Free Access
Issue
ESAIM: COCV
Volume 25, 2019
Article Number 67
Number of page(s) 38
DOI https://doi.org/10.1051/cocv/2018054
Published online 05 November 2019
  1. K. Ammari, T. Duyckaerts and A. Shirikyan, Local feedback stabilisation to a non-stationary solution for a damped non-linear wave equation. Math. Control Relat. Fields 6 (2016) 1–25. [CrossRef] [Google Scholar]
  2. M. Badra and T. Takahashi, Stabilization of parabolic nonlinear systems with finite dimensional feedback or dynamical controllers: application to the Navier–Stokes system. SIAM J. Control Optim. 49 (2011) 420–463. [CrossRef] [MathSciNet] [Google Scholar]
  3. H.T. Banks and K. Kunisch, The linear regulator problem for parabolic systems. SIAM J. Control Optim. 22 (1984) 684–698. [CrossRef] [MathSciNet] [Google Scholar]
  4. V. Barbu, Stabilization of Navier–Stokes flows. Communications and Control Engineering Series. Springer-Verlag, London (2011). [CrossRef] [Google Scholar]
  5. V. Barbu, Stabilization of Navier–Stokes equations by oblique boundary feedback controllers. SIAM J. Control Optim. 50 (2012) 2288–2307. [CrossRef] [MathSciNet] [Google Scholar]
  6. V. Barbu, Boundary stabilization of equilibrium solutions to parabolic equations. IEEE Trans. Automat. Control 58 (2013) 2416–2420. [CrossRef] [MathSciNet] [Google Scholar]
  7. V. Barbu, I. Lasiecka and R. Triggiani, Abstract settings for tangential boundary stabilization of Navier–Stokes equations by high- and low-gain feedback controllers. Nonlinear Anal. 64 (2006) 2704–2746. [CrossRef] [MathSciNet] [Google Scholar]
  8. V. Barbu, S.S. Rodrigues and A. Shirikyan, Internal exponential stabilization to a nonstationary solution for 3D Navier–Stokes equations. SIAM J. Control Optim. 49 (2011) 1454–1478. [CrossRef] [MathSciNet] [Google Scholar]
  9. V. Barbu and R. Triggiani, Internal stabilization of Navier–Stokes equations with finite-dimensional controllers. Indiana Univ. Math. J. 53 (2004) 1443–1494. [CrossRef] [MathSciNet] [Google Scholar]
  10. P. Benner, A matlab repository for model reduction based on spectral projection. In Proc. ofthe 2006 IEEE Conference on Computer Aided Control Systems Design, October 4–6 (2006) 19–24. [Google Scholar]
  11. P. Benner, A.J. Laub and V. Mehrmann, Benchmarks for the numerical solution of algebraic Riccati equations. IEEE Control Syst. Mag. 17 (1997) 18–28. [Google Scholar]
  12. T. Breiten, K. Kunisch and S.S. Rodrigues, Feedback stabilization to nonstationary solutions of a class of reaction diffusion equationsof FitzHugh–Nagumo type. SIAM J. Control Optim. 55 (2017) 2684–2713. [CrossRef] [Google Scholar]
  13. H. Brezis, Functional analysis, Sobolev spaces and partial differential equations. In Universitext. Springer, New York (2011). [Google Scholar]
  14. J.A. Burns, E.W. Sachs and L. Zietsman, Mesh independence of Kleinman–Newton iterations for Riccati equations in Hilbert space. SIAM J. Control Optim. 47 (2008) 2663–2692. [CrossRef] [MathSciNet] [Google Scholar]
  15. J.-M. Coron, Control and Nonlinearity. Vol. 136 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (2007). [Google Scholar]
  16. J.-M. Coron and E. Trélat, Global steady-state controllability of one-dimensional semilinear heat equations. SIAM J. Control Optim. 43 (2004) 549–569. [CrossRef] [MathSciNet] [Google Scholar]
  17. J.-M. Coron and E. Trélat, Global steady-state stabilization and controllability of 1D semilinear wave equations. Commun. Contemp. Math. 8 (2006) 535–567. [CrossRef] [MathSciNet] [Google Scholar]
  18. T. Duyckaerts, X. Zhang and E. Zuazua, On the optimality of the observability inequalities for parabolic and hyperbolic systems with potentials. Ann. Inst. Henri Poincaré Anal. Non Linéaire 25 (2008) 1–41. [CrossRef] [Google Scholar]
  19. A.V. Fursikov and O. Yu Imanuvilov, Controllability of Evolution Equations. Vol. 34 of Lecture Notes Series. Seoul National University Research Institute of Mathematics Global Analysis Research Center, Seoul (1996). [Google Scholar]
