Free Access
Issue
ESAIM: COCV
Volume 25, 2019
Article Number 59
Number of page(s) 54
DOI https://doi.org/10.1051/cocv/2018044
Published online 25 October 2019
  1. M. Bauer and P. Harms, Metrics on spaces of immersions where horizontality equals normality. Diff. Geom. Appl. 39 (2015) 166–183. [CrossRef] [Google Scholar]
  2. M. Bauer, M. Bruveris and P.W. Michor, Why use Sobolev metrics on the space of curves, in Riemannian Computing in Computer Vision, edited by P.K. Turaga and A. Srivastava. Springer, Cham (2016) 233–255. [CrossRef] [Google Scholar]
  3. V.I. Bogachev, Measure Theory. Springer-Verlag, Berlin (2007), Vols. I, II. [CrossRef] [Google Scholar]
  4. H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext. Springer, New York (2011). [Google Scholar]
  5. M. Bruveris, Completeness properties of Sobolev metrics on the space of curves. J. Geom. Mech. 7 (2015) 125–150. [Google Scholar]
  6. M. Bruveris, P.W. Michor and D. Mumford, Geodesic completeness for Sobolev metrics on the space of immersed plane curves. Forum Math. Sigma 2 (2014) e19. [CrossRef] [Google Scholar]
  7. B. Dacorogna, Direct methods in the calculus of variations, Vol. 78 of Applied Mathematical Sciences, 2nd edn. Springer, New York (2008). [Google Scholar]
  8. S. Deiala, Una Metrica Riemanniana Sullo Spazio Delle Curve e Applicazioni. Master’s Thesis, Università di Pisa (2010). [Google Scholar]
  9. D.G. Ebin and J. Marsden, Groups of diffeomorphisms and the motion of an incompressible fluid. Ann. Math. 92 (1970) 102–163. [Google Scholar]
  10. P. Harms and A. Mennucci, Geodesics in infinite dimensional Stiefel and Grassmann manifolds. C. R. Acad. Sci., Paris, Ser I, Math. 350 (2012) 773–776. [CrossRef] [Google Scholar]
  11. E. Klassen, A. Srivastava, W. Mio and S.H. Joshi, Analysis of planar shapes using geodesic paths on shape spaces. IEEE Trans. Pattern Anal. Mach. Intell. 26 (2004) 372–383. [CrossRef] [PubMed] [Google Scholar]
  12. S. Lang, Fundamentals of Differential Geometry. Springer–Verlag, New York (1999). [CrossRef] [Google Scholar]
  13. A. Mennucci, Metrics of curves in shape optimization and analysis, in Level Set and PDE Based Reconstruction Methods in Imaging, edited by S. Osher and M. Burger. In Lecture Notes in Mathematics. Springer (2008) 8–13. [Google Scholar]
  14. P.W. Michor, Topics in Differential Geometry. Vol. 93 of Graduate Studies in Mathematics. American Mathematical Society (2008). [CrossRef] [Google Scholar]
  15. P.W. Michor and D. Mumford, Riemannian geometries on spaces of plane curves. J. Eur. Math. Soc. (JEMS) 8 (2006) 1–48. [CrossRef] [Google Scholar]
  16. P.W. Michor and D. Mumford, An overview of the Riemannian metrics on spaces of curves using the Hamiltonian approach. Appl. Comput. Harmon. Anal. 23 (2007) 76–113. [Google Scholar]
  17. W. Mio and A. Srivastava, Elastic-string models for representation and analysis of planar shapes, in Conference on Computer Vision and Pattern Recognition (CVPR). Available at: http://stat.fsu.edu/~anuj/pdf/papers/CVPR_Paper_04.pdf (2004). [Google Scholar]
  18. S. Osher and M. Burger, Level set and PDE based reconstruction methods: applications to inverse problems and image processing, in Lecture Notes in Mathematics. Lectures given at the C.I.M.E. Summer School held in Cetraro (2008) 8–13. Springer-Verlag, Berlin (2013). [Google Scholar]
  19. A. Srivastava, E. Klassen, S.H. Joshi and I.H. Jermyn, Shape analysis of elastic curves in euclidean spaces. IEEE Trans. Pattern Anal. Mach. Intell. 33 (2011) 1415–1428. [CrossRef] [PubMed] [Google Scholar]
  20. G. Sundaramoorthi, A. Mennucci, S. Soatto and A. Yezzi, A new geometric metric in the space of curves, and applications to tracking deforming objects by prediction and filtering. SIAM J. Imaging Sci. 4 (2011) 109–145. [Google Scholar]
  21. G. Sundaramoorthi, A. Yezzi and A. Mennucci, Sobolev active contours. Int. J. Comput. Vision 73 (2007) 413–417. [CrossRef] [Google Scholar]
  22. A.B. Tumpach and S.C. Preston, Quotient elastic metrics on the manifold of arc-length parameterized plane curves. J. Geom. Mech. 9 (2017) 227–256. [Google Scholar]
  23. K. Pavan Turaga and A. Srivastava, Riemannian Computing in Computer Vision. Springer International Publishing (2016). [CrossRef] [Google Scholar]
  24. A. Yezzi and A. Mennucci, Metrics in the Space of Curves. Preprint ArXiv:0412454 (2004). [Google Scholar]
  25. A. Yezzi and A. Mennucci, Conformal metrics and true “gradient flows” for curves, in International Conference on Computer Vision (ICCV05) (2005) 913–919. [Google Scholar]
  26. L.T. Younes, Computable elastic distances between shapes. SIAM J. Appl. Math. 58 (1998) 565–586. [Google Scholar]
  27. L. Younes, P.W. Michor, J. Shah and D. Mumford, A metric on shape space with explicit geodesics. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei Mat. Appl. 19 (2008) 25–57. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.