Free Access
Volume 25, 2019
Article Number 68
Number of page(s) 45
Published online 05 November 2019
  1. R. Abeyaratne and J.K. Knowles, On the dissipative response due to discontinuous strains in bars of unstable elastic material. Int. J. Solids Struct. 24 (1988) 1021–1044. [Google Scholar]
  2. R. Abeyaratne and J.K. Knowles, On the kinetics of an austenite → martensite phase transformation induced by impact in a CuAlNi shape-memory alloy. Acta Mater. 45 (1997) 1671–1683. [Google Scholar]
  3. N. Ansini, A. Braides and J. Zimmer, Minimising movements for oscillating energies: the critical regime. Proc. R. Soc. Edinb. 149 (2019) 719–737. [CrossRef] [Google Scholar]
  4. R. Abeyaratne, C.-H. Chu and R. James, Kinetics of materials with wiggly energies: theory and application to the evolution of twinning microstructures in a Cu-Al-Ni shape memory alloy. Philos. Mag. A 73 (1996) 457–497. [CrossRef] [Google Scholar]
  5. L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel (2005). [Google Scholar]
  6. H. Attouch, Variational Convergence of Functions and Operators. Pitman Advanced Publishing Program, Pitman (1984). [Google Scholar]
  7. M. Buliga, G. de Saxcé, and C. Valleé, Existence and construction of bipotentials for graphs of multivalued laws. J. Convex Anal. 15 (2008) 87–104. [Google Scholar]
  8. M. Buliga, G. de Saxcé and C. Valleé, Non maximal cyclically monotone graphs and construction of a bipotential for the Coulomb’s dry friction law. J. Convex. Anal. 17 (2008) 81–94. [Google Scholar]
  9. K. Bhattacharya, Phase boundary propagation in a heterogeneous body. R. Soc. Lond. Proc. Ser. A: Math. Phys. Eng. Sci. 455 (1999) 757–766. [CrossRef] [Google Scholar]
  10. G.A. Bonaschi and M.A. Peletier, Quadratic and rate-independent limits for a large-deviations functional. Contin. Mech. Thermodyn. 28 (2016) 1191–1219. [CrossRef] [Google Scholar]
  11. A. Braides, Γ-Convergence for Beginners. Oxford University Press, Oxford (2002). [CrossRef] [Google Scholar]
  12. A. Braides, Local Minimization, Variational Evolution and Gamma-convergence. Lecture Notes in Mathematics Vol. 2094. Springer, Berlin (2013). [Google Scholar]
  13. M. Buliga and G. de Saxcé, A symplectic Brezis-Ekeland-Nayroles principle. Math. Mech. Solids 22 (2017) 1288–1302. [Google Scholar]
  14. G. Dal Maso, An Introduction to Γ-Convergence. Birkhäuser Boston Inc., Boston, MA (1993). [CrossRef] [Google Scholar]
  15. P.W. Dondl, M.W. Kurzke and S. Wojtowytsch, The effect of forest dislocations on the evolution of a phase-field model for plastic slip. Arch. Ration. Mech. Anal. 232 (2019) 5–119. [Google Scholar]
  16. E. De Giorgi, A. Marino and M. Tosques, Problems of evolution in metric spaces and maximal decreasing curve. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 68 (1980) 180–187. [Google Scholar]
  17. M. Efendiev and A. Mielke, On the rate–independent limit of systems with dry friction and small viscosity. J. Convex Anal. 13 (2006) 151–167. [Google Scholar]
  18. I. Ekeland and R. Temam, Convex Analysis and Variational Problems. North Holland, Amsterdam (1976). [Google Scholar]
  19. J. Escobar and R. Clifton, On pressure-shear plate impact for studying the kinetics of stress-induced phase transformations. Mater. Sci. Eng. A 170 (1993) 125–142. [CrossRef] [Google Scholar]
