Free Access
Issue
ESAIM: COCV
Volume 25, 2019
Article Number 64
Number of page(s) 60
DOI https://doi.org/10.1051/cocv/2018051
Published online 25 October 2019
  1. T. Björk, M. Khapko and A. Murgoci, On time-inconsistent stochastic control in continuous time. Financ. Stoch. 21 (2017) 331–360. [CrossRef] [Google Scholar]
  2. T. Björk and A. Murgoci, A theory of Markovian time-inconsistent stochastic control in discrete time. Financ. Stoch. 18 (2014) 545–592. [CrossRef] [Google Scholar]
  3. T. Björk, A. Murgoci and X.Y. Zhou, Mean-variance portfolio optimization with state-dependent risk aversion. Math. Financ. 24 (2014) 1–24. [Google Scholar]
  4. S.N. Cohen and R.J. Elliott, Solutions of backward stochastic differential equations on Markov chains. Commun. Stoch. Anal. 2 (2008) 251–262. [Google Scholar]
  5. C. Donnelly, Sufficient stochastic maximum principle in a regime-switching diffusion model. Appl. Math. Optim. 64 (2011) 155–169. [Google Scholar]
  6. C. Donnelly and A.J. Heunis, Quadratic risk minimuzation in a regime-swtching model with portfolio constraints. SIAM J. Control Optim. 50 (2012) 2431–2461. [CrossRef] [Google Scholar]
  7. D. Duffie and L.G. Epstein, Stochastic differential utility. Econometrica 60 (1992) 353–394. [Google Scholar]
  8. D. Duffie and L.G. Epstein, Asset pricing with stochastic differential utility. Rev. Financ. Stud. 5 (1992) 411–436. [Google Scholar]
  9. D. Duffie and P.L. Lions, PDE solutions of stochastic differential utility. J. Math. Econom. 21 (1992) 577–606. [CrossRef] [Google Scholar]
  10. S.D. Eidel’man, Parabolic Systems. North Holland Publishing Company, Amsterdam (1969). [Google Scholar]
  11. I. Ekeland and A. Lazrak, The golden rule when preferences are time inconsistent. Math. Financ. Econ. 4 (2010) 29–55. [CrossRef] [Google Scholar]
  12. N. El Karoui, S. Peng and M.C. Quenez, Backward stochastic differential equations in finance. Math. Financ. 7 (1997) 1–71. [Google Scholar]
  13. N.C. Framstad, B.K. ∅ksendal and A. Sulem, Sufficient stochastic maximum principle for the optimal control of jump diffusions and applications to finance. J. Optim. Theory Appl. 121 (2004) 77–98. [Google Scholar]
  14. A. Friedman, Partial Differential Equations of Parabolic Type. Prentice Hall, Inc., Englewood Cliffs, NJ (1964). [Google Scholar]
  15. J.D. Hamilton, A new approach to the economic analysis of nonstationry time series and the business cycle. Econometrica 57 (1989) 357–384. [Google Scholar]
  16. A.J. Heunis, Utility maximization in a regime switching model wih convex portfolio constratints and margin requirements: optimality relations and explicit solutions. SIAM J. Control Optim. 53 (2015) 2608–2656. [CrossRef] [Google Scholar]
  17. Y. Hu, H. Jin and X.Y. Zhou, Time-inconsistent stochastic linear-quadratic control. SIAM J. Control Optim. 50 (2012) 1548–1572. [CrossRef] [Google Scholar]
  18. D. Hume, A Treatise of Human Nature, 1st edn. (1739); Reprint. Oxford University Press, New York (1978). [Google Scholar]
  19. C. Karnam, J. Ma and J. Zhang, Dynamic approaches for some time inconsistent problems. Preprint arXiv:1604.03913[math.OC] (2016). [Google Scholar]
  20. H. Kraft and F.T. Seifried, Stochastic differential utility as the continuous-time limit of recursive utility. J. Econ. Theory 151 (2014) 528–550. [Google Scholar]
  21. T. Kruse and A. Popier, BSDEs with monotone generator driven by Brownian and Poisson noises in a general filtration. Stochastics 88 (2016) 491–539. [MathSciNet] [Google Scholar]
  22. T. Kruse and A. Popier, Lp-solution for BSDEs with jumps in the case p < 2: Corrections to the paper BSDEs with monotone generator driven by Brownian and Poisson noises in a general filtration. Stochastics 89 (2017) 1201–1227 [CrossRef] [Google Scholar]
  23. D. Laibson, Golden eggs and hyperbolic discounting. Quart. J. Econ. 112 (1997) 443–477. [CrossRef] [Google Scholar]
  24. A. Lazrak, Generalized stochastic differential utility and preference for information. Ann. Appl. Probab. 14 (2004) 2149–2175. [Google Scholar]
