 204 (2013) 1–17. [CrossRef] [MathSciNet] [Google Scholar]
- M.A. Karpukhin, Spectral properties of bipolar surfaces to Otsuki tori. J. Spectr. Theory 4 (2014) 87–111. [CrossRef] [MathSciNet] [Google Scholar]
- G. Kokarev, Variational aspects of Laplace eigenvalues on Riemannian surfaces. Adv. Math. 258 (2014) 191–239. [CrossRef] [MathSciNet] [Google Scholar]
- N. Korevaar, Upper bounds for eigenvalues of conformal metrics. J. Differ. Geom. 37 (1993) 73–93. [Google Scholar]
- P. Kroger, On the spectral gap for compact manifolds. J. Differ. Geom. 36 (1992), 315–330. [Google Scholar]
- R. Lai, Z. Wen, W. Yin, X. Gu and L.M. Lui, Folding-free global conformal mapping for genus-0 surfaces by harmonic energy minimization, J. Sci. Comput. 18 (2014) 705–725. [CrossRef] [Google Scholar]
- H. Lapointe, Spectral properties of bipolar minimal surfaces in S4. Differ. Geom. Appl. 26 (2008) 9–22. [CrossRef] [Google Scholar]
- S. Larsson and V. Thomée, Partial Differential Equations with Numerical Methods. New York (2005). [Google Scholar]
- R.S. Laugesen and B.A. Siudeja, Sums of Laplace eigenvalues: Rotations and tight frames in higher dimensions. J. Math. Phys. 52 (2011) 093703. [CrossRef] [MathSciNet] [Google Scholar]
- R.B. Lehoucq and D.C. Sorensen, Deflation techniques for an implicitly restarted Arnoldi iteration. SIAM J. Matrix Anal. Appl. 17 (1996) 789–821. [CrossRef] [MathSciNet] [Google Scholar]
- A.S. Lewis and M.L. Overton, Nonsmooth optimization via quasi-Newton methods. Math. Program. 141 (2013) 135–163. [CrossRef] [MathSciNet] [Google Scholar]
- J. Ling and Z. Lu, Bounds of eigenvalues on Riemannian manifolds. ALM 10 (2010) 241–264. [Google Scholar]
- J. Milnor, Eigenvalues of the Laplace operator on certain manifolds. Proc. Nat. Acad. Sci. USA 51 (1964) 542. [CrossRef] [Google Scholar]
- N. Nadirashvili, Berger’s isoperimetric problem and minimal immersions of surfaces. Geom. Funct. Anal. 6 (1996) 877–897. [CrossRef] [MathSciNet] [Google Scholar]
- N. Nadirashvili, Isoperimetric inequality for the second eigenvalue of a sphere. J. Differ. Geom. 61 (2002) 335–340. [Google Scholar]
- N. Nadirashvili and Y. Sire, Conformal spectrum and harmonic maps. Preprint arXiv:1007.3104 (2014). [Google Scholar]
- B. Osting, Optimization of spectral functions of Dirichlet–Laplacian eigenvalues. J. Comp. Phys. 229 (2010) 8578–8590. [CrossRef] [Google Scholar]
- B. Osting and C.Y. Kao, Minimal convex combinations of sequential Laplace-Dirichlet eigenvalues. SIAM J. Sci. Comput. 35 (2013) B731–B750. [CrossRef] [Google Scholar]
- B. Osting and C.Y. Kao, Minimal convex combinations of three sequential Laplace–Dirichlet eigenvalues. Appl. Math. Optim. 69 (2014) 123–139. [CrossRef] [MathSciNet] [Google Scholar]
- E. Oudet, Numerical minimization of eigenmodes of a membrane with respect to the domain. ESAIM: COCV 10 (2004) 315–335. [CrossRef] [EDP Sciences] [Google Scholar]
- F. Pacard and P. Sicbaldi, Extremal domains for the first eigenvalue of the Laplace-Beltrami operator. Ann. Inst. Fourier 59 (2009) 515–542. [CrossRef] [MathSciNet] [Google Scholar]
- A.V. Penskoi, Extremal spectral properties of Lawson tau-surfaces and the Lamé equation. Moscow Math. J. 12 (2012) 173–192. [MathSciNet] [Google Scholar]
- A.V. Penskoi, Extremal metrics for eigenvalues of the Laplace-Beltrami operator on surfaces. Russian Math. Surveys 68 (2013) 1073. [CrossRef] [MathSciNet] [Google Scholar]
- A.V. Penskoi, Extremal spectral properties of Otsuki tori. Math. Nachr. 286 (2013) 379–391. [CrossRef] [MathSciNet] [Google Scholar]
- A.V. Penskoi, Generalized Lawson tori and Klein bottles. J. Geom. Anal. 25 (2015) 2645–2666. [CrossRef] [MathSciNet] [Google Scholar]
- R. Petrides, Existence and regularity of maximal metrics for the first Laplace eigenvalue on surfaces. Preprint arXiv:1310.4697 (2013). [Google Scholar]
- R. Petrides, Maximization of the second conformal eigenvalue of spheres. Proc. Am. Math. Soc. 142 (2014) 2385–2394. [CrossRef] [Google Scholar]
- A. Qiu, D. Bitouk and M.I. Miller, Smooth functional and structural maps on the neocortex via orthonormal bases of the Laplace–Beltrami operator. IEEE Trans. Med. Imaging 25 (2006) 1296–1306. [CrossRef] [PubMed] [Google Scholar]
- J.W.S. Rayleigh, The Theory of Sound. Vol. 1. Dover Publications New York (1877). [Google Scholar]
- M. Reuter, F.-E. Wolter and N. Peinecke, Laplace–Beltrami spectra as ‘Shape-DNA’ of surfaces and solids. Comput. Aid. Design 38 (2006) 342–366. [CrossRef] [Google Scholar]
- R. Schoen and S.-T. Yau, Lectures on differential geometry. International Press (1994). [Google Scholar]
- Y. Shi, R. Lai, R. Gill, D. Pelletier, D. Mohr, N. Sicotte and A.W. Toga, Conformal metric optimization on surface (cmos) for deformation and mapping in Laplace-Beltrami embedding space, Medical Image Computing and Computer-Assisted Intervention–MICCAI 2011. Springer (2011) 327–334. [Google Scholar]
- D. C. Sorensen, Implicit application of polynomial filters in a k-step Arnoldi method. SIAM J. Matrix Anal. Appl. 13 (1992) 357–385. [CrossRef] [MathSciNet] [Google Scholar]
- L. N. Trefethen, Spectral methods in MATLAB. Vol. 10. SIAM (2000). [Google Scholar]
- H. Urakawa, On the least positive eigenvalue of the Laplacian for compact group manifolds. J. Math. Soc. Jpn 31 (1979) 209–226. [CrossRef] [Google Scholar]
- P.C. Yang and S.-T. Yau, Eigenvalues of the Laplacian of compact Riemann surfaces and minimal submanifolds. Ann. Sc. Norm. Super. Pisa-Cl. Sci. 7 (1980) 55–63. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.