Free Access
Volume 25, 2019
Article Number 50
Number of page(s) 21
Published online 18 October 2019
  1. O. Bodart and P. Demeestere, Sentinels for the identification of an unknown boundary. Math. Model. Methods Appl. Sci. 7 (1997) 871. [CrossRef] [Google Scholar]
  2. O. Bodart and C. Fabre, Controls insensitizing the norm of the solution of a semi-linear heat equation. J. Math. Anal. Appl. 195 (1995) 658–683. [Google Scholar]
  3. O. Bodart, M. Gonzalez-Burgos and R. Pérez-Garcia, A local result on insensitizing control for a semi-linear heat equation with nonlinear boundary Fourier conditions. SIAM J. Control Optim. 43 (2004) 955–969. [CrossRef] [MathSciNet] [Google Scholar]
  4. N. Carreño, S. Guerrero and M. Gueye, Insensitizing controls with two vanishing components for the three-dimensional Boussinesq system. ESAIM: COCV 21 (2015) 73–100. [CrossRef] [EDP Sciences] [Google Scholar]
  5. N. Carreño and M. Gueye, Insensitizing controls with one vanishing component for the Navier–Stokes system. J. Math. Pures Appl. 101 (2014) 27–53. [Google Scholar]
  6. N. Carreño, Insensitizing controls for the Boussinesq system with no control on the temperature equation. Adv. Differ. Equ. 22 (2017) 235–258. [Google Scholar]
  7. M. Delfour and J.P. Zolésio, Advances in design and control, in Shapes and geometries. Analysis, differential calculus, and optimization. SIAM, Philadelphia, PA (2001). [Google Scholar]
  8. L. de Teresa, Insensitizing Controls for a semi-linear heat equation. Commun. Part. Differ. Equ. 25 (2000) 39–72. [CrossRef] [MathSciNet] [Google Scholar]
  9. L. de Teresa and O. Kavian, Unique continuation principle for systems of parabolic equations. ESAIM: COCV 16 (2010) 247–274. [CrossRef] [EDP Sciences] [Google Scholar]
  10. L. de Teresa and E. Zuazua, Identification of the class of initial data for the insensitizing control of the heat equation. Commun. Pure Appl. Anal. 8 (2009) 457–471. [CrossRef] [Google Scholar]
  11. A. Fursikov and O.Y. Imanuvilov, Controllability of evolution equations. Lecture Notes. Research Institute of Mathematics, Seoul National University, Korea (1996). [Google Scholar]
  12. S. Guerrero, Null controllability of some systems of two parabolic equations with one control force. SIAM J. Control Optim. 46 (2007) 379–394. [CrossRef] [MathSciNet] [Google Scholar]
  13. S. Guerrero, Controllability of systems of Stokes equations with one control force: existence of insensitizing controls. Ann. Inst. Henri Poincaré Anal. Non Linéaire 24 (2007) 1029–1054. [CrossRef] [MathSciNet] [Google Scholar]
  14. M. Gueye, Insensitizing controls for the Navier–Stokes equations. Ann. Inst. Henri Poincaré Anal. Non Linéaire 30 (2013) 825–844. [CrossRef] [Google Scholar]
  15. A. Henrot and M. Pierre, Variation et optimisation de formes. In Vol. 48. Springer-Verlag, Berlin, Heidelberg (2005). [CrossRef] [Google Scholar]
  16. J.-L. Lions, Remarques préliminaires sur le contrôle des systèmes a données incomplètes. in Actas del Congreso de Ecuaciones Diferenciales y Aplicaciones (CEDYA), Universidad de Malaga (1989) 43–54. [Google Scholar]
  17. J.-L. Lions, Contrôlabilité exacte, perturbations et stabilisation des systèmes distribués. Tome 1, Controlabilitè exacte, Collection R.M.A 8, Paris, Masson (1988). [Google Scholar]
  18. X. Liu, Insensitizing controls for a class of quasilinear parabolic equations. J. Differ. Equ. 253 (2012) 1287–1316. [Google Scholar]
  19. F. Méhats, Y. Privat and M. Sigalotti, On the controllability of quantum transport in an electronic nanostructure. SIAM J. Appl. Math. 74 (2014) 1870–1894. [Google Scholar]
  20. S. Micu, J.H. Ortega and L. de Teresa, An example of ε-insensitizing controls for the heat equation with no intersecting observation and control regions. Appl. Math. Lett. 8 (2004) 927–932. [Google Scholar]
  21. Y. Privat and M. Sigalotti, The squares of the Laplacian–Dirichlet eigenfunctions are generically linearly independent. ESAIM: COCV 16 (2010) 794–805. [CrossRef] [EDP Sciences] [Google Scholar]
  22. J.-C. Saut and B. Scheurer, Unique continuation for some evolution equations. J. Differ. Equ. 66 (1987) 118–139. [Google Scholar]
  23. Y. Simporé, O. Traoré and O. Nakoulima, Insensitizing control with constraints on the control for the semi-linear heat equation. Nonlinear Stud. 20 (2013) 203–216. [Google Scholar]
  24. Y. Simporé and O. Traoré, Insensitizing control with constraints on the control of the semi-linear heat equation. J. Nonlinear Evol. Equ. Appl. 1 (2017) 1–12. [Google Scholar]
  25. J. Sokołowski and J.-P. Zolésio, Shape sensitivity analysis, in Introduction to shape optimization. Vol. 16 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin (1992). [CrossRef] [Google Scholar]
  26. M. Tucsnak and G. Weiss, Observation and control for operator semigroups. Birkhäuser, Basel (2009). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.