  25. A. Lazrak and M.C. Quenez, A generalized stochastic differential utility. Math. Oper. Res. 28 (2003) 154–180. [CrossRef] [Google Scholar]
  26. J. Ma, P. Protter and J. Yong, Solving forward-backward stochastic differential equations explicitly – a four step scheme. Probab. Theory Relat. Fields 98 (1994) 339–359. [Google Scholar]
  27. J. Ma, Z. Wu, D. Zhang and J. Zhang, On well-posedness of forward-backward SDEs – a unified approach. Ann. Appl. Probab. 25 (2015) 2168–2214. [Google Scholar]
  28. J. Ma and J. Yong, Forward-Backward Stochastic Differential Equations and Their Applications. Vol. 1702 of Lecture Notes in Mathematics. Springer-Verlag, Berlin (1999). [Google Scholar]
  29. J. Marin-Solano and J. Navas, Consumption and portfolio rules for time-inconsistent investors. Eur. J. Oper. Res. 201 (2010) 860–872. [Google Scholar]
  30. J. Marin-Solano and E.V. Shevkoplyas, Non-constant discounting and differential games with random time horizon. Automatica 47 (2011) 2626–2638. [CrossRef] [Google Scholar]
  31. B.K. ∅ksendal and A. Sulem, Applied Stochastic Control of Jump Diffusions. Springer-Verlag, Berlin (2005). [Google Scholar]
  32. I. Palacios-Huerta, Time-inconsistent preferences in Adam Smith and David Hume. Hist. Political Econ. 35 (2003) 241–268. [CrossRef] [Google Scholar]
  33. E. Pardoux and S. Peng, Adapted solution of backward stochastic equation. Syst. Control Lett. 14 (1990) 55–61. [Google Scholar]
  34. R.A. Pollak, Consistent planning. Rev. Econ. Stud. 35 (1968) 185–199. [Google Scholar]
  35. R. Situ, Theory of Stochastic Differential Equations with Jumps and Applications: Mathematical and Analytical Techniques with Applications to Engineering. Springer Science & Business Media, New York (2006). [Google Scholar]
  36. A. Smith, The Theory of Moral Sentiments, 1st edn. (1759). Reprint, Oxford University Press, New York (1976). [Google Scholar]
  37. L.R. Sotomayor and A. Cadenilla, Explicit solutions of consumption-investment problems in financecial markets with regime switching. Math. Financ. 19 (2009) 251–279. [Google Scholar]
  38. R.H. Strotz, Myopia and inconsistency in dynamic utility maximization. Rev. Econ. Stud. 23 (1955) 165–180. [Google Scholar]
  39. J. Wei, Time-inconsistent optimal control problems with regime-switching. Math. Control Relat. Fields 7 (2017) 585–622. [CrossRef] [Google Scholar]
  40. Q. Wei, J. Yong and Z. Yu, Time-inconsistent recrusive stochastic optimal control problems. SIAM J. Control Optim. 55 (2017) 4156–4201. [CrossRef] [Google Scholar]
  41. G. Yin and C. Zhu, Hybrid Switching Diffusions: Properties and Applications, Vol. 63. Springer Science & Business Media, New York (2009). [Google Scholar]
  42. J. Yong, Time-inconsistent optimal control problems and the equilibrium HJB equation. Math. Control Relat. Fields 2 (2012) 271–329. [CrossRef] [Google Scholar]
  43. J. Yong, Time-inconsistent optimal control problems, in Proceedings of the International Congress of Mathematicians (2014) 947–969. [Google Scholar]
  44. J. Yong, Linear-quadratic optimal control problems for mean-field stochastic differential equations – time-consistent solutions. Trans. AMS 369 (2017) 5467–5523. [CrossRef] [Google Scholar]
  45. J. Yongand X.Y. Zhou, Stochastic Control: Hamiltonian Systems and HJB Equations. Springer-Verlag, New York (1999). [Google Scholar]
  46. J. Zhang, Backward Stochastic Differential Equations – From Linear to Fully Nonlinear Theory. Springer, New York (2017). [CrossRef] [Google Scholar]
  47. X. Zhang, R.J. Elliott and T.K. Siu, A stochastic maximum principle for a Markov regime-swtching jump-diffusion model and its application to finance. SIAM J. Control Optim. 50 (2012) 964–990. [CrossRef] [Google Scholar]
  48. X.Y. Zhou and G. Yin, Markowitz’s mean-varaince portfolio selection with regime swtching: a contionus-time model. SIAM J. Control Optim. 42 (2003) 1466–1482. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.