  20. A. Halanay, C.M. Murea and C.A. Safta, Numerical experiment for stabilization of the heat equation by Dirichlet boundary control. Numer. Funct. Anal. Optim. 34 (2013) 1317–1327. [Google Scholar]
  21. D. Kalise, K. Kunisch and K. Sturm, Optimal actuator design based on shape calculus. Math. Models Methods Appl. Sci. 28 (2018) 2667–2717. [Google Scholar]
  22. A. Kröner and S.S. Rodrigues, Internal exponential stabilization to a nonstationary solution for 1D Burgers equations with piecewise constant controls, in Proc. ofthe 2015 European Control Conference (ECC), Linz, Austria (2015) 2676–2681. [CrossRef] [Google Scholar]
  23. A. Kröner and S.S. Rodrigues, Remarks on the internal exponential stabilization to a nonstationary solution for 1D Burgers equations. SIAM J. Control Optim. 53 (2015) 1020–1055. [CrossRef] [Google Scholar]
  24. P. Kunkel and V. Mehrmann, Numerical solution of differential algebraic Riccati equations. Linear Algebra Appl. 137/138 (1990) 39–66. [Google Scholar]
  25. P. Li and S.-T. Yau, On the Schrödinger equation and the eigenvalue problem. Commun. Math. Phys. 88 (1983) 309–318. [CrossRef] [MathSciNet] [Google Scholar]
  26. J.-L. Lions, Optimal control of systems governed by partial differential equations. In Vol. 170 of Die Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen. Springer-Verlag, Berlin, Heidelberg (1971). [Google Scholar]
  27. K. Morris, Linear-quadratic optimal actuator location. IEEE Trans. Automat. Control 56 (2011) 113–124. [CrossRef] [Google Scholar]
  28. K. Morris and S. Yang, A study of optimal actuator placement for control of diffusion, in Proc. ofthe 2016 American Control Conference (AAC), Boston, MA, USA (2016) 2566–2571. [CrossRef] [Google Scholar]
  29. I. Munteanu, Boundary stabilisation to non-stationary solutions for deterministic and stochastic parabolic-type equations. Int. J. Control 92 (2019) 1720–1728. [Google Scholar]
  30. D. Phan and S.S. Rodrigues, Stabilization to trajectories for parabolic equations. Math. Control Signals Syst. 30 (2018) 11. [CrossRef] [Google Scholar]
  31. D. Phan and S.S. Rodrigues, Gevrey regularity for Navier–Stokes equations under Lions boundary conditions. J. Funct. Anal. 272 (2017) 2865–2898. [Google Scholar]
  32. Y. Privat, E. Trélat and E. Zuazua, Actuator design for parabolic distributed parameter systems with the moment method. SIAM J. Control Optim. 55 (2017) 1128–1152. [CrossRef] [Google Scholar]
  33. J.-P. Raymond and L. Thevenet, Boundary feedback stabilization of the two-dimensional Navier–Stokes equations with finite-dimensional controllers. Discrete Contin. Dyn. Syst. 27 (2010) 1159–1187. [CrossRef] [MathSciNet] [Google Scholar]
  34. S.S. Rodrigues, Feedback boundary stabilization to trajectories for 3D Navier–Stokes equations. Appl. Math. Optim. (2018). DOI: 10.1007/s00245-017-9474-5. [Google Scholar]
  35. D.L. Russell, Controllability and stabilizability theory for linear partial differential equations: recent progress and open questions. SIAM Rev. 20 (1978) 639–739. [CrossRef] [MathSciNet] [Google Scholar]
  36. M. Schmidt and E. Trélat, Controllability of Couette flows. Commun. Pure Appl. Anal. 5 (2006) 201–211. [Google Scholar]
  37. R. Temam, Navier–Stokes equations and nonlinear functional analysis, in Vol. 66 of CBMS-NSF Regional Conference Series in Applied Mathematics, 2nd edition, SIAM, Philadelphia (1995). [Google Scholar]
  38. R. Temam, Navier–Stokes Equations: Theory and Numerical Analysis. Reprint of the 1984 edition, AMS Chelsea Publishing, Providence, RI (2001). [Google Scholar]
  39. M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups. Birkhäuser Basel, Basel (2009). [CrossRef] [Google Scholar]
  40. M.Y. Wu, A note on stability of linear time-varying systems. IEEE Trans. Automat. Control 19 (1974) 162. [CrossRef] [Google Scholar]
  41. M. Yamamoto, Carleman estimates for parabolic equations and applications. Inverse Probl. 25 (2009) 123013. [Google Scholar]
  42. J. Zabczyk, Mathematical Control Theory: An Introduction. Systems Theory, Control. Birkhäuser, Boston (1992). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.