Free Access
Issue
ESAIM: COCV
Volume 25, 2019
Article Number 69
Number of page(s) 23
DOI https://doi.org/10.1051/cocv/2018049
Published online 15 November 2019
  1. C.I. Byrnes, I.G. Laukó, D.S. Gilliam and V.I. Shubov, Output regulation for linear distributed parameter systems. IEEE Trans. Automat. Control 45 (2000) 2236–2252. [CrossRef] [Google Scholar]
  2. D. Bresch-Pietri and M. Krstic, Output-feedback adaptive control of a wave PDE with boundary anti-damping. Automatica 50 (2014) 1407–1415. [CrossRef] [Google Scholar]
  3. R. Curtain and H. Zwart, An Introduction to Infinite-Dimensional Linear Systems Theory. Springer-Verlag, New York (1995). [CrossRef] [Google Scholar]
  4. E.J. Davison, The robust control of a servomechanism problem for linear time-invariant multivariable systems. IEEE Trans. Automat. Control 21 (1976) 25–34. [CrossRef] [Google Scholar]
  5. J. Deutscher, A backstepping approach to the output regulation of boundary controlled parabolic PDEs. Automatica 57 (2015) 56–64. [CrossRef] [Google Scholar]
  6. J. Deutscher, Backstepping design of robust output feedback regulators for boundary controlled parabolic PDEs. IEEE Trans. Automat. Control 61 (2016) 2288–2294. [CrossRef] [Google Scholar]
  7. J. Deutscher and S. Kerschbaum, Backstepping design of robust state feedback regulators for second order hyperbolic PIDEs. IFAC-PapersOnLine 49 (2016) 80–85. [CrossRef] [Google Scholar]
  8. E. Fridman, Introduction to Time-Delay Systems. Birkhäuser/Springer, Cham (2014). [CrossRef] [Google Scholar]
  9. B.A. Francis and W.M. Wonham, The internal model principle of control theory. Automatica 12 (1976) 457–465. [CrossRef] [Google Scholar]
  10. H. Feng and B.Z. Guo, A new active disturbance rejection control to output feedback stabilization for a one-dimensional anti-stable wave equation with disturbance. IEEE Trans. Automat. Control 62 (2017) 3774–3787. [CrossRef] [Google Scholar]
  11. W. Guo and B.Z. Guo, Performance output tracking for a wave equation subject to unmatched general boundary harmonic disturbance. Automatica 68 (2016) 194–202. [CrossRef] [Google Scholar]
  12. W. Guo, B.Z. Guo and F.F. Jin, Performance output tracking and disturbance rejection for one-dimensional wave equation with boundary disturbance. IEEE, 54th, Annual Conference on Decision and Control, Osaka, Japan (2015). [Google Scholar]
  13. W. Guo, Z.C. Shao and M. Krstic, Adaptive rejection of harmonic disturbance anticollocated with control in 1D wave equation. Automatica 79 (2017) 17–26. [CrossRef] [Google Scholar]
  14. W. Guo, H.C. Zhou and M. Krstic, Adaptive error feedback output regulation for 1d wave equation. Int. J. Robust Nonlinear Control 28 (2018) 4309–4329. [Google Scholar]
  15. B.Z. Guo and F.F. Jin, Output feedback stabilization for one-dimensional wave equation subject to boundary disturbance. IEEE Trans. Automat. Control 60 (2015) 824–830. [CrossRef] [Google Scholar]
  16. B.Z. Guo and C.Z. Xu, The stabilization of a one-dimensional wave equation by boundary feedback with noncollocated observation. IEEE Trans. Automat. Control 52 (2007) 371–377. [CrossRef] [Google Scholar]
  17. B.Z. Guo and H.C. Zhou, The active disturbance rejection control to stabilization for multi-dimensional wave equation with boundary control matched disturbance. IEEE Trans. Automat. Control 60 (2015) 143–157. [CrossRef] [Google Scholar]
  18. E. Immonen and S. Pohjolainen, Output regulation of periodic signals for DPS: an infinite-dimensional signal generator. IEEE Trans. Automat. Control 50 (2005) 1799–1804. [CrossRef] [Google Scholar]
