Volume 23, Number 3, July-September 2017
Page(s) 1023 - 1046
Published online 03 May 2017
  1. R. Abeyaratne, C. Chu and R. D. James, Kinetics of materials with wiggly energies: Theory and application to the evolution of twinning microstructures in a Cu-Al-Ni shape memory alloy. Philos. Mag. A 73 (1996) 457–497. [CrossRef] [Google Scholar]
  2. F. Al-Bender and J. Swevers. Characterization of friction force dynamics. IEEE Control Systems 28 (2009) 64–81. [CrossRef] [Google Scholar]
  3. R. Alessi, Energetic formulation for rate-independent processes: remarks on discontinuous evolutions with a simple example. Acta Mechanica 227 (2016) 2805–2829. [CrossRef] [MathSciNet] [Google Scholar]
  4. V.I. Arnold, V.V. Kozlov and A.I. Neishtadt, Mathematical aspects of classical and celestial mechanics. Springer, Berlin (2007). [Google Scholar]
  5. K. Autumn, A. Dittmore, D. Santos, M. Spenko and M. Cutkosky, Frictional adhesion: a new angle on gecko attachment. J. Exp. Biol. 209 (2006) 3569–3579. [CrossRef] [PubMed] [Google Scholar]
  6. K. Autumn and N. Gravish, Gecko adhesion: evolutionary nanotechnology. Phil. Trans. R. Soc. A 366 (2008) 1575–1590. [CrossRef] [Google Scholar]
  7. K. Autumn, M. Sitti, Y.A. Liang, A.M. Peattie, S. Hansen, S. Sponberg, T.W. Kenny, R. Fearing, R.J. Israelachvili and R.J. Full, Evidence for van der Walls adhesion in gecko setae. Proc. Natl. Acad. Sci. USA 99 (2002) 12252–12256. [CrossRef] [Google Scholar]
  8. C. Canudas De Wit, H. Olsson, K.J. Astrom and P. Lischinsky, A new model for control of systems with friction. IEEE Trans. Autom. Control 40 (1995) 419–425. [CrossRef] [Google Scholar]
  9. B. Drincic and D.S. Bernstein, A sudden-release bristle model that exhibits hysteresis and stick-slip friction, in IEEE American Control Conference (2011) 2456–2461. [Google Scholar]
  10. A. DeSimone, P. Gidoni and G. Noselli, Liquid Crystal Elastomer Strips as Soft Crawlers. J. Mech. Phys. Solids 85 (2015) 254–272. [CrossRef] [Google Scholar]
  11. A. DeSimone and A. Tatone, Crawling motility through the analysis of model locomotors: two case studies. Eur. Phys. J. E 35 (2012) 85. [CrossRef] [EDP Sciences] [Google Scholar]
  12. H. Gao, X. Wang, H. Yao, S. Gorb and E. Arzt, Mechanics of hierarchical adhesion structures of geckos. Mech. Mater. 37 (2005) 275–285. [CrossRef] [Google Scholar]
  13. P. Gidoni and A. DeSimone, Stasis domains and slip surfaces in the locomotion of a bio-inspired two-segment crawler. Meccanica 52 (2017) 587–601. [CrossRef] [MathSciNet] [Google Scholar]
  14. P. Gidoni, G. Noselli and A. DeSimone, Crawling on directional surfaces. Int. J. Non-Linear Mech. 61 (2014) 65–73. [CrossRef] [Google Scholar]
  15. N.J. Glassmaker, A. Jagota, C.Y. Hui and J. Kim, Design of biomimetic fibrillar interfaces: 1. Making contact. J. R. Soc. Interf. 1 (2004) 23–33. [CrossRef] [Google Scholar]
  16. M.J. Hancock., K. Sekeroglu and M.C. Demirel, Bioinspired directional surfaces for adhesion, wetting, and transport. Adv. Funct. Mater. 22 (2012) 2223–2234. [CrossRef] [PubMed] [Google Scholar]
  17. D.A. Haessig and B. Friedland, On the modeling and simulation of friction. J. Dyn. Syst. Meas. Control. 113 (1991) 354–362. [CrossRef] [Google Scholar]
  18. C. Hu and P.A. Greaney, Role of seta angle and flexibility in the gecko adhesion mechanism. J. Appl. Phys. 116 (2014). [Google Scholar]
  19. M. Kwak and H. Shindo, Frictional force microscopic detection of frictional asymmetry and anisotropy at (10Formula 4) surface of calcite. Phys. Chem. Chem. Phys. 6 (2004) 129–133. [CrossRef] [Google Scholar]
