Free Access
Issue
ESAIM: COCV
Volume 25, 2019
Article Number 74
Number of page(s) 36
DOI https://doi.org/10.1051/cocv/2018064
Published online 05 December 2019
  1. H. Abou-Kandil, G. Freiling, V. Ionescu and G. Jank, Matrix Riccati Equations in Control and Systems Theory. Birkhäuser, Basel (2003). [CrossRef] [Google Scholar]
  2. D.A. Carlson, A. Haurie and A. Leizarowitz, Infinite Horizon Optimal Control: Deterministic and Stochastic Systems. Springer-Verlag, Berlin (1991). [CrossRef] [Google Scholar]
  3. T. Damm, L. Grüne, M. Stieler and K. Worthmann, An exponential turnpike theorem for dissipative discrete time optimal control problems. SIAM J. Control Optim. 52 (2014) 1935–1957. [Google Scholar]
  4. R. Dorfman, P.A. Samuelson and R.M. Solow, Linear Programming and Economics Analysis. McGraw-Hill, New York (1958). [Google Scholar]
  5. T. Faulwasser, M. Korda, C. N. Jones and D. Bonvin, On turnpike and dissipativity properties of continuous-time optimal control problems. Automatica 81 (2017) 297–304. [CrossRef] [Google Scholar]
  6. L. Grüne and M. Müller, On the relation between strict dissipativity and turnpike properties. Syst. Control Lett. 90 (2016) 45–53. [Google Scholar]
  7. X. Li and J. Yong, Optimal Control Theory for Infinite Dimensional Systems. Birkhäuser, Boston (1995). [CrossRef] [Google Scholar]
  8. H. Lou, Existence of optimal controls for semilinear elliptic equations without Cesari-type conditions. ANZIAM J. 44 (2003) 115–131. [CrossRef] [Google Scholar]
  9. M.A. Mamedov, Asymptotical stability of optimal paths in nonconvex problems, in Optimization: Structure and Applications, edited by C. Pearce and E. Hunt. Springer, New York (2009). [Google Scholar]
  10. L.W. McKenzie, Turnpike theory. Econometrica 44 (1976) 841–865. [Google Scholar]
  11. J. von Neumann, A model of general economic equilibrium. Rev. Econ. Stud. 13 (1945– 1946) 1–9. [Google Scholar]
  12. A. Porretta and E. Zuazua, Long time versus steady state optimal control. SIAM J. Control Optim. 51 (2013) 4242–4273. [Google Scholar]
  13. P.A. Samuelson, A catenary turnpike theorem involving consumption and the golden rule. Am. Econ. Rev. 55 (1965) 486–496. [Google Scholar]
  14. E. Trélat and C. Zhang, Integral and measure-turnpike properties for infinite-dimensional optimal control systems. Math. Control Signals Syst. 30 (2018) 3. [CrossRef] [Google Scholar]
  15. E. Trélat and E. Zuazua, The turnpike property in infinite-dimensional nonlinear optimal control, J. Differ. Equ. 258 (2015) 81–114. [Google Scholar]
  16. J. Warga, Optimal Control of Differential and Functional Equations. Academic Press, New York (1972). [Google Scholar]
  17. A.J. Zaslavski, Turnpike Property in the Calculus of Variations and Optimal Control. Springer, New York (2006). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.