  19. E. Immonen and S. Pohjolainen, Feedback and feedforward output regulation of bounded uniformly continuous signals for infinite-dimensional systems. SIAM J. Control Optim. 45 (2006) 1714–1735. [CrossRef] [Google Scholar]
  20. M. Krstic, Delay Compensation for Nonlinear, Adaptive, and PDE Systems. Birkhäuser, Boston (2009). [CrossRef] [Google Scholar]
  21. P.O. Lamare and N. Bekiaris-Liberis, Control of 2 × 2 linear hyperbolic systems: backstepping-based trajectory generation and PI-based tracking. Syst. Control Lett. 86 (2015) 24–33. [Google Scholar]
  22. J.J. Liu, J.M. Wang and Y.P. Guo, Output tracking for one-dimensional Schrödinger equation subject to boundary disturbance. Asian J. Control 20 (2018) 659–668. [Google Scholar]
  23. T. Meurer and A. Kugi, Tracking control for boundary controlled parabolic PDEs with varying parameters: combining backstepping and differential flatness. Automatica 45 (2009) 1182–1194. [CrossRef] [Google Scholar]
  24. V. Natarajan, D. Gilliam and G. Weiss, The state feedback regulator problem for regular linear systems. IEEE Trans. Automat. Control 59 (2014) 2708–2723. [CrossRef] [Google Scholar]
  25. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag, New York (1983). [CrossRef] [Google Scholar]
  26. L. Paunonen and S. Pohjolainen, The internal model principle for systems with unbounded control and observation. SIAM J. Control Optim. 52 (2014) 3967–4000. [CrossRef] [Google Scholar]
  27. R. Rebarber and G. Weiss, Internal model based tracking and disturbance rejection for stable well-posed systems. Automatica 39 (2003) 1555–1569. [CrossRef] [Google Scholar]
  28. A. Smyshlyaev and M. Krstic, Boundary control of an anti-stable wave equation with antidamping on the uncontrolled boundary. Syst. Control Lett. 58 (2009) 617–623. [Google Scholar]
  29. M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Birkhäuser Advanced Texts Basler Lehrbücher, Birkhäuser, Basel (2009). [Google Scholar]
  30. G. Weiss, Admissibility of unbounded control operators. SIAM J. Control Optim. 27 (1989) 527–545. [CrossRef] [MathSciNet] [Google Scholar]
  31. G. Weiss and V. Natarajan, Integral control of stable nonlinear systems. Preprint arXiv:1610.04868 (2016). [Google Scholar]
  32. C.Z. Xu and G. Sallet, Multivariable boundary PI control and regulation of a fluid flow system. Math. Control Relat. Fields 4 (2014) 501–520. [CrossRef] [Google Scholar]
  33. Z.H. Xu, Y.G. Liu and J. Li, Adaptive stabilization for a class of PDE-ODE cascade systems with uncertain harmonic disturbances. ESAIM: COCV 23 (2017) 497–515. [CrossRef] [EDP Sciences] [Google Scholar]
  34. H.C. Zhou and B.Z. Guo, Performance output tracking for one-dimensional wave equation subject to unmatched general disturbance and non-collocated control. Eur. J. Control 39 (2018) 39–52. [CrossRef] [Google Scholar]
  35. H.C. Zhou and G. Weiss, The regulation problem for the one-dimensional Schrödinger equation via the backstepping approach. Proc. of the International Conference on the Science of Electrical Engineering (ICSEE), Eilat, Israel (2016). [Google Scholar]
  36. H.C. Zhou and G. Weiss, Output feedback exponential stabilization for one-dimensional unstable wave equations with boundary control matched disturbance. SIAM J. Control Optim. 56 (2018) 4098–4129. [CrossRef] [Google Scholar]
  37. H.C. Zhou and G. Weiss, Output feedback exponential stabilization of a nonlinear 1-D wave equation with boundary input. Proc. of the IFAC World Congress, Toulouse, France (2017). [Google Scholar]
  38. H.C. Zhou and G. Weiss, Output tracking and disturbance rejection for a one-dimensional anti-stable wave equation. IEEE 56th Annual Conference on Decision and Control, Melbourne, Australia (2017). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.