Free Access
Issue
ESAIM: COCV
Volume 25, 2019
Article Number 51
Number of page(s) 14
DOI https://doi.org/10.1051/cocv/2018060
Published online 18 October 2019
  1. F. Alabau-Boussouira, Indirect boundary stabilization of weakly coupled hyperbolic systems. SIAM J. Control Optim. 41 (2002), 511–541. [CrossRef] [MathSciNet] [Google Scholar]
  2. F. Alabau-Boussouira and M. Leautaud, Indirect stabilization of locally coupled wave-type systems. ESAIM: COCV 18 (2012) 548–582. [CrossRef] [EDP Sciences] [Google Scholar]
  3. F. Alabau-Boussouira, P. Cannarsa and V. Komornik, Indirect internal stabilization of weakly coupled evolution equations. J. Evol. Equ. 2 (2002) 127–150. [CrossRef] [MathSciNet] [Google Scholar]
  4. F. Alabau-Boussouira, P. Cannarsa and R. Guglielmi, Indirect stabilization of weakly coupled systems with hybrid boundary conditions. Math. Control Relat. Fields 1 (2011) 413–436. [CrossRef] [MathSciNet] [Google Scholar]
  5. G. Chen, D.L. Russell, A mathematical model for linear elastic systems with structural damping. Quart. Appl. Math. 39 (1982) 433–454. [CrossRef] [Google Scholar]
  6. M. Coti Zelati, F. Dell’Oro and V. Pata, Energy decay of type III linear thermoelastic plates with memory. J. Math. Anal. Appl. 401 (2013) 357–366. [Google Scholar]
  7. Y. Cui and Z. Wang, Asymptotic stability of wave equations coupled by velocities. Math. Control Relat. Fields 6 (2016) 429–446. [CrossRef] [MathSciNet] [Google Scholar]
  8. K.J. Engel and R. Nagel, One-parameter semigroups for linear evolution equations. Springer Science & Business Media, New York (1999). [Google Scholar]
  9. X. Fu, Sharp decay rates for the weakly coupled hyperbolic system with one internal damping. SIAM J. Control Optim. 50 (2012) 1643–1660. [CrossRef] [MathSciNet] [Google Scholar]
  10. L. Gearhart, Spectral theory for contraction semigroups on Hilbert space. Trans. Am. Math. Soc. 236 (1978) 385–394. [Google Scholar]
  11. R. Guglielmi, Indirect stabilization of hyperbolic systems through resolvent estimates. Evol. Equ. Control Theory 6 (2017) 59–75. [CrossRef] [Google Scholar]
  12. F. Huang, Characteristic conditions for exponential stability of linear dynamical systems in Hilbert spaces. Ann. Differ. Equ. 1 (1985) 43–56. [Google Scholar]
  13. F. Huang, On the mathematical model for linear elastic systems with analytic damping. SIAM J. Control Optim. 26 (1988) 714–724. [CrossRef] [Google Scholar]
  14. F. Huang and K. Liu, Holomorphic property and exponential stability of the semigroup associated with linear elastic systems with damping. Ann. Differ. Equ. 4 (1988) 411–424. [Google Scholar]
  15. I. Lasiecka and R. Triggiani, Analyticity of thermo-elastic semigroups with coupled hinged/Neumann B.C. Abstr. Appl. Anal. 3 (1998) 153–169. [CrossRef] [Google Scholar]
  16. Z. Liu and R. Quintanilla, Analyticity of solutions in type III thermoelastic plates. IMA J. Appl. Math. 75 (2010) 637–646. [Google Scholar]
  17. Z. Liu and M. Renardy, A note on the equations of a thermoelastic plate. Appl. Math. Lett. 8 (1995) 1–6. [Google Scholar]
  18. Z. Liu and J. Yong, Qualitative properties of certain C0 semigroups arising in elastic systems with various damping. Adv. Differ. Equ. 3 (1998) 643–686. [Google Scholar]
  19. Z. Liu and S. Zheng, Semigroups Associated with Dissipative Systems. Chapman and Hall/, Boca Raton (1999). [Google Scholar]
  20. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag, New York (1983). [CrossRef] [Google Scholar]
  21. J. Prüss, On the spectrum of C0-semigroups. Trans. Am. Math. Soc. 284 (1984) 847–857. [Google Scholar]
  22. D.L. Russell, A general framework for the study of indirect damping mechanisms in elastic systems. J. Math. Anal. Appl. 173 (1993) 339–358. [Google Scholar]
  23. L. Tebou, Energy decay estimates for some weakly coupled Euler-Bernoulli and wave equations with indirect damping mechanisms. Math. Control Relat. Fields 2 (2012) 45–60. [CrossRef] [Google Scholar]
  24. L.N. Trefethen, Spectral methods in Matlab. SIAM, Philadelphia, PA (2000). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.