Free Access
Issue
ESAIM: COCV
Volume 25, 2019
Article Number 65
Number of page(s) 38
DOI https://doi.org/10.1051/cocv/2018048
Published online 25 October 2019
  1. M. Artina, F. Cagnetti, M. Fornasier and F. Solombrino, Linearly constrained evolutions of critical points and an application to cohesive fractures. Math. Models Methods Appl. Sci. 27 (2017) 231–290. [Google Scholar]
  2. B. Bourdin, G. Francfort and J.-J. Marigo, Numerical experiments in revisited brittle fracture. Mech. Phys. Solids 48 (2000) 797–826. [CrossRef] [MathSciNet] [Google Scholar]
  3. J. Dieudonné, Foundations of Modern Analysis. Enlarged and Corrected Printing. Academic Press, New York-London (1969), 387. [Google Scholar]
  4. M.A. Efendiev and A. Mielke, On the rate-independent limit of systems with dry friction and small viscosity. J. Convex Anal. 13 (2006) 151–167. [Google Scholar]
  5. A. Ioffe and V. Tikhomirov, Theorie der Extremalaufgaben. Übersetzung aus dem Russischen von Bernd Luderer. VEB Deutscher Verlag der Wissenschaften, Berlin (1979). [Google Scholar]
  6. D. Knees and M. Negri, Convergence of alternate minimization schemes for phase-field fracture and damage. Math. Models Methods Appl. Sci. 27 (2017) 1743–1794. [Google Scholar]
  7. D. Knees, R. Rossi and C. Zanini, A vanishing viscosity approach to a rate-independent damage model. Math. Models Methods Appl. Sci. 23 (2013) 565–616. [Google Scholar]
  8. D. Knees and A. Schröder, Computational aspects of quasi-static crack propagation. Discrete Contin. Dyn. Syst. Ser. S 6 (2013) 63–99. [CrossRef] [Google Scholar]
  9. A. Mainik and A. Mielke, Existence results for energetic models for rate-independent systems. Calc. Var. Partial Differ. Equ. 22 (2005) 73–99. [Google Scholar]
  10. A. Mielke, Evolution of rate-independent systems. Vol II of Handbook of Differential Equations: Evolutionary Equations. Elsevier/North-Holland, Amsterdam (2005) 461–559. [CrossRef] [Google Scholar]
  11. A. Mielke, R. Rossi and G. Savaré, Modeling solutions with jumps for rate-independent systems on metric spaces. Discrete Contin. Dyn. Syst. 25 (2009) 585–615. [CrossRef] [MathSciNet] [Google Scholar]
  12. A. Mielke, R. Rossi and G. Savaré, BV solutions and viscosity approximations of rate-independent systems. ESAIM: COCV 18 (2012) 36–80. [CrossRef] [EDP Sciences] [Google Scholar]
  13. A. Mielke, R. Rossi and G. Savaré, Variational convergence of gradient flows and rate-independent evolutions in metric spaces. Milan J. Math. 80 (2012) 381–410. [CrossRef] [MathSciNet] [Google Scholar]
  14. A. Mielke, R. Rossi and G. Savaré, Balanced viscosity (BV) solutions to infinite-dimensional rate-independent systems. J. Eur. Math. Soc. (JEMS) 18 (2016) 2107–2165. [CrossRef] [Google Scholar]
  15. A. Mielke and T. Roubíček, Rate-Independent Systems: Theory and Application. Springer, New York, NY (2015). [CrossRef] [Google Scholar]
  16. A. Mielke and A.M. Timofte, An energetic material model for time-dependent ferroelectric behaviour: existence and uniqueness. Math. Methods Appl. Sci. 29 (2006) 1393–1410. [Google Scholar]
  17. A. Mielke and S. Zelik, On the vanishing-viscosity limit in parabolic systems with rate-independent dissipation terms. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 13 (2014) 67–135. [Google Scholar]
  18. M.N. Minh, Weak solutions to rate-independent systems: existence and regularity. Ph.D. thesis, Università di Pisa (2012). [Google Scholar]
  19. L. Minotti and G. Savaré, Viscous corrections of the time incremental minimization scheme and visco-energetic solutions to rate-independent evolution problems. Arch. Ration. Mech. Anal. 227 (2018) 477–543. [Google Scholar]
  20. M. Negri, Quasi-static rate-independent evolutions: characterization, existence, approximation and application to fracture mechanics. ESAIM: COCV 20 (2014) 983–1008. [CrossRef] [EDP Sciences] [Google Scholar]
  21. M. Negri and R. Scala, A quasi-static evolution generated by local energy minimizers for an elastic material with a cohesive interface. Nonlinear Anal. Real World Appl. 38 (2017) 271–305. [Google Scholar]
  22. R. Rossi and G. Savaré, From visco-energetic to energetic and balanced viscosity solutions of rate-independent systems, in Solvability, Regularity, and Optimal Control of Boundary Value Problems for PDEs: In Honour of Prof. Gianni Gilardi. Springer, Cham (2017) 489–531. [CrossRef] [Google Scholar]
  23. T. Roubíček, M. Thomas and C. Panagiotopoulos, Stress-driven local-solution approach to quasistatic brittle delamination. Nonlinear Anal. Real World Appl. 22 (2015) 645–663. [Google Scholar]
  24. D. Schrade, M.-A. Keip, H. Thai, J. Schröder, B. Svendsen, R. Müller and D. Gross, Coordinate-invariant phase field modeling of ferroelectrics, part I: model formulation and single-crystal simulations. GAMM-Mitt. 38 (2015) 102–114. [CrossRef] [Google Scholar]
  25. M. Valadier, Young measures, in Methods of Nonconvex Analysis (Varenna, 1989.) Vol. 1446 of Lecture Notes in Mathematics. Springer, Berlin (1990) 152–188. [CrossRef] [Google Scholar]
  26. J. Wloka, Partial Differential Equations. Cambridge University Press, Cambridge (1987). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.