Free Access
Issue
ESAIM: COCV
Volume 25, 2019
Article Number 40
Number of page(s) 35
DOI https://doi.org/10.1051/cocv/2018029
Published online 20 September 2019
  1. M.S. Ashbaugh and R.D. Benguria, Proof of the payne-pólya-weinberger conjecture. Bull. Am. Math. Soc. 25 (1991) 19–29. [CrossRef] [MathSciNet] [Google Scholar]
  2. M.S. Ashbaugh and R. Svirsky, Periodic potentials with minimal energy bands. Proc. Am. Math. Soc. 114 (1992) 69–69. [Google Scholar]
  3. C. Bandle, Isoperimetric Inequalities and Applications. Pitman Publishing (1980). [Google Scholar]
  4. S. Chanillo, D. Grieser, M. Imai, K. Kurata and I. Ohnishi, Symmetry Breaking and Other Phenomena in the Optimization of Eigenvalues for Composite Membranes. Commun. Math. Phys. 214 (2000) 315–337. [CrossRef] [Google Scholar]
  5. W. Chen, C.-S. Chou and C.-Y. Kao, Minimizing eigenvalues for inhomogeneous rods and plates. J. Sci. Comput. (2016) 1–31. [Google Scholar]
  6. M. Chugunova, B. Jadamba, C.-Y. Kao, C. Klymko, E. Thomas and B. Zhao. Study of a mixed dispersal population dynamics model, in Topics in Numerical Partial Differential Equations and Scientific Computing. Springer (2016) 51–77. [CrossRef] [Google Scholar]
  7. S.J. Cox, The two phase drum with the deepest bass note. Japan. J. Indust. Appl. Math. 8 (1991) 345–355. [CrossRef] [Google Scholar]
  8. S.J. Cox and D. C. Dobson, Band structure optimization of two-dimensional photonic crystals in h-polarization. J. Comput. Phys. 158 (2000) 214–224. [Google Scholar]
  9. D.C. Dobson and S. J. Cox, Maximizing band gaps in two-dimensional photonic crystals. SIAM J. Appl. Math. 59 (1999) 2108–2120. [Google Scholar]
  10. M.S.P. Eastham, The spectral theory of periodic differential equations. Scottish Academic Press (1973). [Google Scholar]
  11. C. Fefferman and M. Weinstein, Honeycomb lattice potentials and dirac points. J. Am. Math. Soc. 25 (2012) 1169–1220. [CrossRef] [Google Scholar]
  12. M. Grant and S. Boyd, Graph implementations for nonsmooth convex programs. Recent Advances in Learning and Control, edited by V. Blondel, S. Boyd and H. Kimura. In Vol. 371 of Lecture Notes in Control and Information Sciences. Springer-Verlag Limited (2008) 95–110. [CrossRef] [Google Scholar]
  13. M. Grant and S. Boyd, CVX: Matlab software for disciplined convex programming, version 2.1 March (2014) http://cvxr.com/cvx. [Google Scholar]
  14. G.H. Hardy, J.E. Littlewood and G. Pólya, Inequalities. Cambridge University Press (1952). [Google Scholar]
  15. L. He, C.-Y. Kao and S. Osher, Incorporating topological derivatives into shape derivatives based level set methods. J. Comput. Phys. 225 (2007) 891–909. [Google Scholar]
  16. R. Hempel and K. Lienau, Spectral properties of periodic media in the large coupling limit: properties of periodic media. Commun. Partial Differ. Equ. 25 (2000) 1445–1470. [CrossRef] [Google Scholar]
  17. R. Hempel and O. Post, Spectral gaps for periodic elliptic operators with high contrast: an overview, in Progress in Analysis. World Scientific Publishing Company (2003) 577–587. [CrossRef] [Google Scholar]
  18. A. Henrot, Extremum Problems for Eigenvalues of Elliptic Operators. Birkhäuser Verlag (2006). [CrossRef] [Google Scholar]
  19. M. Hintermüller, C.-Y. Kao and A. Laurain, Principal eigenvalue minimization for an elliptic problem with indefinite weight and robin boundary conditions. Appl. Math. Optim. 65 (2012) 111–146. [Google Scholar]
