Free Access
Issue
ESAIM: COCV
Volume 25, 2019
Article Number 53
Number of page(s) 20
DOI https://doi.org/10.1051/cocv/2018041
Published online 18 October 2019
  1. E. Augeraud-Véron, C. Choquet and É. Comte, Optimal control for a groundwater pollution ruled by a convection-diffusion-reaction problem. J. Optim. Theory Appl. 173 (2017) 941–966. [Google Scholar]
  2. E. Augeraud-Véron and M. Leandri, Optimal pollution control with distributed delays. J. Math. Econom. 55 (2014) 24–32. [CrossRef] [Google Scholar]
  3. J. Bear and A. Verruijt, Modeling Groundwater Flow and Pollution. Theory and Applications of Transport in Porous Media (1987). [CrossRef] [Google Scholar]
  4. C. Benosman, B. Ainseba and A. Ducrot, Optimization of cytostatic leukemia therapy in an advection reaction diffusion model. J. Optim. Theory Appl. 167 (2015) 296–325. [Google Scholar]
  5. P. Bordenave, F. Bouraoui, C. Gascuel-Odoux, J. Molénat and P. Mérot, Décalages temporels entre des modifications des pratiques agricoles et la diminution des nitrates dans les eaux superficielles, in Pollutions diffuses : du bassin au littoral, edited by M. Merceron. IFREMER, Ploufargan (1999) 311–333. [Google Scholar]
  6. W. Brock and A. Xepapadeas, Diffusion-induced instability and pattern formation in infinite horizon recursive optimal control. J. Econom. Dyn. Control 32 (2008) 2745–2787. [CrossRef] [Google Scholar]
  7. C. Camacho and A. Pérez-Barahona, Land use dynamics and the environment. J. Econom. Dyn. Control 52 (2015) 96–118. [CrossRef] [Google Scholar]
  8. C. Choquet and A. Mikelić, Rigorous upscaling of the reactive flow with finite kinetics and under dominant Péclet number. Continuum Mech. Thermodyn. 21 (2009) 125–140. [CrossRef] [Google Scholar]
  9. R.M. Clark and P. Dorsey, A model of costs for treating drinking water. J. Am. Water Works Assoc. 74 (1982) 618–627. [Google Scholar]
  10. D. Dearmont, B.A. McCarl and D.A. Tolman, Costs of water treatment due to diminished water quality: a case study in Texas. Water Resour. Res. 34 (1998) 849–853. [Google Scholar]
  11. J. de Frutos and G. Martin-Herran, Spatial effects and strategic behavior in a multiregional transboundary pollution dynamic game. To appear in: J. Environ. Econom. Manag. (2017) doi: 10.1016/j.jeem.2017.08.001. [Google Scholar]
  12. C. Galusinski and M. Saad, On a degenerate parabolic system for compressible, immiscible, two-phase flows in porous media. Adv. Differ. Equ. 9 (2004) 1235–1278. [Google Scholar]
  13. W. Hamdi, F. Gamaoun, D.E. Pelster and M. Seffen, Nitrate sorption in an agricultural soil profile. Appl. Environ. Soil Sci. 2013 (2013) 597824. [Google Scholar]
  14. A. Haraux and F. Murat, Influence of a singular perturbation on the infimum of some functionals. J. Differ. Equ. 58 (1985) 43–75. [Google Scholar]
  15. P.I. Kogut and G.R. Leugering, Optimal Control Problems for Partial Differential Equations on Reticulated Domains: Approximation and Asymptotic Analysis. Systems and Control: Foundations and Applications. Birkhäuser (2011). [Google Scholar]
  16. O.A. Ladyzhenskaya and N.N. Ural’tseva, Linear and Quasilinear Elliptic Equations. Mathematics in Sciences in Engineering. Academic Press (1968). [Google Scholar]
  17. J. Lankoski and M. Ollikainen, Innovations in nonpoint source pollutionpolicy. European perspectives. The Magazine of Food Farm Resource issues 28 (2013) 1–5. [Google Scholar]
  18. J.L. Lions and E. Magenes, Problèmes aux limites non homogènes (II). Ann. Inst. Fourier 11 (1961) 137–178. [CrossRef] [Google Scholar]
  19. G. de Marsily, Quantitative Hydrogeology: Groundwater Hydrology for Engineers. Academic Press (1986). [Google Scholar]
  20. F. van der Ploeg and A. de Zeeuw, A differential game of international pollution control. Syst. Control Lett. 17 (1991) 409–414. [Google Scholar]
  21. C.S. Rogers, Economic costs of conventional surface-water treatment: A case study of the Mcallen Northwest Facility. Master of Science Dissertation. Texas A&M University, USA (2010). [Google Scholar]
  22. A.E. Scheidegger, The Physics of Flow through Porous Media. University of Toronto Press (1974). [Google Scholar]
  23. J. Simon, Compact sets in the space Lp(0, T; B). Ann. Mat. Pur. Appl. (IV) CXLVI (1987) 65–96. [Google Scholar]
  24. L.C. Tartar, Compensated compactness and applications to partial differential equations, in Vol. 4 of Research Notes in Mathematics, Nonlinear Analysis and Mechanics: Heriot-Watt Symposium, edited by R.J. Knops. Pitman Press, London (1979). [Google Scholar]
  25. F.A. Williams, Combustion Theory: The Fundamental Theory of Chemically Reacting Flow Systems, 2nd Edn. Benjamin-Cummings Pub. Co., Menlo Park, Calif. (1985). [Google Scholar]
  26. Y. Yuan, D. Liang and H. Zhu, Optimal control of groundwater pollution combined with source abatement costs and taxes. J. Comput. Sci. 20 (2017) 17–29. [Google Scholar]
  27. Commissariat général au développement durable : Les teneurs en nitrates augmentent dans les nappes phréatiques jusqu’en 2004 puis se stabilisent, Commissariat général au développement durable, Observations et Statistiques, numéro 16, mai 2013. Available at: from the www.statistiques.developpement-durable.gouv.fr (2013). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.