Free Access
Issue
ESAIM: COCV
Volume 25, 2019
Article Number 42
Number of page(s) 21
DOI https://doi.org/10.1051/cocv/2018042
Published online 20 September 2019
  1. L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows: In Metric Spaces and in the Space of Probability Measures. Springer Science & Business Media, Basel (2008). [Google Scholar]
  2. G. Anzellotti, Pairing between measures and bounded functions and compensated compactness. Ann. Mat. Pura Appl. IV 135 (1983) 293–318. [CrossRef] [MathSciNet] [Google Scholar]
  3. G. Bellettini, V. Caselles and M. Novaga, The total variation flow in ℝn. J. Differ. Equ. 184 (2002) 475–525. [Google Scholar]
  4. M. Benning, L. Calatroni, B. Düring and C.-B. Schönlieb, A primal-dual approach for a total variation Wasserstein flow. Geometric Science of Information, Springer, Heidelberg (2013) 413–421. [CrossRef] [Google Scholar]
  5. Y. Brenier, Polar factorization and monotone rearrangement of vector-valued functions. Commun. Pure Appl. Math. 44 (1991) 375–417. [Google Scholar]
  6. H. Brezis, Analyse fonctionnelle. Théorie et applications [Theory and applications]. Collection Mathématiques Appliquées pour la Maîtrise [Collection of Applied Mathematics for the Master’s Degree]. Masson, Paris (1983). [Google Scholar]
  7. M. Burger, M. Franek and C.-B. Schönlieb, Regularized regression and density estimation based on optimal transport. Appl. Math. Res. Express 2012 (2012) 209–253. [Google Scholar]
  8. G. Carlier and M. Laborde, A splitting method for nonlinear diffusions with nonlocal, nonpotential drifts. Nonlinear Anal. 150 (2017) 1–18. [CrossRef] [Google Scholar]
  9. A. Chambolle, V. Caselles, D. Cremers, M. Novaga and T. Pock, An introduction to total variation for image analysis, in Theoretical Foundations and Numerical Methods for Sparse Recovery. Vol. 9 of Radon Ser. Comput. Appl. Math. Walter de Gruyter, Berlin (2010) 263–340. [Google Scholar]
  10. A. Chambolle, V. Duval, G. Peyré and C. Poon, Geometric properties of solutions to the total variation denoising problem. Inverse Probl. 33 (2016) 015002. [Google Scholar]
  11. G. De Philippis, A.R. Mészáros, F. Santambrogio and B. Velichkov, BV estimates in optimal transportation and applications. Arch. Ration. Mech. Anal. 219 (2016) 829–860. [Google Scholar]
  12. M. Di Francesco and D. Matthes, Curves of steepest descent are entropy solutions for a class of degenerate convection-diffusion equations. Calc. Var. Partial Differ. Equ. 50 (2014) 199–230. [Google Scholar]
  13. B. Düring and C.-B. Schönlieb, A high-contrast fourth-order pde from imaging: numerical solution by ADI splitting, in Multi-scale and High-Contrast Partial Differential Equations, edited by H. Ammari, et al. (2012) 93–103. [Google Scholar]
  14. L.C. Evans and J. Spruck, Motion of level sets by mean curvature. II Trans. Amer. Math. Soc. 330 (1992) 321–332 [CrossRef] [Google Scholar]
  15. M.-H. Giga and Y. Giga, Very singular diffusion equations: second and fourth order problems. Jpn. J. Ind. Appl. Math. 27 (2010) 323–345. [Google Scholar]
  16. Y. Giga, H. Kuroda and H. Matsuoka, Fourth-order total variation flow with Dirichlet condition: characterization of evolution and extinction time estimates. Adv. Math. Sci. Appl. 24 (2014) 499–534. [Google Scholar]
  17. R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the Fokker–Planck equation. SIAM J. Math. Anal. 29 (1998) 1–17. [CrossRef] [MathSciNet] [Google Scholar]
  18. D. Loibl, D. Matthes and J. Zinsl, Existence of weak solutions to a class of fourth order partial differential equations with Wasserstein gradient structure. Potential Anal. 45 (2016) 755–776. [CrossRef] [Google Scholar]
  19. U. Massari, Esistenza e regolarita delle ipersuperfici di curvatura media assegnata in ℝn. Arch. Ration. Mech. Anal. 55 (1974) 357–382. [Google Scholar]
  20. U. Massari, Frontiere orientate di curvatura media assegnata in Lp. Rend. Sem. Mat. Univ. Padova 53 (1975) 37–52. [Google Scholar]
  21. E.G.-U. Massari, Variational mean curvatures. Rend. Sem. Mat. Univ. Pol. Torino 52 (1994) 1–28. [Google Scholar]
  22. D. Matthes, R.J. McCann and Giuseppe Savaré, A family of nonlinear fourth order equations of gradient flow type. Commun. Partial Differ. Equ. 34 (2009) 1352–1397. [CrossRef] [Google Scholar]
  23. R.J. McCann, A convexity principle for interacting gases. Adv. Math. 128 (1997) 153–179. [CrossRef] [MathSciNet] [Google Scholar]
  24. R. Rossi and G. Savaré, Tightness, integral equicontinuity and compactness for evolution problems in Banach spaces. Ann. Scu. Norm. Super. Pisa-Cl. Sci. 2 (2003) 395–431. [Google Scholar]
  25. L.I. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms. In Proceedings of the eleventh annual international conference of the Center for Nonlinear Studies on Experimental Mathematics: Computational Issues in Nonlinear Science. Los Alamos, NM (1991). Physics D 60 (1992) 259–268. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  26. F. Santambrogio, Optimal Transport for Applied Mathematicians. Calculus of variations, PDEs, and modeling. Vol. 87 of Progress in Nonlinear Differential Equations and their Applications. Birkhäuser/Springer, Cham (2015). [CrossRef] [Google Scholar]
  27. I. Tamanini, Boundaries of Caccioppoli sets with Hölder-continuous normal vector. J. für Die Reineund Angewandte Mathematik 334 (1982) 27–39. [Google Scholar]
  28. C. Villani, Topics in Optimal Transportation. Vol. 58 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (2003). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.