  20. W. Fenchel, On conjugate convex functions. Can. J. Math. 1 (1949) 73–77. [CrossRef] [Google Scholar]
  21. A. Garroni and S. Müller, Gamma-limit of a phase-field model of dislocations. SIAM J. Math. Anal. 36 (2005) 1943–1964. [CrossRef] [Google Scholar]
  22. A. Garroni and S. Müller, A variational model for dislocations in the line tension limit. Arch. Ration. Mech. Anal. 181 (2006) 535–578. [Google Scholar]
  23. P. Gidoni and A. DeSimone, On the genesis of directional friction through bristle-like mediating elements crawler. ESAIM: COCV 23 (2017) 1023–1046. [CrossRef] [EDP Sciences] [Google Scholar]
  24. R. D. James, Hysteresis in phase transformations, in ICIAM 95 (Hamburg, 1995), vol. 87 of Mathematical Research. Akademie Verlag, Berlin (1996) 135–154. [Google Scholar]
  25. M. Liero, Variational Methods for Evolution. Ph. D. thesis, Institut für Mathematik, Humboldt-Universität zu Berlin (2012). [Google Scholar]
  26. M. Liero, A. Mielke, M.A. Peletier and D.R.M. Renger, On microscopic origins of generalized gradient structures. Discrete Continuous Dyn. Syst. Ser. S 10 (2017) 1–35. [Google Scholar]
  27. M. Liero, A. Mielke and G. Savaré, Optimal entropy-transport problems and a new Hellinger–Kantorovich distance between positive measures. Invent. Math. 211 (2018) 969–1117. [Google Scholar]
  28. G. Menon, Gradient systems with wiggly energies and related averaging problems. Arch. Ration. Mech. Anal. 162 (2002) 193–246. [Google Scholar]
  29. A. Mielke, Complete-damage evolution based on energies and stresses. Discrete Continuous Dyn. Syst. Ser. S 4 (2011) 423–439. [CrossRef] [Google Scholar]
  30. A. Mielke, Emergence of rate-independent dissipation from viscous systems with wiggly energies. Continuum Mech. Thermodyn. 24 (2012) 591–606. [CrossRef] [MathSciNet] [Google Scholar]
  31. A. Mielke, On evolutionary Γ-convergence for gradient systems, Macroscopic and Large Scale Phenomena: Coarse Graining, Mean Field Limits and Ergodicity, In Proc. of Summer School in Twente University, June 2012. Lecture Notes in Applied Mathematics Mechanics vol. 3, edited by A. Muntean, J. Rademacher and A. Zagaris. Springer, Switzerland (2016) 187–249. [Google Scholar]
  32. A. Mielke and L. Truskinovsky, From discrete visco-elasticity to continuum rate-independent plasticity: rigorous results. Arch. Ration. Mech. Anal. 203 (2012) 577–619. [Google Scholar]
  33. A. Mielke, A. Montefusco and M.A. Peletier, Exploring families of energy-dissipation landscapes via tilting – three types of edp convergence. In preparation (2019). [Google Scholar]
  34. L. Modica and S. Mortola, Un esempio di Γ-convergenza. Boll. Un. Mat. Ital. B 14 (1977) 285–299. [Google Scholar]
  35. R. e. Monneau and S. Patrizi, Homogenization of the Peierls-Nabarro model for dislocation dynamics. J. Differ. Equ. 253 (2012) 2064–2105. [Google Scholar]
  36. A. Mielke, M.A. Peletier and D.R.M. Renger, On the relation between gradient flows and the large-deviation principle, with applications to Markov chains and diffusion. Potential Anal. 41 (2014) 1293–1327. [CrossRef] [Google Scholar]
  37. A. Mielke, R. Rossi and G. Savaré, Modeling solutions with jumps for rate-independent systems on metric spaces. Discrete Continuous Dyn. Syst. Ser. A 25 (2009) 585–615. [CrossRef] [MathSciNet] [Google Scholar]
