Free Access
Issue
ESAIM: COCV
Volume 25, 2019
Article Number 76
Number of page(s) 22
DOI https://doi.org/10.1051/cocv/2018057
Published online 05 December 2019
  1. J.L. Bona, S.-M. Sun and B.-Y. Zhang, A nonhomogeneous boundary-value problem for the Korteweg-de Vries equation posed on a finite domain. Comm. Partial Differ. Equ. 28 (2003) 1391–1436. [CrossRef] [Google Scholar]
  2. J.L. Bona, S.-M. Sun and B.-Y. Zhang, Non-homogeneous boundary value problems for the Korteweg-de Vries and the Korteweg-de Vries-Burgers equations in a quarter plane. Ann. Inst. Henri Poincaré 25 (2008) 1145–1185. [CrossRef] [Google Scholar]
  3. E. Cerpa and J.-M. Coron, Rapid stabilization for a Korteweg-de Vries equation from left Dirichlet boundary condition. IEEE Trans. Auto. Control 58 (2013) 1688–1695. [CrossRef] [Google Scholar]
  4. E. Cerpa and E. Crépeau, Rapid exponential stabilization for a linear Korteweg-de Vries equation. Discrete Contin. Dyn. Syst. Ser. B 11 (2009) 655–668. [CrossRef] [Google Scholar]
  5. J.-M. Coron and Q. Lü, Local rapid stabilization for a Korteweg-de Vries equation with a Neumann boundary control on the right. J. Math. Pures Appl. 102 (2014) 1080–1120. [Google Scholar]
  6. M.G. Crandall and A. Pazy, Semi-groups of nonlinear contractions and dissipative sets. J. Funct. Anal. 3 (1969) 376–418. [Google Scholar]
  7. C.M. Dafermos and M. Slemrod, Asymptotic behavior of nonlinear contraction semigroups. J. Funct. Anal. 13 (1973) 97–106. [Google Scholar]
  8. W. Guo and B.-Z. Guo, Parameter estimation and stabilization for a one-dimensional wave equation with boundary output constant disturbance and non-collocated control. Int. J. Control 84 (2011) 381–395. [Google Scholar]
  9. B.-Z. Guo, H.-C. Zhou, A.S. Al-Fhaid, A.M.M. Younas and A. Asiri, Parameter estimation and stabilization for one-dimensional Schrödinger equation with boundary output constant disturbance and non-collocated control. J. Franklin Inst. 352 (2015) 2047–2064. [Google Scholar]
  10. A. Hasan, Output-Feedback Stabilization of the Korteweg-de Vries Equation. 24th Mediterranean Conference on Control and Automation (MED), Athens, Greece (2016) 871–876. [Google Scholar]
  11. C.-H. Jia, Boundary feedback stabilization of the Korteweg-de Vries-Burgers equation posed on a finite interval. J. Math. Anal. Appl. 444 (2016) 624–47. [Google Scholar]
  12. C.-H. Jia and B.-Y. Zhang, Boundary stabilization of the Korteweg-de Vries equation and the Korteweg-de Vries-Burgers equation. Acta Appl. Math. 118 (2012) 25–47. [Google Scholar]
  13. E. Kramer, I. Rivas and B.-Y. Zhang, Well-posedness of a class of non-homogeneous boundary value problems of the Korteweg-de Vries equation on a finite domain. ESAIM: COCV 19 (2013) 358–384. [CrossRef] [EDP Sciences] [Google Scholar]
  14. M. Krstic and A. Smyshlyaev, Adaptive boundary control for unstable parabolic PDEs – part I: Lyapunov design. IEEE Trans. Autom. Control 53 (2008) 1575–1591. [CrossRef] [Google Scholar]
  15. Z.H. Luo, B.-Z. Guo and O. Morgul, Stability and Stabilization of Infinite Dimensional Systems with Applications. Springer-Verlag, London (1998). [Google Scholar]
  16. S. Marx and E. Cerpa, Output feedback stabilization of the Korteweg-de Vries equation. Automatica 87 (2018) 210–217. [CrossRef] [Google Scholar]
  17. S. Marx and E. Cerpa, Output feedback control of the linear Korteweg-de Vries equation. 53rd IEEE Conference on Decision and Control, Los Angeles, USA (2014) 2083–2087. [CrossRef] [Google Scholar]
  18. G. Perla Menzala, C.F. Vasconcellos and E. Zuazua, Stabilization of the Korteweg-de Vries equation with localized damping. Quart. Appl. Math. 60 (2002) 111–129. [CrossRef] [Google Scholar]
  19. L. Rosier, Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain. ESAIM: COCV 2 (1997) 33–55. [CrossRef] [EDP Sciences] [Google Scholar]
  20. S. Tang and M. Krstic, Stabilization of linearized Korteweg-de Vries systems with anti-diffusion. 2013 American Control Conference, Washington DC, USA (2013) 3302–3307. [CrossRef] [Google Scholar]
  21. S. Tang and M. Krstic, Stabilization of linearized Korteweg-de Vries systems with anti-diffusion by boundary feedback with non-collocated observation. 2015 American Control Conference, Palmer House Hilton, USA (2015) 1959–1964. [CrossRef] [Google Scholar]
  22. G. Weiss, Admissible observation operators for linear semigroups. Israel J. Math. 65 (1989) 17–43. [CrossRef] [MathSciNet] [Google Scholar]
  23. G. Weiss, Admissibility of unbounded control operators. SIAM J. Control Optim. 27 (1989) 527–545. [Google Scholar]
  24. B.-Y. Zhang, Boundary stabilization of the Korteweg-de Vries equations. Int. Series Numer. Math. 118 (1994) 371–389. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.