Free Access
Issue
ESAIM: COCV
Volume 25, 2019
Article Number 73
Number of page(s) 29
DOI https://doi.org/10.1051/cocv/2018071
Published online 28 November 2019
  1. A. Ambrosetti, On Schrödinger-Poisson systems. Milan J. Math. 10 (2008) 391–404. [Google Scholar]
  2. V. Benci and G. Cerami, Existence of positive solutions of the equation − Δu + a(x)u = u(N+2)∕(N−2) in ℝN. J. Funct. Anal. 88 (1990) 90–117. [Google Scholar]
  3. V. Benci and D. Fortunato, An eigenvalue problem for the Schrödinger-Maxwell equations. Top. Methods Nonlin. Anal. 11 (1998) 283–293. [CrossRef] [MathSciNet] [Google Scholar]
  4. V. Benci and D. Fortunato, Solitary waves of the nonlinear Klein–Gordon equation coupled with Maxwell equations. Rev. Math. Phys. 14 (2002) 409–420. [CrossRef] [Google Scholar]
  5. V. Benci and D. Fortunato, Solitons in Schrödinger-Maxwell equations. J. Fixed Point Theory Appl. 15 (2014) 101–132. [CrossRef] [Google Scholar]
  6. V. Benci and D. Fortunato, Variational methods in nonlinear field equations. Springer Monographs in Math. Springer Int. Publ. Switzerland (2014). [CrossRef] [Google Scholar]
  7. R. Benguria, H. Brézis and E. Lieb, The Thomas-Fermi-Von Weizsäcker theory of atoms and molecules. Commun. Math. Phys. 79 (1981) 167–180. [CrossRef] [MathSciNet] [Google Scholar]
  8. H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Commun. Pure Appl. Math. 36 (1983) 437–477. [Google Scholar]
  9. I. Catto and P.L. Lions, Binding of atoms and stability of molecules in Hartree and Thomas-Fermi type theories. I. Commun Partial Differ. Equ. 17 (1992) 1051–1110. [CrossRef] [MathSciNet] [Google Scholar]
  10. J. Chen, E. Rocha and L. Huang, Positive and sign-changing solutions of a Schrödinger-Poisson system involving a critical nonlinearity. J. Math. Anal. Appl. 408 (2013) 55–69. [Google Scholar]
  11. G. Cerami and R. Molle, Multiple positive solutions for nonautonomous quasicritical elliptic problems in unbounded domains. Adv. Nonlin. Stud. 6 (2006) 233–254. [CrossRef] [Google Scholar]
  12. G. Cerami and R. Molle, Positive bound state solutions for some Schrödinger-Poisson systems. Nonlinearity 29 (2016) 3103–3119. [Google Scholar]
  13. G. Cerami and D. Passaseo, High energy positive solutions for mixed and Neumann elliptic problems with critical nonlinearity. J. Anal. Math. 71 (1997) 1–39. [CrossRef] [Google Scholar]
  14. G. Cerami, S. Solimini and M. Struwe, Some existence results for superlinear elliptic boundary value problems involving critical exponents. J. Funct. Anal. 69 (1986) 289–306. [Google Scholar]
  15. G. Cerami and G. Vaira, Positive solutions for some non-autonomous Schrödinger-Poisson systems. J. Differ. Equ. 248 (2010) 521–543. [Google Scholar]
  16. W-Y. Ding, On a conformally invariant elliptic equation on ℝn. Commun. Math. Phys. 107 (1986) 331–335. [CrossRef] [Google Scholar]
  17. B. Gidas, Symmetry properties and isolated singularities of positive solutions of nonlinear elliptic equations, in Proc of Nonlinear Partial Differential Equations In Engineering and Applied Science, edited by R.L Sternberg, A.J Kalinowski, J.S Papadakis. Dekker, New York (1979). [Google Scholar]
  18. B. Gidas, W.M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in ℝn. Math. Anal. Appl. A: Adv. Math. Suppl. Stud. 7A (1981) 369–402. [Google Scholar]
  19. Y. He, L. Lu and W. Shuai, Concentrating ground state solutions of Schrödinger-Poisson equations in ℝ3 involving critical Sobolev exponents. Commun. Pure Appl. Anal. 15 (2016) 103–125. [Google Scholar]
  20. X. He and W. Zou, Existence and concentration of ground states for Schrödinger-Poisson equations with critical growth. J. Math. Phys. 53 (2012) 023702. [Google Scholar]
  21. P.L. Lions, Solutions of Hartree-Fock equations for Coulomb systems. Commun. Math. Phys. 109 (1987) 33–97. [CrossRef] [MathSciNet] [Google Scholar]
  22. P.L. Lions and B. Simon, The Thomas Fermi theory of atoms, molecules and solids. Adv. Math. 23 (1977) 22–116. [CrossRef] [Google Scholar]
  23. Z. Liu and S. Guo, On ground state solutions for the Schrödinger-Poisson equations with critical growth. J. Math. Anal. Appl. 412 (2014) 435–448. [Google Scholar]
  24. Z. Liu, S. Guo and Y. Fang, Multiple semi classical states for Schrödinger-Poisson equations with critical exponential growth. J. Math. Phys. 56 (2015) 041505. [Google Scholar]
  25. P.A. Markowich, C.A. Ringhofer and C. Schmeiser, Semiconductor Equations. Springer Velag, Vienna (1990). [CrossRef] [Google Scholar]
  26. D. Passaseo, Some sufficient conditions for the existence of positive solutions to the equation − Δu + a(x)u = u2*−1 in bounded domains. Ann. Inst. Henri Poincaré Anal. Non Linéaire 13 (1996) 185–227. [CrossRef] [Google Scholar]
  27. D. Ruiz, The Schrödinger-Poisson equation under the effect of a nonlinearlocal term. J. Funct. Anal. 237 (2006) 655–674. [Google Scholar]
  28. G. Talenti, Best constant in Sobolev inequality. Ann. Mat. Pura Appl. 110 (1976) 353–372. [CrossRef] [MathSciNet] [Google Scholar]
  29. J. Zhang, On ground state and nodal solutions of Schrödinger-Poisson equations with critical growth. J. Math. Anal. Appl. 428 (2015) 387–404. [Google Scholar]
  30. J. Zhang, Ground state and multiple solutions for Schrödinger-Poisson equations with critical nonlinearity. J. Math. Anal. Appl. 440 (2016) 466–482. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.