  20. D. Kangand C.-Y. Kao, Minimization of inhomogeneous biharmonic eigenvalue problems. Appl. Math. Model. 51 (2017) 587–604. [Google Scholar]
  21. C.-Y. Kao, R. Lai and B. Osting, Maximization of Laplace-Beltrami eigenvalues on closed Riemannian surfaces. ESAIM: COCV 23 (2017) 685–720. [CrossRef] [EDP Sciences] [Google Scholar]
  22. C.-Y. Kao, Y. Lou and E. Yanagida, Principal eigenvalue for an elliptic problem with indefinite weight on cylindrical domains. Mathe. Biosci. Eng. 5 (2008) 315–335. [CrossRef] [Google Scholar]
  23. C.-Y. Kao, S. Osher and E. Yablonovitch, Maximizing band gaps in two-dimensional photonic crystals by using level set methods. Appl. Phys. B 81 (2005) 235–244. [Google Scholar]
  24. C.-Y. Kao and S. Su, Efficient rearrangement algorithms for shape optimization on elliptic eigenvalue problems. J. Sci. Comput. 54 (2013) 492–512. [Google Scholar]
  25. B. Kawohl, Symmetrization-or How to Prove Symmetry of Solutions to a PDE. Chapman and Hall CRC Research Notes in Mathematics. (2000) 214–229. [Google Scholar]
  26. M. Krein, On certain Problems on the Maximum and Minimum of Characteristic Values and on the Lyapunov Zones of Stability. Vol. of 2 AMS Translations Series (1955) 163–187. [Google Scholar]
  27. R.d.L. Kronig and W. Penney, Quantum mechanics of electrons in crystal lattices, in Vol. 130 of Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. The Royal Society (1931) 499–513. [CrossRef] [Google Scholar]
  28. P. Kuchment, An overview of periodic elliptic operators. Bull. Am. Math. Soc. 53 (2016) 343–414. [CrossRef] [Google Scholar]
  29. J.T. Lewis and M.E. Muldoon, Monotonicity and convexity properties of zeros of bessel functions. SIAM J. Math. Anal. 8 (1977) 171–178. [CrossRef] [Google Scholar]
  30. R. Lipton and R. Viator, Jr., Creating band gaps in periodic media. SIAM Multiscale Model. Simul. 15 (2017) 1612–1650. [CrossRef] [Google Scholar]
  31. H. Men, K.Y.K. Lee, R. M. Freund, J. Peraire and S.G. Johnson, Robust topology optimization of three-dimensional photonic-crystal band-gap structures. Optics Express 22 (2014) 22632. [CrossRef] [PubMed] [Google Scholar]
  32. H. Men, N.C. Nguyen, R.M. Freund, P.A. Parrilo and J. Peraire, Bandgap optimization of two-dimensional photonic crystals using semidefinite programming and subspace methods. J. Comput. Phys. 229 (2010) 3706–3725. [Google Scholar]
  33. S.J. Osher and F. Santosa, Level Set Methods for Optimization Problems Involving Geometry and Constraints 1. Frequencies of a Two-Density Inhomogeneous Drum. J. Comp. Phys. 171 (2001) 272–288. [CrossRef] [MathSciNet] [Google Scholar]
  34. B. Osting, Bragg structure and the first spectral gap. Appl. Math. Lett. 25 (2012) 1926–1930. [Google Scholar]
  35. B. Osting and M.I. Weinstein, Long-lived scattering resonances and Bragg structures. SIAM J. Appl. Math. 73 (2013) 827–852. [Google Scholar]
  36. B. Osting, C.D. White and E. Oudet, Minimal Dirichlet energy partitions for graphs. SIAM J. Sci. Comput. 36 (2014) A1635–A1651. [Google Scholar]
  37. G. Pólya and G. Szegö, Isoperimetric Inequalities in Mathematical Physics. Princeton University Press (1951). [CrossRef] [Google Scholar]
  38. O. Sigmund and K. Hougaard, Geometric properties of optimal photonic crystals. Phys. Rev. Lett. 100 (2008) 153904. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.