  20. M. Liley, D. Gourdon, D. Stamou, U. Meseth, T.M. Fischer, C. Lautz, H. Stahlberg, H. Vogel, N.A. Burnham and C. Duschl, Friction anisotropy and asymmetry of a compliant monolayer induced by a small molecular tilt. Science 280 (1998) 273–275. [CrossRef] [PubMed] [Google Scholar]
  21. L. Mahadevan, S. Daniel and M.K. Chaudhury, Biomimetic ratcheting motion of a soft, slender, sessile gel. Proc. Natl. Acad. Sci. USA 101 (2004) 23–26. [CrossRef] [PubMed] [Google Scholar]
  22. A. Menciassi, D. Accoto, S. Gorini and P. Dario, Development of a biomimetic miniature robotic crawler. Auton. Robot 21 (2006) 155–163. [CrossRef] [Google Scholar]
  23. A. Mielke, Evolution of rate-independent systems, in Handbook of Differential Equations, evolutionary equations, edited by C. Dafermos and E. Feireisl. Elsevier (2005). [Google Scholar]
  24. A. Mielke, Emergence of rate-independent dissipation from viscous systems with wiggly energies. Contin. Mech. Thermodyn. 24 (2012) 591–603. [Google Scholar]
  25. A. Mielke, Variational approaches and methods for dissipative material models with multiple scales, in Analysis and Computation of Microstructure in Finite Plasticity. Springer, Berlin (2015) 125–155. [Google Scholar]
  26. A. Mielke and R. Rossi, Existence and uniqueness results for general rate-independent hysteresis problems. Math. Models Methods Appl. Sci.17 (2007) 81–123. [Google Scholar]
  27. A. Mielke and T. Roubcíˇek, Rate-Independent Systems. Theory and Application. Springer, Berlin (2015). [Google Scholar]
  28. A. Mielke and L. Truskinovsky, From discrete visco-elasticity to continuum rate-independent plasticity: rigorous results. Arch. Rational Mech. Anal. 203 (2012) 577–619. [CrossRef] [MathSciNet] [Google Scholar]
  29. G.S.P. Miller, The motion dynamics of snakes and worms. ACM Siggraph Computer Graphics 22 (1988) 169–173. [CrossRef] [Google Scholar]
  30. G. Noselli and A. DeSimone, A robotic crawler exploiting directional frictional interactions: experiments, numerics, and derivation of a reduced model. Proc. Roy. Soc. London A 470 (2014). [Google Scholar]
  31. B.N.J. Persson and S. Gorb, The effect of surface roughness on the adhesion of elastic plates with application to biological systems. J. Chem. Phys. 119 (2003) 11437–11444. [CrossRef] [Google Scholar]
  32. M. Piccardo, A. Chateauminois, C. Fretigny, N.M. Pugno, M. Sitti, Contact compliance effects in the frictional response of bioinspired fibrillar adhesives. J. R. Soc. Interf. 10 (2013) 20130182. [CrossRef] [Google Scholar]
  33. V. Popov, Contact mechanics and friction: physical principles and applications. Springer, Berlin (2010). [Google Scholar]
  34. V.L. Popov and J.A.T. Gray, Prandtl-Tomlinson Model: A Simple Model Which Made History, in The History of Theoretical, Material and Computational Mechanics-Mathematics Meets Mechanics and Engineering. Springer, Berlin (2014) 153–168. [Google Scholar]
  35. G. Puglisi and L. Truskinovsky, Thermodynamics of rate-independent plasticity. J. Mech. Phys. Solids 53 (2005) 655–679. [CrossRef] [MathSciNet] [Google Scholar]
  36. G. Puglisi and L. Truskinovsky, Cohesion-decohesion asymmetry in geckos. Phys. Rev. E 87 (2013) 032714. [CrossRef] [Google Scholar]
  37. R.T. Rockafellar and R.J.-B. Wets, Variational Analysis. Springer, Berlin (1998). [Google Scholar]
  38. Y. Tian, N. Pesika, H. Zeng, K. Rosenberg, B. Zhao, P. McGuiggan, K. Autumn and J. Israelachvili, Adhesion and friction in gecko toe attachment and detachment. Proc. Natl. Acad. Sci. USA 103 (2006) 19320–19325. [CrossRef] [Google Scholar]
  39. K. Zimmermann and I. Zeidis, Worm-like locomotion as a problem of nonlinear dynamics. J. Theoret. Appl. Mech. 45 (2007) 179–187. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.