Free Access
Volume 25, 2019
Article Number 49
Number of page(s) 22
Published online 14 October 2019
  1. H. Al Hajj Shehadeh, R.V. Kohn and J. Weare, The evolution of a crystal surface: analysis of a one-dimensional step train connecting two facets in the adl regime. Physica D 240 (2011) 1771–1784. [Google Scholar]
  2. L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures. Birkhäuser Verlag, Basel (2008). [Google Scholar]
  3. V. Barbu, Nonlinear Differential Equations of Monotone Types in Banach Spaces. Springer, New York (2010). [CrossRef] [Google Scholar]
  4. H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, New York (2010). [CrossRef] [Google Scholar]
  5. H. Brezis, Opérateurs Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert. Elsevier, North-Holland (1973). [Google Scholar]
  6. F. Demengel and R. Temam, Convex functions of a measure and applications. Indiana Univ. Math. J. 33 (1984) 673–709. [CrossRef] [MathSciNet] [Google Scholar]
  7. E. Weinan and N.K. Yip, Continuum theory of epitaxial crystal growth – I. J. Stat. Phys. 104 (2001) 221–253. [Google Scholar]
  8. L.C. Evans and R.F. Gariepy, Measure Theory and Fine Properties of Functions: Studies in Advanced Mathematics. CRC Press, Boca Raton (1992). [Google Scholar]
  9. I. Fonseca, G. Leoni and X.Y. Lu, Regularity in time for weak solutions of a continuum model for epitaxial growth with elasticity on vicinal surfaces. Commun. Part. Differ. Equ. 40 (2015) 1942–1957. [CrossRef] [Google Scholar]
  10. G.P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Steady-State Problems. Springer Science & Business Media, New York (2011). [Google Scholar]
  11. Y. Gao, J.-G. Liu and J. Lu, Continuum limit of a mesoscopic model with elasticity of step motion on vicinal surfaces. J. Nonlinear Sci. 27 (2017) 873–926. [Google Scholar]
  12. Y. Gao, J.-G. Liu and J. Lu, Weak solution of a continuum model for vicinal surface in the attachment-detachment-limited regime. SIAM J. Math. Anal. 49 (2017) 1705–1731. [CrossRef] [Google Scholar]
  13. Y. Gao, J.-G. Liu, X.Y. Lu and X. Xu, Maximal monotone operator theory and its applications to thin film equation in epitaxial growth on vicinal surface. Calc. Var. Part. Differ. Equ. 57 (2018) 55. [CrossRef] [Google Scholar]
  14. Y. Gigaand R.V. Kohn, Scale-invariant extinction time estimates for some singular diffusion equations. Discr. Continuous Dyn. Syst. A 30 (2011) 509–535. [CrossRef] [Google Scholar]
  15. C. Goffman and J. Serrin, Sublinear functions of measures and variational integrals. Duke Math. J. 31 (1964) 159–178. [CrossRef] [MathSciNet] [Google Scholar]
  16. H.-C. Jeong and E.D. Williams, Steps on surfaces: experiment and theory. Surf. Sci. Rep. 34 (1999) 171–294. [Google Scholar]
  17. R.V. Kohn, Surface relaxation below the roughening temperature: some recent progress and open questions, in Nonlinear Partial Differential Equations: The Abel Symposium 2010, edited by H. Holden and H.K. Karlsen. Springer, Berlin, Heidelberg (2012) 207–221. [Google Scholar]
  18. R.V. Kohn, E. Versieux, Numerical analysis of a steepest-descent PDE model for surface relaxation below the roughening temperature. SIAM J. Num. Anal. 48 (2010) 1781–1800. [CrossRef] [Google Scholar]
  19. B. Krishnamachari, J. McLean, B. Cooper, J. Sethna, Gibbs–Thomson formula for small island sizes: corrections for high vapor densities. Phys. Rev. B 54 (1996) 8899–8907 [Google Scholar]
  20. J. Krug, H.T. Dobbs, S. Majaniemi, Adatom mobility for the solid-on-solid model. Z. Phys. B 97 (1995) 281–291. [CrossRef] [Google Scholar]
  21. J.-G. Liu, J. Lu, D. Margetis and J.L. Marzuola, Asymmetry in crystal facet dynamics of homoepitaxy by a continuum model. Physica D: Nonlin. Phenom. 393 (2019) 54–67. [CrossRef] [Google Scholar]
  22. J.-G. Liu and X. Xu, Existence theorems for a multi-dimensional crystal surface model. SIAM J. Math. Anal. 48 (2016) 3667–3687 [CrossRef] [Google Scholar]
  23. D. Margetis and R.V. Kohn, Continuum relaxation of interacting steps on crystal surfaces in 2 + 1 dimensions. Multiscale Model. Simul. 5 (2006) 729–758. [Google Scholar]
  24. J.L. Marzuola and J. Weare, Relaxation of a family of broken-bond crystal-surface models. Phys. Rev. E 88 (2013) 032403. [Google Scholar]
  25. J.S. Rowlinson, B. Widom, Molecular Theory of Capillarity. Clarendon Press, Oxford (1982). [Google Scholar]
  26. M. Ozdemir and A. Zangwill, Morphological equilibration of a corrugated crystalline surface. Phys. Rev. B 42 (1990) 5013–5024. [Google Scholar]
  27. A. Pimpinelli and J. Villain, Physics of Crystal Growth. Cambridge University Press, New York (1998). [CrossRef] [Google Scholar]
  28. F. Santambrogio, Optimal Transport for Applied Mathematicians. Springer, New York (2015). [CrossRef] [Google Scholar]
  29. V. Shenoy and L. Freund, A continuum description of the energetics and evolution of stepped surfaces in strained nanostructures. J. Mech. Phys. Solids 50 (2002) 1817–1841. [Google Scholar]
  30. L.-H. Tang, Flattening of grooves: From Step Dynamics to Continuum Theory, Dynamics of Crystal Surfaces and Interfaces. Springer, New York (1997). [Google Scholar]
  31. Y. Xiang, Derivation of a continuum model for epitaxial growth with elasticity on vicinal surface. SIAM J. Appl. Math. 63 (2002) 241–258. [Google Scholar]
  32. A. Zangwill, Physics at Surfaces. Cambridge University Press, New York (1988). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.