Free Access
Issue
ESAIM: COCV
Volume 25, 2019
Article Number 60
Number of page(s) 26
DOI https://doi.org/10.1051/cocv/2018067
Published online 25 October 2019
  1. J.L. Boldrini, A. Doubova, E. Fernández-Cara and M. González-Burgos, Some controllability results for linear viscoelastic fluids. SIAM J. Control Optim. 50 (2012) 900–924. [CrossRef] [Google Scholar]
  2. F.W. Chaves-Silva, X. Zhang and E. Zuazua, Controllability of evolution equations with memory. SIAM J. Control Optim. 55 (2017) 2437–2459. [CrossRef] [Google Scholar]
  3. S. Chowdhury, D. Mitra, M. Ramaswamy and M. Renardy, Approximate controllability results for linear viscoelastic flows. J. Math. Fluid Mech. 19 (2017) 529–549. [CrossRef] [Google Scholar]
  4. A. Doubova and E. Fernández-Cara, On the control of viscoelastic Jeffreys fluids. Syst. Cont. Lett. 61 (2012) 573–579. [CrossRef] [Google Scholar]
  5. A. Doubova, E. Fernández-Cara and M. González-Burgos, Controllability results for linear viscoelastic fluids of the Maxwell and Jeffreys kinds. C. R. Acad. Sci. Paris Sér. I Math. 331 (2000) 537–542. [CrossRef] [Google Scholar]
  6. Edited by Yu.V. Egorov and M.A. Shubin, Microlocal analysis. Springer Verlag Berlin, Heidelberg (1993) 1–147. [Google Scholar]
  7. V. Girault and P.A. Raviart, Finite element methods for Navier-Stokes equations, Theory and algorithms, in vol. 5 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin (1986). [CrossRef] [Google Scholar]
  8. S. Guerrero and O.Yu. Imanuvilov, Remarks on non-controllability of the heat equation with memory. ESAIM: COCV 19 (2013) 288–300. [CrossRef] [EDP Sciences] [Google Scholar]
  9. L. Hörmander, The Analysis of Linear Partial Differential Operators. I. Distribution theory and Fourier analysis. Distribution theory and Fourier analysis. In Springer Study Edition., 2nd edn. Springer-Verlag, Berlin (2003). [Google Scholar]
  10. I. Lasiecka, Controllability of a viscoelastic Kirchhoff plate. In Control and Estimation of Distributed Parameter Systems (Vorau, 1988). Vol. 91 of Int. Ser. Numer. Math.. Birkhäuser, Basel (1989) 237–247. [Google Scholar]
  11. G. Leugering, Exact controllability in viscoelasticity of fading memory type. Appl. Anal. 18 (1984) 221–243. [CrossRef] [Google Scholar]
  12. G. Leugering, Exact boundary controllability of an integro-differential equation. Appl. Math. Optim. 15 (1987) 223–250. [CrossRef] [Google Scholar]
  13. G. Leugering, Time optimal boundary controllability of a simple linear viscoelastic liquid. Math. Methods Appl. Sci. 9 (1987) 413–430. [CrossRef] [Google Scholar]
  14. W.J. Liu and G.H. Williams, Partial exact controllability for the linear thermo-viscoelastic model. Electr. J. Differ. Equ. 17 (1998) 11. [Google Scholar]
  15. Q. Lu, X. Zhang and E. Zuazua, Null controllability for wave equations with memory. J. Math. Pures Appl. 108 (2017) 500–531. [CrossRef] [Google Scholar]
  16. D. Mitra, M. Ramaswamy and M. Renardy, Approximate controllability results for viscoelastic flows with infinitely many relaxation modes. J. Differ. Equ. 264 (2018) 575–603. [CrossRef] [Google Scholar]
  17. M. Renardy, Are viscoelastic flows under control or out of control? Syst. Cont. Lett. 54 (2005) 1183–1193. [CrossRef] [Google Scholar]
  18. M. Renardy, Shear flow of viscoelastic fluids as a control problem. J. Non-Newtonian Fluid Mech. 131 (2005) 59–63. [CrossRef] [Google Scholar]
  19. M. Renardy, On control of shear flow of an upper convected Maxwell fluid. Z. Angew. Math. Mech. 87 (2007) 213–218. [CrossRef] [Google Scholar]
  20. M. Renardy, Controllability of viscoelastic stresses for nonlinear Maxwell models. J. Non-Newtonian Fluid Mech. 156 (2009) 70–74. [CrossRef] [Google Scholar]
  21. M. Renardy, A note on a class of observability problems for PDEs. Syst. Control Lett. 58 (2009) 183–187. [CrossRef] [MathSciNet] [Google Scholar]
  22. M. Renardy, W.J. Hrusa and J.A. Nohel, Mathematical Problems in Viscoelasticity. Longman Scientific and Technical, Harlow, Essex (1987). [Google Scholar]
  23. E. Savelev and M. Renardy, Control of homogeneous shear flow of multimode Maxwell fluids. J. Non-Newtonian Fluid Mech. 165 (2010) 136–142. [CrossRef] [Google Scholar]
  24. Q. Tao and H. Gao, On the null controllability of the heat equation with memory. J. Math. Anal. Appl. 440 (2016) 1–13. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.