  38. A. Mielke, R. Rossi and G. Savaré, BV solutions and viscosity approximations of rate-independent systems. ESAIM: COCV 18 (2012) 36–80. [CrossRef] [EDP Sciences] [Google Scholar]
  39. A. Mielke, R. Rossi and G. Savaré, Nonsmooth analysis of doubly nonlinear evolution equations. Calc. Var. Part. Diff. Eqn. 46 (2013) 253–310. [CrossRef] [Google Scholar]
  40. A. Mielke, R. Rossi and G. Savaré, Balanced-viscosity (BV) solutions to infinite-dimensional rate-independent systems. J. Eur. Math. Soc. 18 (2016) 2107–2165. [CrossRef] [Google Scholar]
  41. V.L. Popov and J.A.T. Gray, Prandtl-Tomlinson model: history and applications in friction, plasticity, and nanotechnologies. Z. Angew. Math. Mech. (ZAMM) 92 (2012) 692–708. [Google Scholar]
  42. L. Prandtl, Gedankenmodel zur kinetischen Theorie der festen Körper. Z. Angew. Math. Mech. (ZAMM) 8 (1928) 85–106. [CrossRef] [Google Scholar]
  43. M.A. Peletier, F. Redig and K. Vafayi, Large deviations in stochastic heat-conduction processes provide a gradient-flow structure for heat conduction. J. Math. Phys. 55 (2014) 093301/19. [Google Scholar]
  44. G. Puglisi and L. Truskinovsky, A mechanism of transformational plasticity. Continuum Mech. Thermodyn. 14 (2002) 437–457. [CrossRef] [Google Scholar]
  45. G. Puglisi and L. Truskinovsky, Rate independent hysteresis in a bi-stable chain. J. Mech. Phys. Solids 50 (2002) 165–187. [Google Scholar]
  46. G. Puglisi and L. Truskinovsky, Thermodynamics of rate-independent plasticity. J. Mech. Phys. Solids 53 (2005) 655–679. [Google Scholar]
  47. R.T. Rockafellar, Convex Analysis. Princeton University Press, Princeton (1970). [CrossRef] [Google Scholar]
  48. E. Sandier and S. Serfaty, Gamma-convergence of gradient flows with applications to Ginzburg-Landau. Commun. Pure Appl. Math. 57 (2004) 1627–1672. [Google Scholar]
  49. S. Serfaty, Gamma-convergence of gradient flows on Hilbert spaces and metric spaces and applications. Discrete Continuous Dyn. Syst. Ser. A 31 (2011) 1427–1451. [CrossRef] [MathSciNet] [Google Scholar]
  50. T.J. Sullivan, M. Koslowski, F. Theil and M. Ortiz, On the behaviour of dissipative systems in contact with a heat bath: application to andrade creep. J. Mech. Phys. Solids 57 (2009) 1058–1077. [Google Scholar]
  51. U. Stefanelli, The Brezis-Ekeland principle for doubly nonlinear equations. SIAM J. Control Optim. 47 (2008) 1615–1642. [CrossRef] [Google Scholar]
  52. T.J. Sullivan, Analysis of Gradient Descents in Random Energies and Heat Baths. Ph.D. thesis, Dept. of Mathematics, University of Warwick (2009). [Google Scholar]
  53. G.A. Tomlinson, A molecular theory of friction. Philos. Mag. 7 (1929) 905–939. [CrossRef] [Google Scholar]
  54. A. Visintin, Variational formulation and structural stability of monotone equations. Calc. Var. Part. Diff. Eqn. 47 (2013) 273–317. [CrossRef] [Google Scholar]
  55. A. Visintin, Structural stability of flows via evolutionary Γ-convergence of weak-type. Preprint arxiv:1509.03819 (2015). [Google Scholar]
  56. A. Visintin, Evolutionary Γ-convergence of weak type. Preprint arXiv:1706.02172 (2017). [Google Scholar]
  57. A. Visintin, Structural compactness and stability of pseudo-monotone flows. Preprint arXiv:1706.02176 (2017). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.